首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We have demonstrated previously that higher birth weight is associated with greater peak and later‐life bone mineral content and that maternal body build, diet, and lifestyle influence prenatal bone mineral accrual. To examine prenatal influences on bone health further, we related ultrasound measures of fetal growth to childhood bone size and density. We derived Z‐scores for fetal femur length and abdominal circumference and conditional growth velocity from 19 to 34 weeks' gestation from ultrasound measurements in participants in the Southampton Women's Survey. A total of 380 of the offspring underwent dual‐energy X‐ray absorptiometry (DXA) at age 4 years [whole body minus head bone area (BA), bone mineral content (BMC), areal bone mineral density (aBMD), and estimated volumetric BMD (vBMD)]. Volumetric bone mineral density was estimated using BMC adjusted for BA, height, and weight. A higher velocity of 19‐ to 34‐week fetal femur growth was strongly associated with greater childhood skeletal size (BA: r = 0.30, p < .0001) but not with volumetric density (vBMD: r = 0.03, p = .51). Conversely, a higher velocity of 19‐ to 34‐week fetal abdominal growth was associated with greater childhood volumetric density (vBMD: r = 0.15, p = .004) but not with skeletal size (BA: r = 0.06, p = .21). Both fetal measurements were positively associated with BMC and aBMD, indices influenced by both size and density. The velocity of fetal femur length growth from 19 to 34 weeks' gestation predicted childhood skeletal size at age 4 years, whereas the velocity of abdominal growth (a measure of liver volume and adiposity) predicted volumetric density. These results suggest a discordance between influences on skeletal size and volumetric density. © 2010 American Society for Bone and Mineral Research  相似文献   

2.
The PIXImus dual-energy X-ray absorptiometer (DXA) is designed to measure body composition, bone mineral content (BMC), area (BA), and density (BMD) in mice and rats. The aims of this study were to longitudinally measure BMC, BA, and BMD in growing rats and to identify potential technical problems associated with the PIXImus. Total femur and lumbar DXA measurements, body weight, and length of initially 3-week-old rats (n = 10) were taken at weeks 5, 9, and 14. BMC and BMD of femoral metaphyseal and diaphyseal regions rich in trabecular and cortical bone, respectively, were obtained. Results showed significant increases in body weight, total femur BMC and BMD, lumbar area, length, BMC, and BMD at each time point. There was a significant positive correlation between body weight and total femur BMD (r = 0.97, P < 0.001) as well as lumbar BMD (r = 0.99, P < 0.001). BMD values for the femoral metaphyseal region and the lumbar spine were also positively correlated (r = 0.96, P < 0.01). Several technical issues (e.g., positioning of animals), difficulties (e.g., in analysis of images), and limitations (e.g., inability to detect underdeveloped calcified bone in growing animals and bone edge detection) of the software pertinent to the PIXImus were evident. In conclusion, despite limitations in the software, the PIXImus is a valuable tool for studying skeletal development of growing rats.  相似文献   

3.
We investigated the contribution of ethnicity, physical activity, body composition, and calcium intake to bone accrual across 7 years of growth. We assessed 80 Caucasian and 74 Asian boys and 81 Caucasian and 64 Asian girls at baseline and retained 155 children across all 7 years. Ethnicity, physical activity, and calcium intake were assessed by questionnaire; fat mass, lean mass, and bone mineral content (BMC) of the whole body (WB), lumbar spine (LS), total proximal femur (PFTOT), and femoral neck (FN) were measured using DXA (Hologic QDR 4500). We aligned children on peak height velocity and utilized multilevel modeling to assess bone mineral accrual. Height and lean mass accounted for 51.8% and 44.1% of BMC accrual in children. There was a significant difference in physical activity, calcium intake, and lean mass between Asians and Caucasian boys and girls at baseline and conclusion (p < 0.05). In boys, physical activity and ethnicity significantly predicted BMC accrual at the FN. In girls, Asians had significantly lower PFTOT and FN BMC. Calcium was a significant predictor of WB BMC accrual in boys and girls. In conclusion, our findings highlight the importance of accounting for ethnicity in pediatric studies. Physical activity, dietary calcium, and lean mass positively influence bone accrual and are lower in Asian compared to Caucasian children from a very young age.  相似文献   

