首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨黏膜黑色素瘤的原发部位与转移部位的相关性及基因组学特征.方法:对经病理确诊为黏膜黑色素瘤的92例患者进行流行病学调查,对肿瘤原发部位及转移部位的相关因素进行总结分析.结果:头颈部为黏膜黑色素瘤高发部位46人(50%),其次为泌尿生殖系统25人(27.17%),肛管直肠21人(22.83%).最常见转移部位均为...  相似文献   

2.
Protein kinase C (PKC) is activated by diacylglycerol generated by receptor-mediated hydrolysis of membrane phospholipids to mediate signals for cell growth and plays as a target of tumor-promoting phorbol esters in malignant transformation. PKC is a family of enzymes and their expression profiles have been examined in the normal melanocytes and melanoma cells, and studies have been carried out on the functions of PKC isoforms in proliferation, transformation, and metastasis of melanoma cells. Here, we summarize current knowledge of the expression and possible roles of the PKC family in melanoma in comparison with those of normal melanocytes.  相似文献   

3.
In preclinical studies, protein kinase C (PKC) enzymes have been implicated in regulating many aspects of pancreatic cancer development and progression. However, clinical Phase I or Phase II trials with compounds targeting classical PKC isoforms were not successful. Recent studies implicate that mainly atypical and novel PKC enzymes regulate oncogenic signaling pathways in pancreatic cancer. Members of these two subgroups converge signaling induced by mutant Kras, growth factors and inflammatory cytokines. Different approaches for the development of inhibitors for atypical PKC and novel PKC have been described; and new compounds include allosteric inhibitors and inhibitors that block ATP binding.  相似文献   

4.
Melanoma is one of the few tumors that have increased in incidence over the last few decades. Strategies devoted solely to protecting against ultraviolet radiation have, at best, had a modest impact on the development of melanoma. Chemoprevention is an under-explored approach that could significantly decrease the morbidity and mortality from this deadly cancer. However, the scientific and logistical challenges of performing clinical studies in chemoprevention require innovative approaches to prove the effectiveness of putative preventive agents. There are several pharmacological and nutriceutical agents that are mechanistically linked to events in melanoma carcinogenesis that are candidates for advanced human studies. We will review the data for several promising agents, including statins, curcumin, resveratrol, silymarin and green tea, and discuss some importance issues and concepts that should be considered in any melanoma chemoprevention strategy.  相似文献   

5.
Melanoma is one of the few tumors that have increased in incidence over the last few decades. Strategies devoted solely to protecting against ultraviolet radiation have, at best, had a modest impact on the development of melanoma. Chemoprevention is an under-explored approach that could significantly decrease the morbidity and mortality from this deadly cancer. However, the scientific and logistical challenges of performing clinical studies in chemoprevention require innovative approaches to prove the effectiveness of putative preventive agents. There are several pharmacological and nutriceutical agents that are mechanistically linked to events in melanoma carcinogenesis that are candidates for advanced human studies. We will review the data for several promising agents, including statins, curcumin, resveratrol, silymarin and green tea, and discuss some importance issues and concepts that should be considered in any melanoma chemoprevention strategy.  相似文献   

6.
Scottish Melanoma Group (SMG) data on 2790 melanoma (MM) cases in South East Scotland over a 24-year time period were analysed in four periods each of 6 years duration grouped into frequently exposed, intermittently exposed, and always covered sites. Incidence increased significantly over time with females having a higher incidence rate than males. In both sexes, the proportion of cases seen on the posterior trunk and arm increased significantly (P<0.001), but declines were seen in the proportion of leg tumours in males (P=0.09) and of head tumours in females (P=0.011). Although the proportion of cases decreased for certain sites, the actual MM incidence increased at all sites. A significant increase in incidence occurred at usually and always covered sites (P<0.001 and P<0.001, respectively) in females and at usually covered sites in males (P<0.001).  相似文献   

