首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a) plays an essential role in Ca(2+) homeostasis and cardiac functions. The promoter region of SERCA2a has a high content of CpG islands; thus, epigenetic modification by inhibiting methylation can enhance SERCA2a expression in cardiomyocytes. Hydralazine, a drug frequently used in heart failure, is a potential DNA methylation inhibitor. We evaluated whether hydralazine can modulate Ca(2+) handling through an increase in SERCA2a expression via regulating methylation. We used indo-1 fluorescence, real-time RT-PCR, immunoblotting, and methylation-specific PCR to investigate intracellular Ca(2+), the expressions of RNA and protein, and methylation of SERCA2a in HL-1 cardiomyocytes with and without (control) the administration of hydralazine (1, 10, and 30 μM) for 72 h. Hydralazine (10 and 30 μM) increased the intracellular Ca(2+) transients and SR Ca(2+) contents. Hydralazine (10 and 30 μM) decreased methylation in the SERCA2a promoter region and increased the RNA and protein expressions of SERCA2a. Additionally, hydralazine (10 and 30 μM) decreased the expression of DNA methyltransferase 1. Moreover, treatment with hydralazine in isoproterenol-induced heart failure rats decreased the promoter methylation of SERCA2a and increased SERCA2a RNA expression. In conclusion, hydralazine-induced promoter demethylation may improve cardiac function through increasing SERCA2a and modulating calcium homeostasis in cardiomyocytes.  相似文献   

2.
The excitation-contraction (E-C) coupling system during the development of heart can be investigated because of marked progression in electrophysiology and microfluorescence studies. During the developmental period, Ca2+ influx mediating the E-C coupling is mainly through the L-type Ca2+ channels. In the fetal period, T-type Ca2+ channels and the reverse mode of the Na-Ca exchange system also contribute to Ca2+ influx. These contributions probably reduce gradually until adulthood. The contraction of fetal cardiomyocytes has been thought to depend mainly on the Ca2+ influx. However, recent studies reveal that immature sarcoplasmic reticulum (SR) already works in the early fetal period. Ca2+ spark, a local and unitary movement of Ca2+, can be observed in adult cardiomyocytes by the use of a confocal microscope. On the other hand, no Ca2+ spark is observed in fetal cardiomyocytes. The frequency of Ca(2+)-spark evocation increases during the postnatal period. Therefore a close distance between the L-type Ca2+ channel and the SR Ca(2+)-release channel is essential to the establishment of the Ca2+ spark.  相似文献   

3.
Calsequestrin type-1 (CASQ1), the main sarcoplasmic reticulum (SR) Ca(2+) binding protein, plays a dual role in skeletal fibers: a) it provides a large pool of rapidly-releasable Ca(2+) during excitation-contraction (EC) coupling; and b) it modulates the activity of ryanodine receptors (RYRs), the SR Ca(2+) release channels. We have generated a mouse lacking CASQ1 in order to further characterize the role of CASQ1 in skeletal muscle. Contrary to initial expectations, CASQ1 ablation is compatible with normal motor activity, in spite of moderate muscle atrophy. However, CASQ1 deficiency results in profound remodeling of the EC coupling apparatus: shrinkage of junctional SR lumen; proliferation of SR/transverse-tubule contacts; and increased density of RYRs. While force development during a twitch is preserved, it is nevertheless characterized by a prolonged time course, likely reflecting impaired Ca(2+) re-uptake by the SR. Finally, lack of CASQ1 also results in increased rate of SR Ca(2+) depletion and inability of muscle to sustain tension during a prolonged tetani. All modifications are more pronounced (or only found) in fast-twitch extensor digitorum longus muscle compared to slow-twitch soleus muscle, likely because the latter expresses higher amounts of calsequestrin type-2 (CASQ2). Surprisingly, male CASQ1-null mice also exhibit a marked increased rate of spontaneous mortality suggestive of a stress-induced phenotype. Consistent with this idea, CASQ1-null mice exhibit an increased susceptibility to undergo a hypermetabolic syndrome characterized by whole body contractures, rhabdomyolysis, hyperthermia and sudden death in response to halothane- and heat-exposure, a phenotype remarkably similar to human malignant hyperthermia and environmental heat-stroke. The latter findings validate the CASQ1 gene as a candidate for linkage analysis in human muscle disorders.  相似文献   