4.
The purpose of this 7‐year prospective longitudinal study was to examine whether the level and consistency of leisure‐time physical activity (LTPA) during adolescence affected the bone mineral content (BMC) and bone mineral density (BMD) attained at early adulthood. The study subjects were 202 Finnish girls who were 10 to 13 years of age at baseline. Bone area (BA), BMC, and BMD of the total body (TB), total femur (TF), and lumbar spine (L2–L4) were assessed by dual‐energy X‐ray absorptiometry (DXA). Scores of LTPA were obtained by questionnaire. Girls were divided into four groups: consistently low physical activity (GLL), consistently high (GHH), and changed from low to high (GLH) and from high to low (GHL) during 7 years of follow‐up. At baseline, no differences were found in BA, BMC, and BMD among the groups in any of the bone sites. Compared with the GLL group, the GHH group had higher BMC (11.7% in the TF, p < .05) and BMD at the TB (4.5%) and the TF (12.2%, all p < .05) at age 18. Those in the GLH group also had higher a BMC at each site (8.5% to 9.4%, p < .05) and a higher BMD in the TB (5.4%) and the TF (8.9%) than that of GLL (all p < 0.05) at the age 18. Our results suggest that long‐term leisure‐time physical activity has a positive effect on bone mass gain of multiple bone sites in girls during the transition from prepuberty to early adulthood. In addition, girls whose physical activity increases during adolescence also benefit from bone mass gain. © 2010 American Society for Bone and Mineral Research  相似文献   

5.
Circulating adiponectin levels are inversely related to bone mineral density (BMD) in humans and animal models. Previous studies in humans have been confined largely to adult populations, and whether adiponectin influences bone mass accrual in childhood is unclear. We examined this question using the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort by investigating relationships between circulating adiponectin levels at a mean age of 9.9 years, indices of bone mass as measured by total‐body dual‐energy X‐ray absorptiometry (DXA) at ages 9.9 and 15.5 years, and cortical bone parameters as measured by peripheral quantitative computed tomography (pQCT) of the midtibia at age 15.5 years. A total of 4927 children were included at age 9.9 years, of whom 97% and 90% of boys and girls, respectively, were in prepuberty or early puberty, as defined by Tanner stage 1–2. A total of 2754 children were included at age 15.5 years, of whom 95% and 97% of boys and girls, respectively, were in late puberty, as defined by Tanner stage 4–5. Circulating adiponectin was found to be related to fat mass, lean mass, and, to a lesser extent, height, so analyses were adjusted for these three variables to identify possible independent effects of adiponectin on bone development. Adiponectin was inversely related to total‐body‐less‐head bone mineral content (BMC; ?3.0%), bone area (BA; ?1.8%), BMC divided by BA (BMD; ?4.8%), and BMC adjusted for BA by linear regression (aBMC; ?5.6%), as measured at age 9.9 years (coefficients show change per doubling in adiponectin concentration, p < .001). Consistent with these results, inverse associations also were seen between adiponectin and cortical BMC (?4.8%) and cortical bone area (?4.7%), as measured by tibial pQCT at age 15.5 years (p < .001). Further pQCT results suggested that this inverse association of adiponectin with skeletal development predominantly involved a negative association with endosteal relative to periosteal expansion, as reflected by cortical thickness (?6.0%, p < .001). We conclude that, independent of fat mass, lean mass, and height, adiponectin is associated with lower bone mass in childhood predominantly owing to an influence on relative endosteal expansion. Since these associations were observed before and after puberty, this suggests that setting of adiponectin levels in midchildhood has the potential to exert long‐term effects on bone strength and fracture risk. © 2010 American Society for Bone and Mineral Research.  相似文献   