7.
Malignant melanoma has a high propensity for metastatic spread, making it the most deadly form of skin cancer. B-RAF has been identified as the most mutated gene in these invasive cells and therefore an attractive therapeutic target. However, for uncertain reasons, chemotherapy inhibiting B-Raf has not been clinically effective. This has raised questions whether this pathway is important in melanoma metastasis or whether targeting a protein other than B-Raf in the signaling cascade could more effectively inhibit this pathway to reduce lung metastases. Here, we investigated the role played by (V600E)B-Raf in melanoma metastasis and showed that targeting this signaling cascade significantly reduces lung metastases. Small interfering RNA (siRNA)-mediated inhibition was used in mice to reduce expression (activity) of each member of the signaling cascade and effects on metastasis development were measured. Targeting any member of the signaling cascade reduced metastasis but inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (Mek) 1 and Mek 2 almost completely prevented lung tumor development. Mechanistically, metastatic inhibition was mediated through reduction of melanoma cell extravasation through the endothelium and decreased proliferative capacity. Targeting B-Raf with the pharmacologic inhibitor BAY 43-9006, which was found ineffective in clinical trials and seems to act primarily as an angiogenesis inhibitor, did not decrease metastasis, whereas inhibition of Mek using U0126 decreased cellular proliferative capacity, thereby effectively reducing number and size of lung metastases. In summary, this study provides a mechanistic basis for targeting Mek and not B-Raf in the mutant (V600E)B-Raf signaling cascade to inhibit melanoma metastases.  相似文献   

8.
In a previous study, Protein Kinase C iota (PRKCI) emerged as an important candidate gene for glioblastoma (GBM) stem‐like cell (GSC) survival. Here, we show that PKCι is overexpressed and activated in patient derived GSCs compared with normal neural stem cells and normal brain lysate, and that silencing of PRKCI in GSCs causes apoptosis, along with loss of clonogenicity and reduced proliferation. Notably, PRKCI silencing reduces tumor growth in vivo in a xenograft mouse model. PKCι has been intensively studied as a therapeutic target in non‐small cell lung cancer, resulting in the identification of an inhibitor, aurothiomalate (ATM), which disrupts the PKCι/ERK signaling axis. However, we show that, although sensitive to pharmacological inhibition via a pseudosubstrate peptide inhibitor, GSCs are much less sensitive to ATM, suggesting that PKCι acts along a different signaling axis in GSCs. Gene expression profiling of PRKCI‐silenced GSCs revealed a novel role of the Notch signaling pathway in PKCι mediated GSC survival. A proximity ligation assay showed that Notch1 and PKCι are in close proximity in GSCs. Targeting PKCι in the context of Notch signaling could be an effective way of attacking the GSC population in GBM.  相似文献   

9.
Targeting the p53-MDM2 interaction to treat cancer   总被引:4,自引:0,他引:4  
  相似文献   

10.
11.
The higher expression of methionine cycle genes in melanoma cells than in normal melanocytes may be related with increased protein synthesis and transmethylation reactions and the subsequent need for high levels of methionine. 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin (TMECG), a trimethoxy derivative of epicatechin-3-gallate (ECG), effectively suppressed proliferation of melanoma cells in cultures by inducing apoptosis. TMECG modulates the expression of genes involved in methionine metabolism, cellular methylation and glutathione synthesis in melanoma cells. TMECG treatment of melanoma cells resulted in the downregulation of antiapoptotic Bcl-2, the upregulation of proapoptotic Bax and the activation of caspase-3; however, it did not induce the expression of the apoptosis protease-activating factor-1 (Apaf-1). Having elucidated the effects of TMECG on the melanoma methionine cycle, we designed therapeuthical strategies to increase its effectiveness. Combinations of TMECG with S-adenosylmethionine or compounds that modulate the intracellular concentration of adenosine strongly increase the antiproliferative effects of TMECG. The ability of TMECG to target multiple aspects related with melanoma survival, with a high degree of potency, points to its clinical value in melanoma therapy.  相似文献   

12.
Over recent years, with the advances in next-generation sequencing, a large number of cancer mutations have been identified and accumulated in public repositories. Coupled to this is our increased ability to generate detailed interactome maps that help to enrich our knowledge of the biological implications of cancer mutations. As a result, network analysis approaches have become an invaluable tool to predict and interpret mutations that are associated with tumour survival and progression. Our understanding of cancer mechanisms is further enhanced by mapping protein structure information to such networks. Here we review the current methodologies for annotating the functional impacts of cancer mutations, which range from analysis of protein structures to protein–protein interaction network studies.  相似文献   

