首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The ability to understand how Parkinson's disease neurodegeneration leads to cortical dysfunction will be critical for developing therapeutic advances in Parkinson's disease dementia. The overall purpose of this project was to study the small‐amplitude cortical myoclonus in Parkinson's disease as an in vivo model of focal cortical dysfunction secondary to Parkinson's disease neurodegeneration. The objectives were to test the hypothesis that cortical myoclonus in Parkinson's disease is linked to abnormal levels of α‐synuclein in the primary motor cortex and to define its relationship to various biochemical, clinical, and pathological measures. The primary motor cortex was evaluated for 11 Parkinson's disease subjects with and 8 without electrophysiologically confirmed cortical myoclonus (the Parkinson's disease + myoclonus group and the Parkinson's disease group, respectively) who had premortem movement and cognitive testing. Similarly assessed 9 controls were used for comparison. Measurements for α‐synuclein, Aβ‐42 peptide, and other biochemical measures were made in the primary motor cortex. A 36% increase in α‐synuclein was found in the motor cortex of Parkinson's disease + myoclonus cases when compared with Parkinson's disease without myoclonus. This occurred without significant differences in insoluble α‐synuclein, phosphorylated to total α‐synuclein ratio, or Aβ‐42 peptide levels. Higher total motor cortex α‐synuclein levels significantly correlated with the presence of cortical myoclonus but did not correlate with multiple clinical or pathological findings. These results suggest an association between elevated α‐synuclein and the dysfunctional physiology arising from the motor cortex in Parkinson's disease + myoclonus cases. Alzheimer's disease pathology was not associated with cortical myoclonus in Parkinson's disease. Cortical myoclonus arising from the motor cortex is a model to study cortical dysfunction in Parkinson's disease. © 2011 Movement Disorder Society  相似文献   

3.
To assess the discriminating power of multiple cerebrospinal fluid (CSF) biomarkers for Parkinson's disease (PD), we measured several proteins playing an important role in the disease pathogenesis. The activities of β‐glucocerebrosidase and other lysosomal enzymes, together with total and oligomeric α‐synuclein, and total and phosphorylated tau, were thus assessed in CSF of 71 PD patients and compared to 45 neurological controls. Activities of β‐glucocerebrosidase, β‐mannosidase, β‐hexosaminidase, and β‐galactosidase were measured with established enzymatic assays, while α‐synuclein and tau biomarkers were evaluated with immunoassays. A subset of PD patients (n = 44) was also screened for mutations in the β‐glucocerebrosidase‐encoding gene (GBA1). In the PD group, β‐glucocerebrosidase activity was reduced (P < 0.05) and patients at earlier stages showed lower enzymatic activity (P < 0.05); conversely, β‐hexosaminidase activity was significantly increased (P < 0.05). Eight PD patients (18%) presented GBA1 sequence variations; 3 of them were heterozygous for the N370S mutation. Levels of total α‐synuclein were significantly reduced (P < 0.05) in PD, in contrast to increased levels of α‐synuclein oligomers, with a higher oligomeric/total α‐synuclein ratio in PD patients when compared with controls (P < 0.001). A combination of β‐glucocerebrosidase activity, oligomeric/total α‐synuclein ratio, and age gave the best performance in discriminating PD from neurological controls (sensitivity 82%; specificity 71%, area under the receiver operating characteristic curve = 0.87). These results demonstrate the possibility of detecting lysosomal dysfunction in CSF and further support the need to combine different biomarkers for improving the diagnostic accuracy of PD. © 2014 International Parkinson and Movement Disorder Society  相似文献   

