首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advancements in nanotechnology have led to the development of the nanomedicine, which involves nanodevices for diagnostic and therapeutic purposes. A key requirement for the successful use of the nanoparticles (NPs) in biomedical applications is their good dispensability, colloidal stability in biological media, internalization efficiency, and low toxicity. Therefore, toxicological profiling is necessary to understand the mechanism of NPs and microparticles (MPs). MgO NPs have attracted wide scientific interest due to ease of synthesis, chemical stability and unique properties. However, their toxic effects on humans should also be of concern with the increased applications of nano MgO. The present study was aimed to assess the toxicological potential of MgO NPs in comparison to their micron counterparts in female Wistar rats. Toxicity was evaluated using genotoxicity, histological, biochemical, antioxidant and biodistribution parameters post administration of MgO particles to rats through oral route. The results obtained from the investigation revealed that the acute exposure to the high doses of MgO NPs produced significant (p < 0.01) DNA damage and biochemical alterations. Antioxidant assays revealed prominent oxidative stress at the high dose level for both the particles. Toxicokinetic analysis showed significant levels of Mg accumulation in the liver and kidney tissues apart from urine and feces. Further, mechanistic investigational reports are warranted to document safe exposure levels and health implications post exposure to high levels of NPs.  相似文献   

2.
This study investigated the oxidative stress induced after acute oral treatment with 500, 1000 and 2000 mg kg?1 doses of Al2O3‐30 and ?40 nm and bulk Al2O3 in Wistar rats. Both the nanomaterials induced significant oxidative stress in a dose‐dependent manner in comparison to the bulk. There was no significant difference between the two nanomaterials. However, the effect decreased with increase with time after treatment. The histopathological examination showed lesions only in liver with Al2O3 nanomaterials at 2000 mg kg?1. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
In the near future, nanotechnology is envisaged for large‐scale use. Hence health and safety issues of nanoparticles (NPs) should be promptly addressed. Twenty‐eight‐day oral toxicity, genotoxicity, biochemical alterations, histopathological changes and tissue distribution of nano and microparticles (MPs) of manganese oxide (MnO2) in Wistar rats was studied. Genotoxicity was assessed using comet, micronucleus and chromosomal aberration assays. The results demonstrated a significant increase in DNA damage in leukocytes, micronuclei and chromosomal aberrations in bone marrow cells after exposure of MnO2‐NPs at 1000, 300 mg kg–1 bw per day and MnO2‐MPs at the dose of 1000 mg kg–1 bw per day. Our findings showed acetylcholinestrase inhibition at 1000 as well as at 300 mg kg–1 bw per day in blood and with all the doses in the brain indicating the toxicity of MnO2‐NPs. Further, the doses significantly inhibited different ATPases in the brain P2 fraction. Significant changes were observed in aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) in the liver, kidney and serum in a dose‐dependent manner. MnO2‐MPs at 1000 mg kg–1 bw per day were found to induce significant alterations in biochemical enzymes. A significant distribution was found in all the tissues in a dose‐dependent manner. MnO2‐NPs showed a much higher absorptivity and tissue distribution as compared with MnO2‐MPs. A large fraction of MnO2‐NPs and MnO2‐MPs was cleared by urine and feces. Histopathological analysis revealed that MnO2‐NPs caused alterations in liver, spleen, kidney and brain. The MnO2‐NPs induced toxicity at lower doses compared with MnO2‐MPs. Further, this study did not display gender differences after exposure to MnO2‐NPs and MnO2‐MPs. Therefore, the results suggested that prolonged exposure to MnO2 has the potential to cause genetic damage, biochemical alterations and histological changes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Despite the increasing use of nickel oxide (NiO) nanoparticles (NPs), limited information is available on their toxicological effects. Health consequences of 28 days repeated oral exposure to NiO NPs have not been explored thoroughly. Hence, toxicity investigations were performed after 28‐day daily exposure in albino Wistar rats with NiO NPs following Organization for Economic Co‐operation and Development test guideline 407. Histopathology, biochemical indices including oxidative stress and biodistribution patterns were evaluated to decipher the toxicological impact of NiO NPs. NiO NP characterization by transmission electron microscopy showed an average size of 12.9 (±3.4) nm. Histological studies depicted a prominent impact on the vital organs of the rats. A dose‐dependent rise in both aminotransferase enzyme values was recorded in the homogenates of liver and kidney tissues. A significant decrease in superoxide dismutase activity and increase in catalase activity was noted. Further, a dose‐dependent decrease in reduced glutathione content was recorded in rats, which suggested generation of reactive oxygen species and oxidative stress. Increase in the malondialdehyde levels was observed with an increase in the dose substantiating the antioxidant enzyme activity profiles. Biodistribution studies indicated maximum accumulation of Ni content in liver followed by kidney. Excretion of Ni was predominantly through feces and a little through renal clearance. Our study indicated that NiO NPs adversely alter the biochemical profile of the rats and cause histological damage. Further investigations are warranted to address the mechanism by which physiological path these NiO NPs exhibit their toxic nature in in vivo.  相似文献   