13.
Thymidine kinase 1 (TK1) is involved in cancer progression. Metastatic site is a prognostic factor in melanoma. We assessed whether serum levels of TK1 are associated with metastatic sites or prognosis in patients treated for stage IV melanoma. The study included 64 patients, who received dacarbazine or four-drug chemotherapy (dacarbazine, vincristine, bleomycin, and lomustine) both combined with interferon-alfa. Serum samples for TK1 were analyzed by ELISA. The patients (n?=?22) with only skin and subcutaneous metastases had significantly lower mean TK1 levels (1,639 pg/ml) than the patients (n?=?42) with other distant metastases (2,586 pg/ml, Mann–Whitney, p?=?0.031). TK1 levels above the median (1,590 pg/ml) were significantly related to deep lymph node involvement (odds ratios 3.672; 95 % confidence intervals 1.024–12.843, p?=?0.036). There were no other significant associations between TK1 levels and tumor burden nor were the levels significantly related to the response to therapy or survival. Those eight patients who had received previous adjuvant IFN-alfa therapy had lower mean TK1 levels (1,735 pg/ml) as compared to those 56 patients without previous IFN-alfa therapy (2,338 pg/ml, analysis of variance, p?=?0.026). This is the first study exploring serum TK1 in melanoma. TK1 might be involved in the deep lymphatic dissemination and progression of melanoma metastasis.  相似文献   

14.
Radiotherapy (RT) plays an important role in localized lung cancer treatments. Although RT locally targets and controls malignant lesions, RT resistance prevents RT from being an effective treatment for lung cancer. In this study, we identified phosphomevalonate kinase (PMVK) as a novel radiosensitizing target and explored its underlying mechanism. We found that cell viability and survival fraction after RT were significantly decreased by PMVK knockdown in lung cancer cell lines. RT increased apoptosis, DNA damage, and G2/M phase arrest after PMVK knockdown. Also, after PMVK knockdown, radiosensitivity was increased by inhibiting the DNA repair pathway, homologous recombination, via downregulation of replication protein A1 (RPA1). RPA1 downregulation was induced through the ubiquitin–proteasome system. Moreover, a stable shRNA PMVK mouse xenograft model verified the radiosensitizing effects of PMVK in vivo. Furthermore, PMVK expression was increased in lung cancer tissues and significantly correlated with patient survival and recurrence. Our results demonstrate that PMVK knockdown enhances radiosensitivity through an impaired HR repair pathway by RPA1 ubiquitination in lung cancer, suggesting that PMVK knockdown may offer an effective therapeutic strategy to improve the therapeutic efficacy of RT.  相似文献   

15.
Although sunburn and intermittent sun exposures are associated with increased melanoma risk, most studies have found null or inverse associations between occupational (more continuous pattern) sun exposure and melanoma risk. The association of melanoma with occupational sun exposure may differ according to anatomical site, with some studies finding a positive association with melanoma on the head and neck. We examined the association between occupational sun exposure (self‐reported weekday sun exposure) and melanoma risk according to anatomical site, using data from two multicentre population‐based case‐control studies: the Australian Melanoma Family Study (588 cases, 472 controls) and the Genes, Environment and Melanoma study (GEM; 1079 cases, 2,181 controls). Unconditional logistic regression was used to estimate odds ratios (OR) and their 95% confidence intervals, adjusting for potential confounders. Occupational sun exposure was not positively associated with melanoma risk overall or at different body sites in both studies. The GEM study found inverse associations between occupational sun exposure and melanoma on the head and neck [OR for highest vs. lowest quartile: 0.56, 95% confidence intervals (CI) 0.36–0.86, ptrend 0.02], and between the proportion of total sun exposure occurring on weekdays and melanoma on the upper limbs (OR for highest vs. lowest quartile: 0.66, 95% CI 0.42–1.02, ptrend 0.03). Our results suggest that occupational sun exposure does not increase risk of melanoma, even of melanomas situated on the head and neck. This finding seemed not to be due to negative confounding of occupational sun exposure by weekend sun.  相似文献   

16.
We found that 12-O-tetradecanoylphorbol-13-acetate (TPA) promoted anchorage-independent growth but did not affect anchorage-dependent growth of MIA PaCa-2 human pancreatic carcinoma cells. TPA markedly activated mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase in an anchorage-independent manner. Two protein kinase C (PKC) isoforms, conventional PKC (cPKC) and novel PKC (nPKC), but not apical PKC, translocated from the cytosolic to the particulate fraction upon TPA treatment. To identify the PKC isoforms involved in the regulation of anchorage-independent growth, four PKC isoforms (alpha, delta, epsilon, and zeta) were forced to be expressed in MIA PaCa-2 cells with an adenovirus vector. Overexpression of nPKCdelta or nPKC epsilon activated MAPK and promoted anchorage-independent growth. Overexpression of cPKCalpha alone did not influence anchorage-independent growth but lowered the concentration of TPA that was required to enhance such growth. Expression of constitutively active MAPK kinase-1 (MEK1) also promoted anchorage-independent growth. Furthermore, PKC inhibitors or an MEK inhibitor completely suppressed both TPA-induced activation of MAPK and promotion of anchorage-independent growth, but a cPKC-selective inhibitor partially suppressed TPA-induced promotion of the growth. Based on these results, we suggest that MAPK activation, mediated by certain isoforms of PKC, plays a part in oncogenic growth of MIA PaCa-2 cells. In summary, our data indicated that specific inhibitors of the cPKC and nPKC signaling pathway might be selective anti-oncogenic growth agents for some types of human pancreatic cancer.  相似文献   