4.
5.
The association between type 2 diabetes and obesity is very strong, and cardiovascular complications are the major cause of morbidity and mortality in diabetic patients. The aim of this study was to investigate early changes in the pattern of genes encoding cardiac muscle regulatory proteins and associated changes in ventricular myocyte contraction and Ca(2+) transport in young (9- to 13-week-old) type 2 Zucker diabetic fatty (ZDF) rats. The amplitude of myocyte shortening was unaltered; however, time-to-peak shortening and time to half-relaxation of shortening were prolonged in ZDF myocytes (163 ± 5 and 127 ± 7 ms, respectively) compared with age-matched control rats (136 ± 5 and 103 ± 4 ms, respectively). The amplitude of the Ca(2+) transient was unaltered; however, time-to-peak Ca(2+) transient was prolonged in ZDF myocytes (66.9 ± 2.6 ms) compared with control myocytes (57.6 ± 2.3 ms). The L-type Ca(2+) current was reduced, and inactivation was prolonged over a range of test potentials in ZDF myocytes. At 0 mV, the density of L-type Ca(2+) current was 1.19 ± 0.28 pA pF(-1) in ZDF myocytes compared with 2.42 ± 0.40 pA pF(-1) in control myocytes. Sarcoplasmic reticulum Ca(2+) content, release and uptake and myofilament sensitivity to Ca(2+) were unaltered in ZDF myocytes compared with control myocytes. Expression of genes encoding various L-type Ca(2+) channel proteins (Cacna1c, Cacna1g, Cacna1h and Cacna2d1) and cardiac muscle proteins (Myh7) were upregulated, and genes encoding intracellular Ca(2+) transport regulatory proteins (Atp2a2 and Calm1) and some cardiac muscle proteins (Myh6, Myl2, Actc1, Tnni3, Tnn2, and Tnnc1) were downregulated in ZDF heart compared with control heart. A change in the expression of genes encoding myosin heavy chain and L-type Ca(2+) channel proteins might partly underlie alterations in the time course of contraction and Ca(2+) transients in ventricular myocytes from ZDF rats.  相似文献   

6.
Cardiac sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a) is responsible for most of the Ca(2+) removal during diastole and a larger Ca(2+) handling energy consumer in excitation-contraction (E-C) coupling. To understand the cardiac performance under long-term SERCA2a overexpression conditions, we established SERCA2a transgenic (TG) Wistar rats to analyze cardiac mechanical work and energetics in normal hearts during pacing at 300 beats/min. SERCA2a protein expression was increased in TGI and TGII rats (F2 and F3 of the same father and different mothers). Mean left ventricular (LV) end-systolic pressure (ESP) and systolic pressure-volume area (PVA; a total mechanical energy per beat) at midrange LV volume (mLVV) were significantly larger in TGI rats and were unchanged in TGII rats, compared to those in non-TG [wildtype (WT)] littermates. Mean myocardial oxygen consumption per minute for E-C coupling was significantly increased, and the mean slope of myocardial oxygen consumption per beat (VO(2))-PVA (systolic PVA) linear relation was smaller, but the overall O(2) cost of LV contractility for Ca(2+) is unchanged in all TG rats. Mean Ca(2+) concentration exerting maximal ESP(mLVV) in TGII rats was significantly higher than that in WT rats. The Ca(2+) overloading protocol did not elicit mitochondrial swelling in TGII rats. Tolerance to higher Ca(2+) concentrations may support the possibility for enhanced SERCA2a activity in TGII rats. In conclusion, long-term SERCA2a overexpression enhanced or maintained LV mechanics, improved contractile efficiency under higher energy expenditure for Ca(2+) handling, and improved Ca(2+) tolerance, but it did not change the overall O(2) cost of LV contractility for Ca(2+) in normal hearts of TG rats.  相似文献   