5.
Magnetic iron oxide nanoparticles with appropriate surface chemistry have been widely used with potential new applications in biomedical industry. Therefore, the aim of this study was to assess the size-, dose-, and time-dependent effects, after acute oral exposure to iron oxide-30 NP (Fe2O3-30), on various biochemical enzyme activities of clinical significances in a female Wistar rat model. Rats were exposed to three different doses (500, 1,000, and 2,000?mg/kg) of Fe2O3-30 and Fe2O3-Bulk along with control. Fe2O3-30 had no effect on growth, behavior, and nutritional performance of animals. Fe2O3-30 caused significant inhibition of acetylcholinestrase in red blood cells as well as in brains of treated rats. Further, more than 50% inhibition of total, Na+-K+, Mg2+, and Ca2+-ATPases activities, as observed in brains of exposed female rats, may be the result of disturbances in cellular physiology and the iono-regulatory process. Activation of the hepatotoxicity marker enzymes, aspartate aminotransferase and alanine aminotransferase, was recorded in serum and liver, whereas inhibition was observed in kidney. Similarly, enhancement of lactate dehydrogenase activity was observed in serum and liver; however, a decrease in enzyme levels was observed in kidneys of Fe2O3-30-treated rats. On the other hand, Fe2O3-Bulk did not depict any significant changes in these biochemical parameters, and alterations were near to control. Therefore, this study suggests that exposure to nanosize particles at acute doses may cause adverse changes in animal biochemical profiles. The use of the rat model signifies the correlation with the human system.  相似文献   

6.
Nano‐copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO‐NPs). Hence, the present study endeavored to study the sub‐lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub‐lethal dose of 40 and 60 ppm for the study. Accumulation of CuO‐NPs was evidenced from the SEM‐EDS and AAS analyzes. The alterations in the AChE and Na+/K+‐ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO‐NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO‐NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO‐NPs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The toxic effects of ACR monomer include carcinogenesis, cellular genotoxic, and neurotoxicity. In this study, we examined the effect of acrylamide on biochemical and hematologic parameters in Wistar rats and explored the renal and hepatic function of these animals through a complementary anatomopathologic study. For it, thirty female Wistar rats aged 4 weeks and weighing 100?±?10?g were housed six animals per cage and divided as follows: two groups were exposed for 2 months to drinking water containing 5 mg (Group 2) or 10?mg acrylamide (Group 3); one group of 12 rats received the median lethal dose of acrylamide by gavage (Group 4); and the control group (Group 1) received pure water. The results clearly showed that acrylamide affects various biochemical parameters, such as creatinine, urea, and serum globulin levels and the lipid balance, which are directly related to renal and hepatic dysfunction and disruption of the hematologic system. In addition, the data revealed changes in the complete blood count (CBC); significant increases in the number of leukocytes (9.95?±?1.44 and 10.44?±?1.21) and lymphocytes (6.11?±?0.48 and 6.33?±?0.76) in Groups 3 and 4, respectively; and decreases in total protein (88.95?±?6.36), albumin (37.65?±?1.65) and α-1 globulin levels (24.84?±?2.10) in Group 3. The anatomopathologic study confirmed liver damage in the animals administered an acrylamide containing diet compared with those in the control group. The present study confirmed the effects of acrylamide on different hematologic, biochemical and immunologic parameters, with a specific focus on the liver and kidney, and on the induction of neurotoxic disorders. The results showed that oral exposure to acrylamide via drinking water or gavage induces kidney damage, hepatocellular insufficiency and chronic liver disease, resulting in primary immunodeficiency and activation of the immune system following the possible expression of certain immunoreaction genes.  相似文献   