6.
The main aims of this study were, to evaluate what effect a change in fat mass (FM) and lean body mass (LBM) has on bone parameters over 2 years’ time, in 7-year-old school children and to see what effect fitness had on bone parameters in these children. A repeated-measures design study was conducted where children born in 1999 from six elementary schools in Reykjavik, Iceland were measured twice. All children attending second grade in these six schools were invited to participate. Three hundred twenty-one children were invited, 211 underwent dual-energy X-ray absorptiometry (DXA) scans at the age of seven, and 164 (78 %) of the 211 had DXA scans again 2 years later. Increase in both FM and LBM was associated with increased total body bone mineral content (BMC) and bone area (BA). An increase in FM was more strongly positively associated with BA while an increase in LBM was more strongly associated with an increase in BMC. An increase in FM was negatively associated with change in bone mineral density (BMD), but an increase in LBM was positively associated with change in BMD. Fitness was positively associated with bone parameters when weight, height and sex were accounted for. The present results suggest that an increase in fat mass over 2 years is associated with an increase in BA and BMC, but a decrease in BMD in the whole body. An increase in LBM accrual, on the other hand, is positively associated with all bone parameters in the body. Fitness is associated with both BMC and BMD but not BA.  相似文献   

7.
Poor growth in early life is associated with numerous adverse outcomes later in life. In 123 adolescents 16–18 yr of age, the previous findings of a positive relation between size in early life and later bone mass was confirmed. These associations were mediated by the current height and weight, but it was not confirmed that alterations of the GH–IGF axis cause this. Introduction: Numerous studies have found associations between low birth weight and disease later in life, including decreased bone mass. Materials and Methods: A longitudinal cohort of 16‐ to 19‐year‐old adolescents (n = 123) with data on third trimester fetal growth velocity (FGV) was assessed by serial ultrasound measurements, birth weight (BW), and weight at 1 yr. A follow‐up study included DXA scan, anthropometric measurements, and measurements of the growth hormone (GH) –IGF‐I axis in a representative subpopulation (n = 30). Results: BW and weight at 1 yr were positively associated with whole body BMC (p = 0.02 and p < 0.0001, respectively), lumbar spine BMC (p = 0.001 and p = 0.03, respectively), and lumbar spine BMD (p = 0.04). After correction for adolescent height and weight, no association remained significant. There was no relation between IGF‐I and IGF binding protein 3 (IGFBP‐3) levels in adolescence and size in early life or bone mass. In the subpopulation, GH secretion (median, 2.58 versus 4.05), GH pulse mass (median, 10.7 versus 19.4 mU/liter), and total GH (median, 74.9 versus 108.8 mU/liter/12 h) were decreased in the small for gestational age (SGA) group compared with the appropriate for gestational age (AGA) group; this did not reach statistical significance. Likewise, there were no differences in IGF‐I, IGF‐II, and IGFBP‐1, ?2, and ?3 levels between the SGA and AGA groups. A statistically significant positive association between FGV and adolescent IGF‐II was found (B = 199.9, p = 0.006). Significant negative associations between GH measurement and BMC, as well as BMD, were found (B = ?0.008, p = 0.005 and B = ?0.008, p = 0.006, respectively). Conclusions: This study confirms the previous findings of a positive relation between size in early life and later BMC, an association apparently independent of the distal part of the GH/IGF‐I axis. However, this association may be mediated mainly by postnatal growth determining size of the skeletal envelope rather than an effect of fetal programming on bone mass per se.  相似文献   