4.
Lewy body (LB) diseases are characterized by alpha‐synuclein (AS) aggregates in the central nervous system (CNS). Involvement of the peripheral autonomic nervous system (pANS) is increasingly recognized, although less studied. The aim of this study was to systematically analyze the distribution and severity of AS pathology in the CNS and pANS. Detailed postmortem histopathological study of brain and peripheral tissues from 28 brain bank donors (10 with Parkinson's disease [PD], 5 with dementia with LB [DLB], and 13 with non‐LB diseases including atypical parkinsonism and non‐LB dementia). AS aggregates were found in the pANS of all 15 LB disease cases (PD, DLB) in stellate and sympathetic ganglia (100%), vagus nerve (86.7%), gastrointestinal tract (86.7%), adrenal gland and/or surrounding fat (53.3%), heart (100%), and genitourinary tract (13.3%), as well as in 1 case of incidental Lewy body disease (iLBD). A craniocaudal gradient of AS burden in sympathetic chain and gastrointestinal tract was observed. DLB cases showed higher amounts of CNS AS aggregates than PD cases, but this was not the case in the pANS. No pANS AS aggregates were detected in Alzheimer's disease (AD) cases with or without CNS AS aggregates. All pathologically confirmed LB disease cases including 1 case of iLBD had AS aggregates in the pANS with a craniocaudal gradient of pathology burden in sympathetic chain and gastrointestinal tract. AS was not detected in the pANS of any AD case. These findings may help in the search of peripheral AS aggregates in vivo for the early diagnosis of PD. © 2014 International Parkinson and Movement Disorder Society  相似文献   

5.
6.
7.
Alpha‐synuclein (SNCA) is crucial in the pathogenesis of Parkinson's disease (PD), yet mutations in the SNCA gene are rare. Evidence for somatic genetic variation in normal humans, also involving the brain, is increasing, but its role in disease is unknown. Somatic SNCA mutations, arising in early development and leading to mosaicism, could contribute to PD pathogenesis and yet be absent or undetectable in DNA derived from peripheral lymphocytes. Such mutations could underlie the widespread pathology in PD, with the precise clinical outcome dependent on their type and the timing and location of their occurrence. We recently reported a novel SNCA mutation (c.150T>G, p.H50Q) in PD brain‐derived DNA. To determine if there was mosaicism for this, a PCR and cloning strategy was used to take advantage of a nearby heterozygous intronic polymorphism. No evidence of mosaicism was found. High‐resolution melting curve analysis of SNCA coding exons, which was shown to be sensitive enough to detect low proportions of 2 known mutations, did not reveal any further mutations in DNA from 28 PD brain‐derived samples. We outline the grounds that make the somatic SNCA mutation hypothesis consistent with genetic, embryological, and pathological data. Further studies of brain‐derived DNA are warranted and should include DNA from multiple regions and methods for detecting other types of genomic variation. © 2013 The Authors. International Parkinson and Movement Disorder Society published by Wiley Periodicals, Inc.  相似文献   

8.
9.
Alpha‐synuclein gene (SNCA) mutations cause familial Parkinsonism but the role of SNCA variability in idiopathic Parkinson's disease (PD) remains incompletely defined. We report a study of SNCA genetic variation in 452 idiopathic PD cases and 245 controls. SNCA copy number mutations were not associated with early‐onset disease in this population. The minor allele “G” at rs356165 was associated with increased odds of PD (P = 0.013) and genetic variation in D4S3481 (Rep1) was associated with age of disease onset (P = 0.007). There was a trend toward association between variation at rs2583988 and rapid PD progression. © 2009 Movement Disorder Society  相似文献   

10.
Whole gene duplications and triplications of alpha‐synuclein (SNCA) can cause Parkinson's disease (PD), and variation in the promoter region (Rep1) and 3' region of SNCA has been reported to increase disease susceptibility. Within our cohort, one affected individual from each of 92 multiplex PD families showing the greatest evidence of linkage to the region around SNCA was screened for dosage alterations and sequence changes; no dosage or non‐synonymous sequence changes were found. In addition, 737 individuals (from 450 multiplex PD families) that met strict diagnostic criteria for PD and did not harbor a known causative mutation, as well as 359 neurologically normal controls, were genotyped for the Rep1 polymorphism and four SNPs in the 3′ region of SNCA. The four SNPs were in high LD (r2 > 0.95) and were analyzed as a haplotype. The effects of the Rep1 genotype and the 3′ haplotype were evaluated using regression models employing only one individual per family. Cases had a 3% higher frequency of the Rep1 263 bp allele compared with controls (OR = 1.54; empirical P‐value = 0.02). There was an inverse linear relationship between the number of 263 bp alleles and age of onset (empirical P‐value = 0.0004). The 3′ haplotype was also associated with disease (OR = 1.29; empirical P‐value = 0.01), but not age of onset (P = 0.40). These data suggest that dosage and sequence changes are a rare cause of PD, but variation in the promoter and 3′ region of SNCA convey an increased risk for PD. © 2009 Movement Disorder Society  相似文献   