8.
BackgroundDiclofenac is commonly prescribed Non-Steroidal Anti-Inflammatory Drug (NSAIDs) as it has anti-inflammatory, analgesic and anti-pyretic properties. Long term usage and over-dosage of diclofenac is associated with adverse effects like drug-induced liver injury, gastrointestinal and renal toxicity. The therapeutic uses of medicinal plants have gained a prominent role in recent years. Madhuca longifolia is a tree found throughout India, which is known to have several pharmacological activities. The aim of our study is to investigate the potential effect of the ethanolic and methanolic leaf extracts of M. longifolia against diclofenac-induced toxicity.MethodsThe rats used for the experiment were divided into seven groups. Group-1 was the normal control. Group-2 was administered with diclofenac (50 mg/kg b.w./day/ip) on the 4th and the 5th day. Group-3 was treated with diclofenac and ELEML (500 mg/kg b.w./day/po) on all 5 days. Group-4 was treated with diclofenac and MLEML (500 mg/kg b.w./day/po) on all 5 days. Standard drug silymarin (25 mg/kg b.w./day/po) was given to the rats of group-5 along with diclofenac. Group-6 and group–7 were treated with ethanolic leaf extract and methanolic leaf extract of M. longifolia respectively. After the study period, the rats were evaluated for parameters like liver and renal markers, antioxidants and histopathological changes.ResultsThis study has proved the beneficial effect of ethanolic and methanolic leaf extract of M. longifolia against diclofenac-induced toxicity wherein ethanolic leaf extract showed a better result than methanolic leaf extract.ConclusionOur study has concluded the beneficial effect of ethanolic and methonolic leaf extract of Madhuca longifolia against DFC-induced toxicity. This study proves that it has potential effect on hepato, renal and gastro toxicity in female Wistar albino rats. It can further be studied to understand its mechanism in treating toxicity.  相似文献   

9.
CBLB502 is a derivative of a microbial protein that binds to Toll-like receptor 5. It is demonstrated to reduce inflammatory response from acute stresses, such as radiation in animal models. We determined the potential developmental toxicity of CBLB502 in rats. Four groups of 25 time-mated female Wistar rats/group received subcutaneously 0, 30, 100, or 300 μg/kg/day of CBLB502 from Gestation Days (GD) 6 to 17 at a dose volume of 1.0 mL/kg. Toxicokinetic evaluation was performed on GD 6 and 17. On GD 20 C-section was performed for uterine evaluation and blood samples collected from each dam for immunogenicity assay.Significant decrease in gestation body weight, weight changes and food consumption indicative of maternal toxicity were observed in all dose groups. Also adjusted body weight and weight changes were seen at 300 μg/kg/day. No external, visceral and skeletal abnormalities were observed. The NOAEL for developmental toxicity was estimated to be ≥300 μg/kg/day.  相似文献   