8.
Peak volumetric bone mineral density (BMD) is determined by the growth in bone size relative to the mineral accrued within its periosteal envelope. Thus, reduced peak volumetric BMD may be the result of reduced mineral accrual relative to growth in bone size. Because sex steroids and growth hormone (GH) influence bone size and mass we asked: What are the effects of gonadectomy (Gx) on bone size, bone mineral content (BMC), areal and volumetric BMD in growing male and female rats? Does GH deficiency (GH-) reduce the amount of bone in the (smaller) bone, i.e., reduce volumetric BMD? Does GH- alter the effect of Gx on bone size and mineral accrual? Gx or sham surgery was performed at 6 weeks in GH- and GH replete (GH+) Fisher 344 male and female rats. Changes in bone size, volume, BMC, areal and volumetric BMD, measured using dual X-ray absorptiometry (DPX-L), were expressed as percentage of controls at 8 months (mean +/- SEM). All results shown were significant (p < 0.05 level) unless otherwise stated. In GH+ and GH- males, respectively, Gx was associated with: lower femur volume (24%, 25%), BMC (43%, 45%), areal BMD (21%, 14%), and volumetric BMD (30%, 28%); lower spine (L1-L3) volume (26%, 28%), BMC (26%, 30%), and areal BMD (28%, 12%), but not volumetric BMD. Following Gx, GH+ females had increased femur volume (11%), no effect on BMC, decreased areal BMD (6%) and decreased volumetric BMD (17%); GH- females had no change in femur volume, but decreased femur BMC (24%), areal BMD (10%), and volumetric BMD (25%). In GH+ and GH- females, respectively, Gx was associated with a decrease in spine (L1-L3) BMC (12%, 15%), areal BMD (16%, 15%), and volumetric BMD (10%, 16%) with no change in volume. Deficits in non-Gx GH- relative to non-Gx GH+ (males, females, respectively) were: femur BMC (49%, 37%), areal BMD (23%, 8%), volume (19%, 19%) and volumetric BMD (37%, 22%); spine (L1-L3) BMC (46%, 42%), areal BMD (37%, 43%), volume (10%, 15%), and volumetric BMD (40%, 33%). Testosterone and GH are growth promoting in growing male rats, producing independent effects on bone size and mass; deficiency produced smaller appendicular bones with reduced volumetric BMD because deficits in mass were greater than deficits in size. At the spine, the reduction in size and accrual were proportional, resulting in a smaller bone with normal volumetric BMD. In growing female rats, estrogen was growth limiting at appendicular sites; deficiency resulted in a GH-dependent increase in appendicular size, relatively reduced accrual, and so, reduced volumetric BMD in a bigger bone. At the spine, accrual was reduced while growth in size was normal, thus volumetric BMD was reduced in the normal sized bone. Understanding the pathogenesis of low volumetric BMD requires the study of the differing relative growth in size and mass of the axial and appendicular skeleton in the male and female and the regulators of the growth of these traits.  相似文献   

9.
The effects of unilateral sciatic neurectomy (USN) on the development of the femur were studied in 15 growing Wistar-derived rats (age, 5 weeks). The rats were divided into four groups: USN-operated group (right femur), USN-nonoperated group (left femur), sham-operated group (right femur), and sham-nonoperated group (left femur). Bone mineral density (BMD), bone mineral content (BMC), bone area, periosteal circumference, and endosteal circumference were measured by peripheral quantitative computed tomography (pQCT) and the mineral/matrix ratio was evaluated by Fourier transform infrared spectroscopy (FTIR). The USN-operated group showed a significant decrease in cortical BMC, bone area, and periosteal circumference compared with the other groups (P < 0.05). The cortical BMD did not vary significantly between the groups. In the cancellous bone, the USN-operated group showed a significant decrease in BMD and BMC at the metaphysis compared with the other groups (P < 0.05). The mineral/matrix ratio of the cortical bone did not differ significantly between the USN-operated and USN-nonoperated groups. These results suggest that in cortical bone, USN inhibits periosteal bone formation but has no significant effect on the mineral/matrix ratio of cortical bone in femurs. In cancellous bone, USN induces bone loss at the metaphysis. Received: Nov. 19, 1998 / Accepted: Feb. 12, 1999  相似文献   