11.
12.
Parkinson's disease (PD) is neuropathologically characterized as an alpha‐synucleinopathy. Alpha‐synuclein‐containing inclusions are stained as Lewy bodies and Lewy neurites in the brain, which are the pathological hallmark of PD. However, alpha‐synuclein‐containing inclusions in PD are not restricted to the central nervous system, but are also found in peripheral tissues. Alpha‐synuclein levels can also be measured in body fluids. The aim of this study was to conduct a systematic review of available evidence to determine the utility of alpha‐synuclein as a peripheral biomarker of PD. We searched PubMed (1948 to 26 May 2013), Embase (1974 to 26 May 2013), the Cochrane Library (up to 26 May 2013), LILACS (up to 26 May 2013) and CINAHL (up to 26 May 2013) for the studies of alpha‐synuclein in peripheral tissues or body fluids in PD. A total of 49 studies fulfilled the search criteria. Peripheral tissues such as colonic mucosa showed a sensitivity of 42–90% and a specificity of 100%; submandibular salivary glands showed sensitivity and specificity of 100%; skin biopsy showed 19% sensitivity and 80% specificity in detecting alpha‐synuclein pathology. CSF alpha‐synuclein had 71–94% sensitivity and 25–53% specificity for distinguishing PD from controls. Plasma alpha‐synuclein had 48–53% sensitivity and 69–85% specificity. Neither plasma nor CSF alpha‐synuclein is presently a reliable marker of PD. This differs from alpha‐synuclein in solid tissue samples of the enteric and autonomic nervous system, which offer some potential as a surrogate marker of brain synucleinopathy.  相似文献   

13.
Synucleinopathies are characterized by abnormal proteinaceous aggregates, mainly composed of fibrillar α‐synuclein (α‐syn). It is now believed that α‐syn can form small aggregates in a restricted number of cells, that propagate to neighbouring cells and seed aggregation of endogenous α‐syn, in a ‘prion‐like manner’. This process could underlie the stereotypical progression of Lewy bodies described by Braak and colleagues across different stages of Parkinson's disease (PD). This prion‐like behaviour of α‐syn has been recently investigated in animal models of PD or multiple system atrophy (MSA). These models investigate the cell‐to‐cell transfer of α‐syn seeds, or the induction and spreading of α‐syn pathology in transgenic or wild‐type rodent brain. In this review, we first outline the involvement of α‐syn in Lewy body diseases and MSA, and discuss how ‘prion‐like’ mechanisms can contribute to disease. Thereon, we debate the relevance of animal models used to study prion‐like propagation. Finally, we review current main histological methods used to assess α‐syn pathology both in animal models and in human samples and their relevance to the disease. Specifically, we discuss using α‐syn phosphorylated at serine 129 as a marker of pathology, and the novel methods available that allow for more sensitive detection of early pathology, which has relevance for modelling synucleinopathies.  相似文献   