17.
Development of spontaneous melanoma in Xiphophorus interspecies backcross hybrid progeny, (X. hellerii × [X. maculatus Jp 163 A × X. hellerii]) is due to Mendelian segregation of a oncogene (xmrk) and a molecularly uncharacterized locus, called R(Diff), on LG5. R(Diff) is thought to suppresses the activity of xmrk in healthy X. maculatus Jp 163 A parental species that rarely develop melanoma. To better understand the molecular genetics of R(Diff), we utilized RNA‐Seq to study allele‐specific gene expression of spontaneous melanoma tumors and corresponding normal skin samples derived from 15 first generation backcross (BC1) hybrids and 13 fifth generation (BC5) hybrids. Allele‐specific expression was determined for all genes and assigned to parental allele inheritance for each backcross hybrid individual. Results showed that genes residing in a 5.81 Mbp region on LG5 were exclusively expressed from the X. hellerii alleles in tumor‐bearing BC1 hybrids. This observation indicates this region is consistently homozygous for X. hellerii alleles in tumor bearing animals, and therefore defines this region to be the R(Diff) locus. The R(Diff) locus harbors 164 gene models and includes the previously characterized R(Diff) candidate, cdkn2x. Twenty‐one genes in the R(Diff) region show differential expression in the tumor samples compared to normal skin tissue. These results further characterize the R(Diff) locus and suggest tumor suppression may require a multigenic region rather than a single gene variant. Differences in gene expression between tumor and normal skin tissue in this region may indicate interactions among several genes are required for backcross hybrid melanoma development.  相似文献   

18.
19.
The clinical success of selective kinase inhibitors, such as imatinib and erlotinib, as therapeutic agents for several human cancers has prompted substantial interest in the further development and clinical testing of such inhibitors for a wide variety of malignancies. While much of this effort has been focused on the receptor tyrosine kinases, including EGFR, HER2, PDGF receptor, c-KIT, and MET, inhibitors of serine/threonine kinases are also beginning to emerge within discovery pipelines. Among these kinases, the RAF and MEK kinases have received substantial attention, owing largely to the relatively high frequency of activating mutations of RAS (20% of all human cancers), an upstream activator of the well established RAF–MEK–ERK signaling cascade, as well as frequent activating mutations in the BRAF kinase (7% of all human cancers). Here, we summarize the current state of development of kinase inhibitors directed at this signaling pathway, a few of which have already demonstrating favorable toxicity profiles as well as promising activity in early phase clinical studies.  相似文献   

20.
Members of the extracellular signal-regulated kinase (ERK) family may have distinct roles in the development of cell injury and repair, differentiation and carcinogenesis. Here, we show, using a synthetic small-molecule MEK1/2 inhibitor (U0126) and RNA silencing of ERK1 and 2, comparatively, that ERK2 is critical to transformation and homeostasis of human epithelioid malignant mesotheliomas (MMs), asbestos-induced tumors with a poor prognosis. Although MM cell (HMESO) lines stably transfected with shERK1 or shERK2 both exhibited significant decreases in cell proliferation in vitro, injection of shERK2 cells, and not shERK1 cells, into immunocompromised severe combined immunodeficiency (SCID) mice showed significant attenuated tumor growth in comparison to shControl (shCon) cells. Inhibition of migration, invasion and colony formation occurred in shERK2 MM cells in vitro, suggesting multiple roles of ERK2 in neoplasia. Microarray and quantitative real-time PCR analyses revealed gene expression that was significantly increased (CASP1, TRAF1 and FAS) or decreased (SEMA3E, RPS6KA2, EGF and BCL2L1) in shERK2-transfected MM cells in contrast to shCon-transfected MM cells. Most striking decreases were observed in mRNA levels of Semaphorin 3 (SEMA3E), a candidate tumor suppressor gene linked to inhibition of angiogenesis. These studies demonstrate a key role of ERK2 in novel gene expression critical to the development of epithelioid MMs. After injection of sarcomatoid human MM (PPMMill) cells into SCID mice, both shERK1 and shERK2 lines showed significant decreased tumor growth, suggesting heterogeneous effects of ERKs in individual MMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号