10.
Gymnasts' bone mineral characteristics are generally not known before starting their sport. Prepubertal females who enrolled in beginning artistic gymnastics (n = 65) had lower bone mineral than controls (n = 78). However, 2 years of gymnastics participation versus no participation led to a significantly greater accrual of forearm bone area and lumbar spine areal BMD. INTRODUCTION: The skeletal response to exercise in children compared with adults is heightened because of the high bone turnover rate and the ability of bone to change its size and shape. Whereas child gymnasts generally have greater rates of bone mineral accrual compared with nongymnasts, it is unknown if some of these skeletal advantages are present before the onset of training or are caused entirely by training. MATERIALS AND METHODS: Changes in bone area (BA; cm2), BMC (g), and areal BMD (aBMD; g/cm2) over 24 months were examined in prepubertal females, 4-8 years of age, who selected to perform recreational gymnastics (GYM; n = 65), nongymnastic activities, or no organized activity (CON; n = 78). Participants had essentially no lifetime history of organized athletic participation (< 12 weeks). Pubertal maturation was assessed annually by a physician. Total body, lumbar spine, total proximal femur, and forearm BA, BMC, and aBMD were measured every 6 months using DXA (Hologic QDR-1000W). Independent samples t-tests determined baseline group differences. Nonlinear mixed effects models were used to model 24-month changes in bone data. In subset analyses, high-level gymnasts advancing to competition (HLG; n = 9) were compared with low-level nonadvancing gymnasts (LLG; n = 56). RESULTS: At baseline, GYM were shorter, lighter, and had lower BA, BMC, and aBMD compared with CON (p < 0.05), whereas HLG did not differ significantly in these measurements compared with LLG (p > 0.05). Controlling for differences in race, baseline measures of body mass, height, and calcium intake, and change in breast development beyond stage II at 24 months, GYM had greater long-term (asymptotic) mean responses for total body aBMD and forearm BMC (p < 0.04) and greater rates of increase in the mean responses of lumbar spine aBMD and forearm BA compared with CON over 24 months. Over time, forearm BA increased to a greater extent in HLG compared with LLG (p < 0.01). CONCLUSIONS: Females participating in recreational gymnastics initiated during childhood have enhanced bone mineral gains at the total body, lumbar spine, and forearm over 24 months. Higher-level training promotes additional gains in forearm BA.  相似文献   

11.
The purpose of the study was to investigate whether sleep duration during early childhood was associated with fat mass and bone mineral content (BMC). BMC and fat mass were measured by dual-energy X-ray absorptiometry in children (n = 336) aged 4–12 yr. Sleep was quantified according to parental report of hours slept at night and napping. The relationship between sleep pattern and body composition was tested using analysis of variance including confounding factors. Based on the sample distribution, children were grouped into tertiles of sleep duration. BMC was greater in children with longer sleep duration (p = 0.02). Age was inversely associated with sleep duration; therefore, the sample was analyzed by age category using age 7 yr as a cut-off point. The relationship remained significant only among younger children. Napping was positively associated with BMC (p = 0.001). Sleep duration was not associated with fat parameters. Longer sleep duration may allow for optimal energy resource partitioning in which bone is favored. Sleep duration of less than 8 h may impair bone mass accrual, particularly during periods of rapid growth.  相似文献   

12.
Ethnic factors affect bone mass acquisition during childhood. The aim of our study was to establish normative data for bone mineral content (BMC) and bone mineral density (BMD) in healthy Korean children and adolescents, using 446 lumbar spine scans (224 males and 222 females) and 364 proximal femur scans (181 males and 183 females) of healthy children between ages 2 and 18 years measured by dual-energy X-ray absorptiometry using Hologic QDR Discovery A 2004. There was an increase in both BMC and BMD during early childhood, acceleration during the adolescence spurt, and a slower increase later. Until 11 years of age, both male and female BMC and BMD were not statistically different. There was a rapid increase in both BMC and BMD in females earlier than in males, and later males caught up with the females and overshot the female values. When compared with Canadian children, BMD and BMC of total proximal femur was found to be more and BMD and BMC of total lumbar spine to be less at some ages. Tanner's stage was significantly associated with BMD and BMC of spine and proximal femur in males and BMC of spine in females in the first three Tanner's stages. Height, body weight, fat content, and body mass index influenced BMC and BMD at different sites by variable amount. Hence, the values presented in this study should be used as reference values in Korean children and adolescents.  相似文献   

