首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disorders of respiratory control are a prominent feature of Rett syndrome (RTT), a severely debilitating condition caused by mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2). RTT patients present with a complex respiratory phenotype that can include periods of hyperventilation, apnea, breath holds terminated by Valsalva maneuvers, forced and deep breathing and apneustic breathing, as well as abnormalities of heart rate control and cardiorespiratory integration. Recent studies of mouse models of RTT have begun to shed light on neurologic deficits that likely contribute to respiratory dysfunction including, in particular, defects in neurochemical signaling resulting from abnormal patterns of neurotransmitter and neuromodulator expression. The authors hypothesize that breathing dysregulation in RTT results from disturbances in mechanisms that modulate the respiratory rhythm, acting either alone or in combination with more subtle disturbances in rhythm and pattern generation. This article reviews the evidence underlying this hypothesis as well as recent efforts to translate our emerging understanding of neurochemical defects in mouse models of RTT into preclinical trials of potential treatments for respiratory dysfunction in this disease.  相似文献   

2.
Rett syndrome (RTT) is a severe postnatal neurological disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene. In affected children, most biological parameters, including brain structure, are normal (although acquired microcephaly is usually present). However, in recent years, a deficit in bioaminergic metabolism has been identified at the cellular and molecular levels, in more than 200 patients. Recently available transgenic mouse strains with a defective Mecp2 gene also show abnormalities, strongly suggesting that there is a direct link between the function of the MECP2 protein and the metabolism of biogenic amines. Biogenic amines appear to have an important role in the pathophysiology of Rett syndrome, for several reasons. Firstly, biogenic amines modulate a large number of autonomic and cognitive functions. Secondly, many of these functions are affected in RTT patients. Thirdly, biogenic amines are the only neurotransmitters that have repeatedly been found to be altered in RTT patients. Importantly, pharmacological interventions can be envisaged to try to counteract the deficits observed. Here, we review the available human and mouse data and present how they have been and could be used in the development of pharmacological treatments for children affected by the syndrome. Given our current knowledge and the tools available, modulating biogenic amine metabolism may prove to be the most promising strategy for improving the life quality of Rett syndrome patients in the short term.  相似文献   

3.
Individuals with two or more copies of the MECP2 gene, located at Xq28, share clinical features and a distinct facial phenotype known as MECP2 Duplication syndrome. We have examined perinatal characteristics, early childhood development and medical co‐morbidities in this disorder. The International Rett Syndrome Phenotype Database (InterRett), which collects information from caregivers and clinicians on individuals with Rett syndrome and MECP2 associated disorders, was used as the data source. Data were available on 56 cases (49 males and 7 females) with MECP2 Duplication syndrome. Median age at ascertainment was 7.9 years (range: 1.2–37.6 years) and at diagnosis 3.0 years (range: 3 weeks–37 years). Less than a third (29%) learned to walk. Speech deterioration was reported in 34% and only 20% used word approximations or better at ascertainment. Over half (55%) had been hospitalised for respiratory infections in the first 2 years of life. Just under half (44%) had seizures, occurring daily in nearly half of this group. The majority (89%) had gastrointestinal problems and a third had a gastrostomy. Following the recent demonstration of phenotype reversal in a mouse model of MECP2 Duplication, a clear understanding of the natural history is crucial to the design and implementation of future therapeutic strategies.  相似文献   

4.

Background  

MeCP2, methyl-CpG-binding protein 2, binds to methylated cytosines at CpG dinucleotides, as well as to unmethylated DNA, and affects chromatin condensation. MECP2 mutations in females lead to Rett syndrome, a neurological disorder characterized by developmental stagnation and regression, loss of purposeful hand movements and speech, stereotypic hand movements, deceleration of brain growth, autonomic dysfunction and seizures. Most mutations occur de novo during spermatogenesis. Located at Xq28, MECP2 is subject to X inactivation, and affected females are mosaic. Rare hemizygous males suffer from a severe congenital encephalopathy.  相似文献   