7.
Cardiac myocytes, in the intact heart, are exposed to shear/fluid forces during each cardiac cycle. Here we describe a novel Ca(2+) signalling pathway, generated by 'pressurized flows' (PFs) of solutions, resulting in the activation of slowly developing ( approximately 300 ms) Ca(2+) transients lasting approximately 1700 ms at room temperature. Though subsequent PFs (applied some 10-30 s later) produced much smaller or undetectable responses, such transients could be reactivated following caffeine- or KCl-induced Ca(2+) releases, suggesting that a small, but replenishable, Ca(2+) pool serves as the source for their activation. PF-triggered Ca(2+) transients could be activated in Ca(2+)-free solutions or in solutions that block voltage-gated Ca(2+) channels, stretch-activated channels (SACs), or the Na(+)-Ca(2+) exchanger (NCX), using Cd(2+), Gd(3+), or Ni(2+), respectively. PF-triggered Ca(2+) transients were significantly smaller in quiescent than in electrically paced myocytes. Paced Ca(2+) transients activated at the peak of PF-triggered Ca(2+) transients were not significantly smaller than those produced normally, suggesting functionally separate Ca(2+) pools for paced and PF-triggered transients. Suppression of nitric oxide (NO) or IP(3) signalling pathways did not alter the PF-triggered Ca(2+) transients. On the other hand, mitochondrial metabolic uncoupler FCCP, in the presence of oligomycin (to prevent ATP depletion), reversibly suppressed PF-triggered Ca(2+) transients, as did the mitochondrial Ca(2+) uniporter (mCU) blocker, Ru360. Reducing agent DTT and reactive oxygen species (ROS) scavenger tempol, as well as mitochondrial NCX (mNCX) blocker CGP-37157, inhibited PF-triggered Ca(2+) transients. In rhod-2 AM-loaded and permeabilized cells, confocal imaging of mitochondrial Ca(2+) showed a transient increase in Ca(2+) on caffeine exposure and a decrease in mitochondrial Ca(2+) on application of PF pulses of solution. These signals were strongly suppressed by either Na(+)-free or CGP-37157-containing solutions, implicating mNCX in mediating the Ca(2+) release process. We conclude that subjecting rat cardiac myocytes to pressurized flow pulses of solutions triggers the release of Ca(2+) from a store that appears to access mitochondrial Ca(2+).  相似文献   

8.
N,N,N',N'-tetrakis(2-pyridylmethyl)-ethilenediamine (TPEN) is a membrane permeable heavy metal chelator that has been used to study intracellular calcium homeostasis but its exact mode of action is still unresolved. Here we examine the effects of TPEN on the Ca(2+) release from and the Ca(2+) uptake into the sarcoplasmic reticulum (SR) of cultured C2C12 skeletal muscle cells. Low concentrations (50 microM) of the drug evoked Ca(2+) transients in approximately 60% of C2C12 myotubes, while at high concentrations (500 microM) it significantly reduced the size of both depolarization-and caffeine-induced Ca(2+) transients, decreased the rate constant of decay and the calculated pump activity but failed to induce Ca(2+) transients. Experiments at low extracellular [Ca(2+)] revealed that it is the total rather than free TPEN concentration that is responsible for the observed effects. TPEN does not modify Ca(2+) release by Zn(2+) chelation, as evidenced by the unaltered effect seen after the removal of Zn(2+) from the extracellular space of the cells by chelating with EDPA. These findings provide experimental evidence that TPEN directly modifies both the release of Ca(2+) from the SR and its removal from the myoplasm.  相似文献   

9.
10.
We investigated whether the age-related decrease in sensitivity of the heart to catecholamines was accompanied by changes in Ca(2+) homeostasis and abnormal electrical and contractile activity caused by beta-adrenergic receptor (beta-AR) stimulation. Ventricular myocytes were isolated from young adult (3 months) and aged (24 months) male Fischer 344 rats. Unloaded cell shortening was measured in field-stimulated myocytes (2Hz, 37 degrees C); membrane currents and action potentials were measured with microelectrodes. Contractile responses to the non-selective beta-AR agonist, isoproterenol were significantly decreased in aged myocytes compared to younger myocytes and aged myocytes were less sensitive to isoproterenol. In contrast, Ca(2+) transients measured simultaneously with contractions were similar between groups. Isoproterenol increased sarcoplasmic reticulum Ca(2+) stores in both groups, but the increase was larger in aged cells. However, signs of Ca(2+) overload induced by isoproterenol were reduced with age. Diastolic Ca(2+) accumulation, contracture and the incidences of transient inward current, oscillatory afterpotentials (OAPs), aftertransients and aftercontractions induced by isoproterenol also were reduced with age. These results demonstrate that aged myocytes exhibit fewer signs of Ca(2+) overload in response to isoproterenol than young adult myocytes. These age-related changes in intracellular Ca(2+) may protect the aging heart against induction of arrhythmias initiated by OAPs.(1).  相似文献   