13.
Lifestyle factors, such as diet, are believed to be involved in modifying bone health, although the results remain controversial, particularly in children and adolescents. The objective of the study was to identify associations between dietary factors and whole body bone measurements in 10-year-old children. The study was a cross-sectional analysis of a random sample of 105 healthy Danish children, aged 10 years (9.97 ± 0.09). Whole body bone mineral content (BMC) and bone area (BA) were determined by dual-energy X-ray absorptiometry. The influence of diet (7 day food records) on BMC and BA were examined in bi- and multivariate analyses. The mean intakes of calcium, protein, phosphorus and sodium were 1226 mg, 78 g, 1523 mg and 3.3 g, respectively. In bivariate analyses, BMC and BA were strongly positively correlated with height (p<0.001) and weight (p<0.001), and with intakes of energy (p<0.005) and several nutrients. BMC was adjusted for size by including BA, height and weight in the multiple linear regression, and BA was adjusted for size by including height and weight in the multiple linear regression. In multivariate analyses, size-adjusted BMC was positively associated with calcium intake (p = 0.02). Size-adjusted BA was positively associated with dietary protein (p = 0.003), and negatively associated with intakes of sodium (p = 0.048) and phosphorus (p = 0.01). In conclusion, calcium intake was positively associated with bone mineralization. There was a positive association between protein and BA, while for phosphorus and sodium the association was negative. The findings suggest that in addition to calcium, the intake of other nutrients influences bone development in prepubertal children. Received: 31 December 1999 / Accepted: 23 June 2000  相似文献   

14.
Summary We prospectively examined bone growth patterns in 894 children aged 6–17 years at the baseline visit, with a 6-year follow-up. Results show bone “tracking” over a six-year interval and sexual dimorphism of bone attained levels and timing of peak bone growth. Our findings underscore childhood and adolescence as critical periods for building bone and developing gender differences. Introduction Bone growth patterns were prospectively examined in 894 Chinese children (496 males), aged 6–17 yrs, from a population-based twin cohort. Whole-body bone area (BA), bone mineral content (BMC), and bone mineral density (BMD) were measured by DEXA at baseline and a 6-yr follow-up. Methods Graphic smoothing plots and generalized estimating equations were used to model bone attained levels, growth, and “tracking”. Results Attained levels of BMC and BA increased curvilinearly with age. Male attained levels were higher than females after age ∼15 yr, but BMD was lower between 13–17 yrs (Tanner stage I to IV). In both genders, peak BMC and BMD growth lagged ∼2 yrs behind peak BA growth, which lagged 2 yrs behind peak height growth. Peak bone growth occurred 1–3 yrs later in males. Over the 6-yr follow-up, all bone measurements “tracked”, but “shifting” across ranks also occurred, and baseline tertile ranking influenced bone growth. Females with early menarche had higher attained levels than females with late menarche at age 12–13 yrs. Conclusion Our findings confirm and expand previous studies on peak bone growth conducted in Caucasian cohorts, particularly sexually dimorphic and maturational effects. The significant “tracking” of bone measurements in this 6-yr follow-up study underscores the importance that osteoporosis prevention should begin in childhood and adolescence. Fengxiu Ouyang and Binyan Wang contributed equally to this article. Source(s) of support: This study is supported in part by grant R01 HD049059, R01 HL0864619 and R01 AR045651 from the National Institute of Health and by the Food Allergy Project.  相似文献   

15.
Areal bone mineral density (BMD), the quotient of bone mineral content (BMC) divided by the projectional bone area (BA), measured with dual-energy X-ray absorptiometers (DXA), is the most common parameter used today to evaluate spinal osteoporosis. To evaluate whether gender, age, weight, and height can determine spinal BA, and to compare BA and analyze its effects on spinal density in the two genders, we measured BA and BMC, and calculated areal BMD, and the bone mineral apparent density (BMAD = BMD/√BA) of the L-2 to L-4 vertebrate of 604 female and 223 male Chinese volunteers from 20 to 70 years of age using a Norland XR-26 DXA. Standardized for height and weight, BA showed a relatively large variation and a significant increase with increasing age in both genders. On the other hand, BMC stayed unchanged in men > 50 years of age and decreased with aging in postmenopausal women. Younger men (< 51 years) had a much larger mean BA (by 15.5%) and larger mean BMC (only 10%) than that of age-matched women. As a result, younger men had a slightly and significantly lower areal BMD (by 7.1%) and a much lower BMAD (by 16%) (p < 0.0001 for both) than premenopausal women of similar age. Men had higher areal BMD and BMAD values than age-matched women only after age 50 years. Although taller body height, heavier weight, and increasing age were associated with a larger BA, these factors could not explain most of the interindividual variations in BA in both genders. Thus anteroposterior BA of lumbar vertebrate measured with DXA seems to affect the areal BMD and BMAD readings in the two genders. The larger BA caused a low BMAD and probably underestimated the true volumetric spine density in men.  相似文献   