14.
15.
16.
17.
Genetic mutations associated with α‐synuclein (α‐Syn) are implicated in the pathogenesis of Parkinson's disease (PD). PD is primarily a movement disorder, but patients are known to experience anxiety and other mood disorders. In this study, we examined the effect of the hA53T mutation during development by analyzing the protein expression of norepinephrine (NET), serotonin (SERT), and dopamine (DAT) transporters in addition to assessing locomotor and anxiety‐like behavior. We observed significant decreases in DAT expression at 8 months in transgenic animals compared with normal and younger mice. We used the elevated plus maze, open‐field test, and rotarod apparatus to evaluate wild‐type and hA53T hemizygous mice at 2, 8, and 12 months of age. Our results showed that 12‐month‐old transgenic mice spend more time in the open arms and display a greater number of open entries of the elevated plus maze compared with wild‐type controls and younger mice. Open‐field test results showed that 12‐month‐old mice travel a greater distance overall and travel more in the inner zone than either wild‐type or younger mice. Rotarod testing showed that 8‐ and 12‐month‐old transgenic mice perform better than either wild‐type controls or younger mice. Overall, 8–12‐month‐old transgenic mice showed a trend toward reduced anxiety‐like behavior and increased hyperactivity. These results indicate a possible role of the A53T α‐Syn mutation in anxiety‐like and hyperactive behaviors in a PD mouse model, suggesting that these behaviors might be comorbid with this disease. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
19.
Background : MSA is a fatal neurodegenerative disorder characterized by a combination of autonomic dysfunction, cerebellar ataxia, and l ‐dopa unresponsive parkinsonism. The hallmark of MSA is the accumulation of α‐synuclein, forming cytoplasmic inclusions in oligodendrocytes. Adeno‐associated viruses allow efficient targeting of disease‐associated genes in selected cellular ensembles and have proven efficient for the neuronal overexpression of α‐synuclein in the substantia nigra in the context of PD. Objectives : We aimed to develop viral‐based models of MSA. Methods : Chimeric viral vectors expressing either human wild‐type α‐synuclein or green fluorescent protein under the control of mouse myelin basic protein were injected in the striatum of rats and monkeys. Rats underwent a longitudinal motor assessment before histopathological analysis at 3 and 6 months. Results : Injection of vectors expressing α‐synuclein in the striatum resulted in >80% oligodendroglial selectivity in rats and >60% in monkeys. Rats developed progressive motor deficits that were l ‐dopa unresponsive when assessed at 6 months. Significant loss of dopaminergic neurons occurred at 3 months, further progressing at 6 months, together with a loss of striatal neurons. Prominent α‐synuclein accumulation, including phosphorylated and proteinase‐K–resistant α‐synuclein, was detected in the striatum and substantia nigra. Conclusions : Viral‐mediated oligodendroglial expression of α‐synuclein allows replicating some of the key features of MSA. This flexible strategy can be used to investigate, in several species, how α‐synuclein accumulation in selected oligodendroglial populations contributes to the pathophysiology of MSA and offers a new framework for preclinical validation of therapeutic strategies. © 2017 International Parkinson and Movement Disorder Society  相似文献   

20.
AimsThe etiology of Parkinson''s disease (PD) is complex and the mechanism is unclear. It has become a top priority to find common factors that induce and affect PD pathology. We explored the key role of hypoxia in promoting the pathological propagation of α‐synuclein (α‐syn) and the progression of PD.MethodsWe performed PD modeling by conducting intracranial stereotaxic surgery in the unilateral striatum of mice. We then measured protein aggregation in vitro. The rotarod and pole tests were employed next to measure the damage of the phenotype. Pathological deposition and autophagy were also observed by immunofluorescence staining and protein levels measured by western blotting.ResultsWe demonstrated that short‐term hypoxia activated phosphorylated (p)‐α‐syn in mice. We confirmed that p‐α‐syn was more readily formed aggregates than α‐syn in vitro. Furthermore, we found that hypoxia promoted the activation and propagation of endogenous α‐syn, contributing to the earlier degeneration of dopaminergic neurons in the substantia nigra and the deposition of p‐α‐syn in our animal model. Finally, autophagy inhibition contributed to the above pathologies.ConclusionHypoxia was shown to accelerate the pathological progression and damage phenotype in PD model mice. The results provided a promising research target for determining common interventions for PD in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号