5.
Mutations in the MECP2 gene cause the severe neurodevelopmental disorder called Rett syndrome. Preliminary evidence suggests that MECP2 may be involved in a broader phenotype than classical Rett syndrome including preserved speech variants (PSV). Here we report clinical and mutation analysis of 18 PSV patients. Ten of them had a MECP2 mutation (55%). The clinical features of these girls have been characterized and two subgroups defined. All of them had slow recovery of verbal and praxic abilities, evident autistic behavior, and normal head circumference. Six were overweight, often obese, had kyphosis, coarse face, and mental age of two‐to‐three years, and were able to speak in sentences; four had normal weight, mental age not beyond one‐to‐two years, and spoke in single words and two‐word phrases. The course of the disorder was in stages as in classic Rett syndrome. Hand‐washing was present in the first years of life but often subsequently disappeared. Significantly, all mutations found in PSV are either missense or late truncating mutations. In particular, we did not find the four early truncating hot spots: R168X, R255X, R270X, R294X. These results suggest that early truncating mutations lead to a poor prognosis (classic Rett), while late truncating and missense mutations lead either to classic Rett or PSV. We hypothesize that a missense or late truncating mutation is necessary but not sufficient to produce a PSV, based on the presence of one (or more) modifier genes whose product may interact in a epistatic manner with MeCP2 protein. © 2001 Wiley‐Liss, Inc.  相似文献   

6.
Rett syndrome is a severe neurodegenerative disorder characterized by acquired microcephaly, communication dysfunction, psychomotor regression, seizures and stereotypical hand movements. Mutations in methyl CpG binding protein 2 (MECP2) are identified in most patients with classic Rett syndrome. Genetic studies in patients with a Rett variant have expanded the spectrum of underlying genetic etiologies. Recently, a deletion encompassing several genes in the long arm of chromosome 14 has been associated with the congenital Rett-syndrome phenotype. Using array-based comparative genomic hybridization, we identified a 3-year-old female with a Rett-like syndrome carrying a de novo single-gene deletion of FOXG1. Her presentation included intellectual disability, epilepsy and a Rett-like phenotype. The variant features included microcephaly at birth and prominent synophrys. Our results confirm that congenital Rett syndrome can be caused by copy-number variation in FOXG1 and expand the clinical phenotypic spectrum of FOXG1 defect in humans.  相似文献   

7.
Rett syndrome (RTT) is an X‐linked progressive neurodevelopmental disorder that primarily affects females. Mutations in the MECP2 gene have been attributed as the major genetic cause of RTT. Recently, mutations in CDKL5 and FOXG1 genes have also been suggested to give rise to RTT, although subsequent more extensive studies suggest that diseases resulting from mutations in these two genes should be considered as distinct clinical entities. While the genetic basis for the RTT has been recognized, so far there is no effective cure for the disease and the treatments available are mainly aimed at ameliorating clinical problems associated with the disorder. The swift identification of the mutations in children is crucial for pursuing the best therapeutic care. RettBASE was created in 2002 as a MECP2 variant database and has grown to become a comprehensive variant database for RTT and related clinical phenotypes, containing a curated collection of variants for MECP2, CDKL5, and FOXG1 genes. Here, we describe the development and growth of RettBASE after its inception in 2001. Currently, RettBASE holds a total of 4,668 variants in MECP2, 498 variants in CDKL5, and 64 variants in FOXG1.  相似文献   

8.
Tsai SJ 《Medical hypotheses》2007,68(5):1144-1146
Psychostimulants, such as methylphenidate, are currently the most common used drug therapy for children with attention-deficit hyperactivity disorder (ADHD). However, a number of patients with ADHD either fail to respond to these drugs or experience side effects that preclude their use. The heptapeptide Semax is an analogue of the N-terminal fragment (4-10) of adrenocorticotropic hormone, but is completely devoid of any hormonal activity. It has been found to stimulate memory and attention in rodents and humans after intranasal application. Evidence from animal studies revealed that Semax can augment the effects of psychostimulants on central dopamine release and also stimulates central brain-derived neurotrophic factor (BDNF) synthesis. In addition, Semax could improve selective attention and modulate brain development. Since ADHD is likely to be a neurodevelopmental disorder with disturbance in dopamine and BDNF function, it is proposed in this paper that Semax may have good therapeutic potential in ADHD. Furthermore, increased BDNF activity is found to improve Rett syndrome, a severe neurodevelopmental disorder which is, in the majority of cases, caused by mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2). The potential therapeutic effect of Semax in Rett syndrome by increasing central BDNF activity may be of interest for further exploration in animal models of Rett syndrome.  相似文献   