16.
Small birth size is associated with reduced adult bone mass. We determined if antenatal betamethasone exposure, birth weight, or prematurity affects peak bone mass in 174 adults. Antenatal betamethasone exposure did not. Lower birth weight and prematurity predicted reduced adult height. Slower fetal growth rather than prematurity predicted lower bone mass, but this lower bone mass was appropriate for reduced adult height. INTRODUCTION: Small size at birth is reported to be associated with lower bone mass in adulthood. However, previous studies have not distinguished the relative contributions of length of gestation and fetal growth to size at birth. Fetal exposure to excess glucocorticoids has been proposed as a core mechanism underlying the associations between birth size and later disease risk. Antenatal glucocorticoids are given to pregnant women at risk for preterm delivery for the prevention of neonatal respiratory distress syndrome in their infants. We determined the relationship of antenatal exposure to betamethasone, birth weight, and prematurity to peak bone mass and femoral geometry in the adult survivors of the first randomized trial of antenatal glucocorticoids. MATERIALS AND METHODS: We studied 174 young adults (mean age, 31 years) whose mothers participated in a randomized trial of antenatal betamethasone. Mothers received two doses of intramuscular betamethasone or placebo 24 h apart. Two thirds of participants were born preterm (<37 weeks gestation). We measured indices of bone mass and size and derived estimates of volumetric density and bone geometry from DXA assessments of the lumbar spine, femur, and total body. RESULTS: There were no differences between betamethasone-exposed and placebo-exposed groups in any of the lumbar spine, femur, or total body DXA measures. There was no effect of antenatal betamethasone on adult height, although leg length was increased relative to trunk length (p = 0.002). A lighter birth weight (p 相似文献   

17.
Weight loss may lead to bone loss but little is known about changes in bone mass during regain of reduced weight. We studied changes in bone mineral density (BMD) and bone mineral content (BMC) during voluntary weight reduction and partial regain. The study consisted of three phases: a 3 month weight reduction with very-low-energy diet (VLED), a 9 month randomized, controlled walking intervention period with two training groups (target energy expenditure 4.2 or 8.4 MJ/week) and a 24-month follow-up. The participants were premenopausal women with a mean body mass index of 34.0 (SD 3.6) kg/m2. Seventy-four of 85 subjects completed the whole study. Total body, lumbar spine, proximal femur and dominant radius BMD and BMC were measured with dual-energy X-ray absorptiometry (DXA). The mean weight loss during VLED was 13.2 (3.4) kg, accompanied by unchanged total body BMC and decreased lumbar, trochanteric and radial BMD (p<0.05). During months 3–36, an average of 62% of the weight loss was regained, total body BMC decreased and trochanteric BMD increased (p<0.05). At the end of the study, total body BMC and lumbar and femoral neck BMD were lower than initially (p<0.05). Weight change throughout the study correlated significantly with the change in radial (r= 0.54), total body (r= 0.39) and trochanteric (r= 0.37) BMD. Exercise-group assignment had no effect on BMD at weight-bearing sites. In conclusion, the observed changes in BMD and BMC during weight reduction and its partial regain were clinically small and partly reversible. More studies are needed to clarify whether the observed weight changes in BMD and BMC are real or are artifacts arising from assumptions, inaccuracies and technical limitations of DXA. Received: 20 April 2000 / Accepted: 20 September 2000  相似文献   