10.
The aim of this study was to investigate acute and subacute oral toxicity of an ionic liquid, didecyldimethylammonium acesulfamate [DDA][Ace], in rats. The compound tested was classified to the fourth toxicity class with a fixed LD50 cut-off value of 500?mg/kg. Organ pathology induced by [DDA][Ace] in acute experiments included exfoliation of the surface layer of the digestive tract and alveolar septa in lung parenchyma. In a subacute experiment, rats were administered 10, 50, and 100?mg/kg/day [DDA][Ace] for 28 days. Reduced body weight gain and reduced food consumption was observed in mid- and high-dose rats. Statistically significant hematology changes were found mostly in high-dose groups of both sexes: increases in hematocrit, mean corpuscular volume, and mean platelet volume. Statistically significant changes in clinical chemistry parameters included increases in the GGT, SDH, and LDH activity and bilirubin concentration, and decreases in triglycerides, glucose, and inorganic phosphorus concentration. No treatment-related microscopic changes were observed. Under the conditions of this study, the lowest-observed-adverse-effect level of [DDA][Ace] was considered to be 10?mg/kg/day.  相似文献   

11.
The aim of this study was to determine whether repeated exposure to iron oxide nanoparticles (Fe2O3‐NPs) could be toxic to mice testis. Fe2O3‐NPs (25 and 50 mg/kg) were intraperitoneally administered into mice once a week for 4 weeks. Our study showed that Fe2O3‐NPs have the ability to cross the blood‐testis barrier to get into the testis. The findings showed that exposure resulted in the accumulation of Fe2O3‐NPs which was evidenced from the iron content and accumulation in the testis. Furthermore, 25 and 50 mg/kg Fe2O3‐NPs administration increased the reactive oxygen species, lipid peroxidation, protein carbonyl content, glutathione peroxidase activity, and nitric oxide levels with a concomitant decrease in the levels of antioxidants—superoxide dismutase, catalase, glutathione, and vitamin C. Increased expression of Bax, cleaved‐caspase‐3, and cleaved‐PARP confirms apoptosis. Serum testosterone levels increased with increased concentration of Fe2O3‐NPs exposure. In addition, the histopathological lesions like vacuolization, detachment, and sloughing of germ cells were also observed in response to Fe2O3‐NPs treatment. The data from our study entailed that testicular toxicity caused by Fe2O3‐NPs exposure may be associated with Fe2O3‐NPs accumulation leading to oxidative stress and apoptosis. Therefore, precautions should be taken in the safe use of Fe2O3‐NPs to avoid complications in the fertility of males. Further research will unravel the possible molecular mechanisms on testicular toxicity of Fe2O3‐NPs. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 594–608, 2017.  相似文献   

12.
The release of nanoparticles (NPs) to the environment poses an increasing potential threat to biological systems. This study investigated the phytotoxicity and accumulation of copper oxide (CuO) NPs to Elsholtzia splendens (a Cu-tolerant plant) under hydroponic conditions. The 50% effective concentration (EC50) of CuO NPs to E. splendens was about 480 mg/L, implying the tolerance of E. splendens to CuO NPs. The Cu content in the shoots treated with 1000 mg/L CuO NPs was much higher than those exposed to the comparable 0.5 mg/L soluble Cu and CuO bulk particles. CuO NPs-like deposits were found in the root cells and leaf cells. Cu K-edge X-ray absorption near-edge structure analysis further revealed that the accumulated Cu species existed predominantly as CuO NPs in the plant tissues. All these results suggested that CuO NPs can be absorbed by the roots and translocated to the shoots in E. splendens.  相似文献   