11.
The aim of the study was to correlate intracellular Ca(2+) transients with Ca(2+) uptake and efflux characteristics of the sarcoplasmic reticulum (SR) in ventricular myocytes isolated from rabbits with left-ventricular dysfunction (LVD). Chronic (8 weeks) ligation of a coronary artery caused marked LVD in rabbits. Measurements of intracellular [Ca(2+)] were made using Fura-2 on intact, single, left-ventricular myocytes. SR Ca(2+) flux rates associated with sarco-endoplasmic reticulum Ca(2+) ATPase type 2 (SERCA2)-mediated uptake, ryanodine receptor type 2 (RyR2)-mediated Ca(2+) efflux and background SR Ca(2+) leak were measured in suspensions of permeabilised myocytes. Measurements on single, permeabilised myocytes were used to assess the steady-state Ca(2+) content of the SR and the characteristics of spontaneous SR Ca(2+) release. Peak systolic [Ca(2+)] was significantly lower; time-to-peak and Ca(2+) transient duration were significantly longer in LVD myocytes. SERCA2-mediated Ca(2+) uptake was reduced to approximately 50% in myocytes from the LVD group. Ruthenium red (RuR)-sensitive Ca(2+) efflux (mediated by the RyR2) was also reduced in the LVD group by approximately 50%, as was the remaining (RuR-insensitive) background Ca(2+) leak. Measurements from single, permeabilised myocytes showed a lower steady-state SR Ca(2+) content. The frequency and amplitude of spontaneous SR Ca(2+) release from LVD hearts was also reduced. Partial inhibition of SERCA2 by thapsigargin depressed both the amplitude and the frequency of spontaneous release. Partial inhibition of RyR2-mediated-Ca(2+) efflux with tetracaine enhanced spontaneous Ca(2+) release amplitude and decreased frequency. Increased background Ca(2+) leak with ionomycin decreased the frequency of spontaneous release. It is concluded that partial inhibition of SERCA2 mimics some aspects of altered SR function in LVD, but reduced RyR2 function cannot explain the other functional alterations observed. Reduced background Ca(2+) leak from the SR may compensate partly for the reduced Ca(2+) uptake capacity of the SR in the LVD group.  相似文献   

12.
Rippling muscle disease is caused by mutations in the gene encoding caveolin-3 (CAV3), the muscle-specific isoform of the scaffolding protein caveolin, a protein involved in the formation of caveolae. In healthy muscle, caveolin-3 is responsible for the formation of caveolae, which are highly organized sarcolemmal clusters influencing early muscle differentiation, signalling and Ca(2+) homeostasis. In the present study we examined Ca(2+) homeostasis and excitation-contraction (E-C) coupling in cultured myotubes derived from two patients with Rippling muscle disease with severe reduction in caveolin-3 expression; one patient harboured the heterozygous c.84C>A mutation while the other patient harbored a homozygous splice-site mutation (c.102+ 2T>C) affecting the splice donor site of intron 1 of the CAV3 gene. Our results show that cells from control and rippling muscle disease patients had similar resting [Ca(2+) ](i) and 4-chloro-m-cresol-induced Ca(2+) release but reduced KCl-induced Ca(2+) influx. Detailed analysis of the voltage-dependence of Ca(2+) transients revealed a significant shift of Ca(2+) release activation to higher depolarization levels in CAV3 mutated cells. High resolution immunofluorescence analysis by Total Internal Fluorescence microscopy supports the hypothesis that loss of caveolin-3 leads to microscopic disarrays in the colocalization of the voltage-sensing dihydropyridine receptor and the ryanodine receptor, thereby reducing the efficiency of excitation-contraction coupling.  相似文献   

13.
Cardiac myosin binding protein-C (cMyBP-C) plays a role in sarcomeric structure and stability, as well as modulating heart muscle contraction. The 150 kDa full-length (FL) cMyBP-C has been shown to undergo proteolytic cleavage during ischemia-reperfusion injury, producing an N-terminal 40 kDa fragment (mass 29 kDa) that is predominantly associated with post-ischemic contractile dysfunction. Thus far, the pathogenic properties of such truncated cMyBP-C proteins have not been elucidated. In the present study, we hypothesized that the presence of these 40 kDa fragments is toxic to cardiomyocytes, compared to the 110 kDa C-terminal fragment and FL cMyBP-C. To test this hypothesis, we infected neonatal rat ventricular cardiomyocytes and adult rabbit ventricular cardiomyocytes with adenoviruses expressing the FL, 110 and 40 kDa fragments of cMyBP-C, and measured cytotoxicity, Ca(2+) transients, contractility, and protein-protein interactions. Here we show that expression of 40 kDa fragments in neonatal rat ventricular cardiomyocytes significantly increases LDH release and caspase 3 activity, significantly reduces cell viability, and impairs Ca(2+) handling. Adult cardiomyocytes expressing 40 kDa fragments exhibited similar impairment of Ca(2+) handling along with a significant reduction of sarcomere length shortening, relaxation velocity, and contraction velocity. Pull-down assays using recombinant proteins showed that the 40 kDa fragment binds significantly to sarcomeric actin, comparable to C0-C2 domains. In addition, we discovered several acetylation sites within the 40 kDa fragment that could potentially affect actomyosin function. Altogether, our data demonstrate that the 40 kDa cleavage fragments of cMyBP-C are toxic to cardiomyocytes and significantly impair contractility and Ca(2+) handling via inhibition of actomyosin function. By elucidating the deleterious effects of endogenously expressed cMyBP-C N-terminal fragments on sarcomere function, these data contribute to the understanding of contractile dysfunction following myocardial injury.  相似文献   