9.
BACKGROUND—Rett syndrome is a neurodevelopmental disorder affecting only girls; 99.5% of Rett syndrome cases are sporadic, although several familial cases have been reported. Mutations in the MECP2 gene were identified in approximately 70-80% of sporadic Rett syndrome cases.
METHODS—We have screened the MECP2 gene coding region for mutations in five familial cases of Rett syndrome and studied the patterns of X chromosome inactivation (XCI) in each girl.
RESULTS—We found a mutation in MECP2 in only one family. In the four families without mutation in MECP2, we found that (1) all mothers exhibit a totally skewed pattern of XCI; (2) six out of eight affected girls also have a totally skewed pattern of XCI; and (3) it is the paternally inherited X chromosome which is active in the patients with a skewed pattern of XCI. Given that the skewing of XCI is inherited in our families, we genotyped the whole X chromosome using 32 polymorphic markers and we show that a locus potentially responsible for the skewed XCI in these families could be located on the short arm of the X chromosome.
CONCLUSION—These data led us to propose a model for familial Rett syndrome transmission in which two traits are inherited, an X linked locus abnormally escaping X chromosome inactivation and the presence of a skewed XCI in carrier women.


Keywords: Rett syndrome; skewed X chromosome inactivation; X chromosome; MECP2  相似文献   

10.
Autistic disorder is a pervasive developmental disorder considered to have a multigenic origin. Mental retardation is present in 75% of autistic patients. Autistic features are found in Rett syndrome, a neurological disorder affecting girls and associated with severe mental retardation. Recently, the gene responsible for the Rett syndrome, methyl CpG-binding protein (MECP2) gene, was identified on the X chromosome by a candidate gene strategy. Mutations in this gene were also observed in some mentally retarded males. In this study we tested MECP2 as a candidate gene in autistic disorder by a DGGE analysis of its coding region and intron-exon boundaries. Among 59 autistic patients, 42 males and 17 females, mentally retarded or not, no mutations or polymorphisms were present in the MECP2 gene. Taking into account the size of our sample, we conclude that MECP2 coding sequence mutations are not an important factor (less than 5% of cases) in the aetiology of autistic disorder.  相似文献   

11.
12.
13.
J Zhang  X Bao  G Cao  S Jiang  X Zhu  H Lu  L Jia  H Pan  S Fehr  M Davis  H Leonard  D Ravine  X Wu 《Clinical genetics》2012,82(6):526-533
Zhang J, Bao X, Cao G, Jiang S, Zhu X, Lu H, Jia L, Pan H, Fehr S, Davis M, Leonard H, Ravine D, Wu X. What does the nature of the MECP2 mutation tell us about parental origin and recurrence risk in Rett syndrome? The MECP2 mutations occurring in the severe neurological disorder Rett syndrome are predominantly de novo, with rare familial cases. The aims of this study were to provide a precise estimate of the parental origin of MECP2 mutations using a large Chinese sample and to assess whether parental origin varied by mutation type. The parental origin was paternal in 84/88 [95.5%, (95% confidence interval 88.77–98.75)] of sporadic Chinese cases. However, in a pooled sample including data from the literature the spectrum of mutations occurring on maternally and paternally derived chromosomes differed significantly. The excess we found of ‘single base pair gains or losses' on maternally derived MECP2 gene alleles suggests that this mutational category is associated with an elevated risk of gonadal mosaicism, which has implications for genetic counseling.  相似文献   

14.
Autism and Rett syndrome, a severe neurological disorder with autistic behavior, are classified as separate disorders on clinical and etiological ground. Rett syndrome is a monogenic X-linked dominant condition due to de novo mutations in the MECP2 gene, whereas autism is a neurodevelopmental and behavioral disorder with complex genetic basis. Maternally inherited duplications on 15q11-q13 are found in a fraction of autistic children suggesting that an abnormal dosage of gene(s) within this region might cause susceptibility to autism. Now we show that three Rett patients are carriers of both a MECP2 mutation and a 15q11-q13 rearrangement, suggesting that there might be a relationship between autism-related genes and the MECP2 gene.  相似文献   