13.
Dietary exposures to environmental food pollutants such as mycotoxin(s) or pesticide(s) have gained immense significance due to their adverse effects on production and reproduction in animal and human populations. The present investigation was conducted to evaluate the maternal toxicity of citrinin (CIT) and endosulfan administered per os either alone or in combination in pregnant rats during gestational days 6-20. CIT (group I, 10 mg kg(-1) feed, through diet) and endosulfan (group II, 1 mg kg(-1) body weight, by oral intubation) when administered either alone or in combination (group III) in Wistar rats caused clinical signs of toxicity and pathomorphological changes in all the toxin treated groups, the severity being more pronounced in the combination treatment compared with that observed in the control (group IV). The rate of fetal resorptions was highest (22.22%) in the combination treatment followed by endosulfan (16.48%) and CIT (12.50%) treatment groups compared with the control group (3.86%). The histopathological changes such as engorged vasculature, vacuolar degeneration and karyomegaly in liver; congestion, tubular degeneration and cast formation in kidneys; vascular changes and hemosiderosis in uterus and lymphocytic depletion and apoptosis in the lymphoid organs were recorded in the animals of the toxin treated groups. The lesions were consistent and more severe in the combination treatment group compared with the individual treatment groups, suggesting an additive interaction of CIT and endosulfan in inducing maternal toxicity in Wistar rats.  相似文献   

14.
The maternal and fetal toxicity of benzyl benzoate, commonly used as antiparasitic insecticide, was evaluated in pregnant rats after a daily oral dose of 25 and 100 mg/kg. Biochemical, histopathological, and morphological examinations were performed. Dams were observed for maternal body weights and food and water consumption and subjected to caesarean section on (GD) 20. Maternal and fetal liver, kidney, heart, brain, and placenta were examined histopathologically under light microscope. Maternal and fetal liver and placenta were stained immunohistochemically for vascular endothelial growth factor (VEGF). Morphometric analysis of fetal body lengths, placental measurements, and fetal skeletal stainings was performed. Statistically significant alterations in biochemical parameters and placental and skeletal measurements were determined in treatment groups. In addition to histopathological changes, considerable differences were observed in the immunolocalization of VEGF in treatment groups. These results demonstrated that benzyl benzoate and its metabolites can transport to the placenta and eventually enter the fetuses. © 2011 Wiley Periodicals, Inc. Environ Toxicol 29: 40–53, 2014.  相似文献   

15.
Selenium (Se) nanoparticles have been proposed as food supplements. However, the particle formulation may exert unexpected toxicity. The aim was therefore to compare toxicity of low doses of Se nanoparticles and the dissolved, ionized Se species selenite. Female rats were dosed orally for 28?d with either: 0.05, 0.5, or 4?mg Se/kg body weight (bw)/day as 20?nm Se nanoparticles or 0.05 or 0.5?mg Se/kg bw/day as sodium selenite. Male rats were dosed 4?mg Se/kg bw/day as Se nanoparticles. Body weight and clinical appearance were recorded throughout the experiment. At necropsy, blood samples were taken for hematological and clinical chemistry analyses; organ weights were recorded. At the high-dose of Se nanoparticles, overt toxicity occurred and the female animals had to be euthanized prematurely, whereas the male animals were reduced in dose. At all doses of Se nanoparticles and at 0.5?mg Se/kg bw/day as selenite, a lower body weight gain as compared to vehicle occurred. Relative liver weight was increased for both Se formulations at 0.5?mg Se/kg bw/day. Creatinine clearance and urinary pH were affected in some Se dosed groups. There were no effects among dosed groups on brain neurotransmitters or on hematological parameters compared with controls. There were no histological changes in the livers of animals exposed to Se nanoparticles or to selenite. Based on effects on body weight and liver weight, selenium nanoparticles and ionic Se exerted similar toxicity. This suggests that a nanoparticle-specific toxicity of Se did not occur.  相似文献   

16.
17.
Currently gold nanoparticles are being explored for drug delivery and other biomedical applications; therefore it is necessary to study the fate of such nanoparticles inside the body. The objective of the present study was to investigate the cellular uptake and toxicity of the gold nanoparticles synthesized using a microbial polysaccharide, gellan gum, as a capping and reducing agent. The cellular uptake of gold nanoparticles was studied on mouse embryonic fibroblast cells, NIH3T3 and human glioma cell line, LN-229. The cellular uptake study indicated that the gellan gum-reduced gold nanoparticles were located in cancer cells (LN-229) while no uptake was observed in normal mouse embryonic fibroblast cells (NIH3T3). The toxicity of the gold nanoparticles was evaluated by carrying out subacute 28 day oral toxicity studies in rats. Subacute administration of gum-reduced gold nanoparticles to the rats did not show any hematological or biochemical abnormalities. The weight and normal architecture of various organs did not change compared with control. The current findings, while establishing the specific uptake of nanoparticles into cancerous cells, also demonstrates that the gellan gum-reduced gold nanoparticles are devoid of toxicity in animals following oral administration.  相似文献   