18.
In the present study, we compared lumbar spinal and whole-body bone mineral density (BMD) measurements to determine which is more suitable for evaluating the bone mineral status of low-birth-weight (LBW) infants. Lumbar spinal and whole-body BMD were assessed simultaneously in a prospective series including 152 Japanese LBW infants (birth weight 453–2400 g, gestational age 24–38 weeks) from the age of 40 weeks post-conception to 2 years of age. Lumbar spinal BMD at 40 weeks post-conception was significantly correlated with birth weight (r = 0.74; P < 0.0001), but whole-body BMD was not correlated with birth weight. No correlation was found between lumbar spinal and whole-body BMD at 40 weeks post-conception. However, after 40 weeks post-conception, a significant correlation was found between lumbar spinal and whole-body BMD (r = 0.65; P < 0.0001). For infants with a body weight of 4 kg or less at the time of measurement, no correlation was found between lumbar spinal and whole-body BMD. However, for infants with a body weight above 4 kg, a significant correlation was found between lumbar spinal and whole-body BMD (r = 0.65; P < 0.0001). Thus, lumbar spinal BMD is more suitable than whole-body BMD for evaluation of the bone mineral status of LBW in early infancy. Therefore, lumbar spinal BMD should be used for serial evaluation of changes in the bone mineral status of LBW infants. Received: April 6, 2000 / Accepted: June 16, 2000  相似文献   

19.
We examined the association of candidate gene polymorphisms with bone mineral density (BMD) and bone mineral content (BMC) in a cohort of 428 healthy non-Hispanic white children participating in the Iowa Bone Development Study, a longitudinal study of determinants of bone accrual in childhood. BMD and BMC measurements of the hip, spine and whole body were made using a Hologic 2000 Plus densitometer in 228 girls and 200 boys ages 4.5–6.5 years. Genotypes at 14 loci representing eight candidate genes [type I collagen genes (COL1A1 and COL1A2), osteocalcin, osteonectin, osteopontin, vitamin D receptor (VDR), estrogen receptor (ER), androgen receptor (AR)] were determined. Gender-specific and gender-combined prediction models for bone measures that included age, weight, height (and gender) were developed using multiple linear regression analysis. COL1A2 and osteocalcin genotypes were identified as having the strongest and most consistent association with BMD/BMC measures. Osteonectin, osteopontin and VDR translation initiation site polymorphisms were associated with some individual bone measures, but none of the associations was as consistent as those identified for the COL1A2 and osteocalcin genes. No association was identified with COL1A1 (RsaI and Sp1), VDR (BsmI) and ER polymorphisms (PvuII, XbaI, TA) and BMD/BMC. However, we identified significant gene-by-gene interaction effects involving the ER and both VDR and osteocalcin, which were associated with BMD/BMC. Our data suggest that genetic variation at multiple genetic loci is important in bone accrual in children. Moreover, the combination of genotypes as several loci may be as important as a single genotype for determining BMD and BMC.  相似文献   

20.
Summary Women participated in 5 months of unilateral concentric (n = 37) or eccentric (n = 33) isokinetic resistance training of the legs and arms. Limb muscular strength increased as did total body, leg, and arm fat-free soft tissue mass, total body BMC, hip BMD, and forearm BMC and BMD. Isokinetic training benefits bone mineral acquisition. Introduction and hypothesis Isokinetic resistance training (IRT) is osteogenic; however, it is not known if concentric or eccentric modalities of IRT produce differential effects on bone. We tested our hypothesis that high-load eccentric versus concentric mode of IRT would produce greater increases in muscular strength, fat-free soft tissue mass (FFSTM), bone mineral density (BMD) and content (BMC) in trained legs and arms. Methods Participants were randomized to 5 months of concentric (n = 37) or eccentric (n = 33) training. The non-dominant leg and arm were used during training; dominant limbs served as controls. Muscular strength was measured with an isokinetic dynamometer; body composition was measured by dual-energy X-ray absorptiometry. Results Muscular strength of the concentrically and eccentrically trained leg (18.6%; 28.9%) and arm (12.5%; 24.6%) significantly increased with training. Gains in total body (TB) BMC (p < 0.05) and, in the trained limbs, total proximal femur BMD (p < 0.05) and total forearm BMD (p < 0.05) and BMC (p < 0.05) occurred in both groups. FFSTM increased for the TB and trained leg and arm (all p < 0.001) in both modes. Conclusion Regardless of the mode, high-intensity, slow-velocity IRT increases muscular strength and FFSTM of trained limbs and imparts benefits to TB BMC and site-specific BMD and BMC in young women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号