15.
16.
Rett syndrome is a severe neurodevelopmental disorder that arises from mutations in the X-linked MECP2 gene. It is almost exclusively seen in girls due to the predominant occurrence of the mutations on the paternal X-chromosome, and also the early postnatal lethal effect of the disease causing mutations in hemizygous boys. We identified a boy with features of classic Rett syndrome who is mosaic for the truncating MECP2 mutation R270X. Chromosome analysis showed normal karyotype. These results indicate that a MECP2 mutation associated with Rett syndrome in females could lead to a similar phenotype in males as a result of somatic mosaicism.  相似文献   

17.
Angelman syndrome (AS) is a neurodevelopmental disorder characterised by severe mental retardation, absent speech, ataxia, sociable affect, and dysmorphic facial features. Eighty five percent of patients with AS have an identifiable genetic abnormality of chromosome 15q11-13. Mutations within the X linked MECP2 gene have been identified in patients with Rett syndrome (RTT), a neurodevelopmental disorder which affects females almost exclusively and which shares phenotypic overlap with AS. RTT is usually associated with normal development in infancy followed by loss of acquired skills and evolution of characteristic hand wringing movements and episodes of hyperventilation.
A panel of 25 female and 22 male patients with a clinical diagnosis of AS and no molecular abnormality of 15q11-13 were screened for MECP2 mutations and these were identified in four females and one male. Following the diagnosis, it was possible to elicit a history of regression in three of these patients, who by then were showing features suggestive of Rett syndrome. In the remaining two subjects the clinical phenotype was still considered to be Angelman-like.
These findings illustrate the phenotypic overlap between the two conditions and suggest that screening for MECP2 mutations should be considered in AS patients without a demonstrable molecular or cytogenetic abnormality of 15q11-13. Since MECP2 mutations almost always occur de novo, their identification will substantially affect genetic counselling for the families concerned.


Keywords: Angelman syndrome; Rett syndrome; MECP2 mutations  相似文献   

18.
19.
Mutations in the X‐linked gene MECP2 are associated with a severe neurodevelopmental disorder, Rett syndrome (RTT), primarily in girls. It had been suspected that mutations in Methyl‐CpG‐binding protein 2 (MECP2) led to embryonic lethality in males, however such males have been reported. To enhance understanding of the phenotypic spectrum present in these individuals, we identified 30 males with MECP2 mutations in the RTT Natural History Study databases. A wide phenotypic spectrum was observed, ranging from severe neonatal encephalopathy to cognitive impairment. Two males with a somatic mutation in MECP2 had classic RTT. Of the remaining 28 subjects, 16 had RTT‐causing MECP2 mutations, 9 with mutations that are not seen in females with RTT but are likely pathogenic, and 3 with uncertain variants. Two subjects with RTT‐causing mutations were previously diagnosed as having atypical RTT; however, careful review of the clinical history determined that an additional 12/28 subjects met criteria for atypical RTT, but with more severe clinical presentation and course, and less distinctive RTT features, than females with RTT, leading to the designation of a new diagnostic entity, male RTT encephalopathy. Increased awareness of the clinical spectrum and widespread comprehensive genomic testing in boys with neurodevelopmental problems will lead to improved identification.  相似文献   

20.
Mutations in the X-linked MECP2 gene cause Rett syndrome, a neurodevelopmental disorder that exclusively affects girls. Females with the MECP2 mutations exhibit a broad spectrum of clinical presentations ranging from classical Rett syndrome to asymptomatic carriers, which can be explained by differences in X chromosome inactivation (XCI). Here, we report a family with a girl with Rett syndrome in whom a novel missense mutation in the MECP2 gene was transmitted through the maternal germ line. The carrier mother was asymptomatic and presented non-random XCI in the peripheral blood cells, which resulted in the X chromosome harboring the mutant allele that was predominantly active. Thus, the presence of non-random XCI in the peripheral blood cells did not provide an explanation for the normal phenotype of the carrier mother. This result suggests that mechanisms other than XCI may contribute to the phenotypic heterogeneity associated with MECP2 mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号