18.
Copper oxide (CuO) nanoparticles (NPs) and copper carbonate nanoparticles (Cu2CO3(OH)2 NPs have applications as antimicrobial agents and wood preservatives: an application that may lead to oral ingestion via hand to mouth transfer. Rats were exposed by oral gavage to CuO NPs and Cu2CO3(OH)2 NPs for five consecutive days with doses from 1 to 512?mg/kg and 4 to 128?mg/kg per day, respectively, and toxicity was evaluated at days 6 and 26. Both CuO NPs and Cu2CO3(OH)2 NPs induced changes in hematology parameters, as well as clinical chemistry markers (e.g. increased alanine aminotransferase, ALT) indicative of liver damage For CuO NPs histopathological alterations were observed in bone marrow, stomach and liver mainly consisting of an inflammatory response, ulceration, and degeneration. Cu2CO3(OH)2 NPs induced morphological alterations in the stomach, liver, intestines, spleen, thymus, kidneys, and bone marrow. In spleen and thymus lymphoid, depletion was noted that warrants further immunotoxicological evaluation. The NPs showed partial dissolution in artificial simulated stomach fluids, while in intestinal conditions, the primary particles simultaneously shrank and agglomerated into large structures. This means that both copper ions and the particulate nanoforms should be considered as potential causal agents for the observed toxicity. For risk assessment, the lowest bench mark dose (BMD) was similar for both NPs for the serum liver enzyme AST (an indication of liver toxicity), being 26.2?mg/kg for CuO NPs and 30.8?mg/kg for Cu2CO3(OH)2 NPs. This was surprising since the histopathology evidence demonstrates more severe organ damage for Cu2CO3(OH)2 NPs than for CuO NPs.  相似文献   

19.
目的:评价肤福牌皮肤消毒护肤喷雾剂的毒性和刺激性。方法:按照消毒技术规范(2002年版)进行急性和亚急性毒性实验、完整和破损皮肤刺激实验、急性眼刺激实验以及微核实验。结果:急性灌胃毒性实验结果显示,该产品对雌、雄小鼠的LD50〉5000mg/kg;对家兔多次完整皮肤、一次破损皮肤刺激实验,以及急性眼刺激实验均属无刺激性;500~5000mg/kg微核实验结果呈阴性;亚急性经口毒性实验,对雌、雄SD大鼠未观察到有害作用的剂量为1000mg/kg。结论:该产品属实际无毒级,无刺激性,安全性良好。  相似文献   

20.
The present study aimed to evaluate the acute and subacute toxicity profiles of Erodium guttatum extracts in mice using the methods described in the guidelines of the OECD. In the acute toxicity study, the LD50 value was greater than 2000 mg/kg. The subacute toxicity study of E. guttatum extracts showed no significant changes in body or organ weights. The administration of E. guttatum extracts to mice at a dose of 200 mg/kg led to an increase in white blood cells, platelets and hemoglobin. Moreover, the aqueous extract of E. guttatum only decreased liver aspartate aminotransferase (ASAT) levels at a dose of 200 mg/kg, and creatinine and urea levels did not show any significant alterations compared to the control group. Our results showed that the extracts of E. guttatum caused a slight increase in alanine aminotransferase (ALAT) and triglycerides. The histological study showed that mice treated with E. guttatum extracts experienced some histopathological changes in the liver, particularly with the methanolic extract, and slight changes in the kidneys and pancreas. Regarding the renal profile, no toxicity was observed. These results provide basic information on the toxicological profile of E. guttatum used in traditional medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号