14.
Troponin, one of the sarcomeric proteins, plays a central role in the Ca(2+) regulation of contraction in vertebrate skeletal and cardiac muscles. It consists of three subunits with distinct structure and function, troponin T, troponin I, and troponin C, and their accurate and complex intermolecular interaction in response to the rapid rise and fall of Ca(2+) in cardiomyocytes plays a key role in maintaining the normal cardiac pump function. More than 200 mutations in the cardiac sarcomeric proteins, including myosin heavy and light chains, actin, troponin, tropomyosin, myosin-binding protein-C, and titin/connectin, have been found to cause various types of cardiomyopathy in human since 1990, and more than 60 mutations in human cardiac troponin subunits have been identified in dilated, hypertrophic, and restrictive forms of cardiomyopathy. In this review, we have focused on the mutations in the genes for human cardiac troponin subunits and discussed their functional consequences that might be involved in the primary mechanisms for the pathogenesis of these different types of cardiomyopathy.  相似文献   

15.
Ahnak1 has been implicated in the beta-adrenergic regulation of the cardiac L-type Ca(2+) channel current (I (CaL)) by its binding to the regulatory Cavβ(2) subunit. In this study, we addressed the question whether ahnak1/Cavβ(2) interactions are essential or redundant for beta-adrenergic stimulation of I (CaL). Three naturally occurring ahnak1 variants (V5075?M, G5242R, and T5796?M) identified by genetic screening of cardiomyopathy patients did essentially not influence the in vitro Cavβ(2) interaction as assessed by recombinant proteins. But, we observed a robust increase in Cavβ(2) binding by mutating Ala at position 4984 to Pro which creates a PxxP consensus motif in the ahnak1 protein fragment. Surface plasmon resonance measurements revealed that this mutation introduced an additional Cavβ(2) binding site. The functionality of A4984P was supported by the specific action of the Pro-containing ahnak1-derived peptide (P4984) in beta-adrenergic regulation of I (CaL). Patch clamp recordings on cardiomyocytes showed that intracellular perfusion of P4984 markedly reduced I (CaL) response to the beta-adrenergic agonist, isoprenaline, while the Ala-containing counterpart failed to affect I (CaL). Interestingly, I (CaL) of ahnak1-deficient cardiomyocytes was not affected by peptide application. Moreover, I (CaL) of ahnak1-deficient cardiomyocytes showed intact beta-adrenergic responsiveness. Similarly isolated ahnak1-deficient mouse hearts responded normally to adrenergic challenge. Our results indicate that ahnak1 is not essential for beta-adrenergic up-regulation of I (CaL) and cardiac contractility in mice. But, tuning ahnak1/Cavβ(2) interaction provides a tool for modulating the beta-adrenergic response of I (CaL).  相似文献   

16.
The Ca(2+)-binding proteins parvalbumin (PV) and calbindin D-28k (CB) are key players in the intracellular Ca(2+)-buffering in specific cells including neurons and have profound effects on spatiotemporal aspects of Ca(2+) transients. The previously observed increase in mitochondrial volume density in fast-twitch muscle of PV-/- mice is viewed as a specific compensation mechanism to maintain Ca(2+) homeostasis. Since cerebellar Purkinje cells (PC) are characterized by high expression levels of the Ca(2+) buffers PV and CB, the question was raised, whether homeostatic mechanisms are induced in PC lacking these buffers. Mitochondrial volume density, i.e. relative mitochondrial mass was increased by 40% in the soma of PV-/- PC. Upregulation of mitochondrial volume density was not homogenous throughout the soma, but was selectively restricted to a peripheral region of 1.5 microm width underneath the plasma membrane. Accompanied was a decreased surface of subplasmalemmal smooth endoplasmic reticulum (sPL-sER) in a shell of 0.5 microm thickness underneath the plasma membrane. These alterations were specific for the absence of the "slow-onset" buffer PV, since in CB-/- mice neither changes in peripheral mitochondria nor in sPL-sER were observed. This implicates that the morphological alterations are aimed to specifically substitute the function of the slow buffer PV. We propose a novel concept that homeostatic mechanisms of components involved in Ca(2+) homeostasis do not always occur at the level of similar or closely related molecules. Rather the cell attempts to restore spatiotemporal aspects of Ca(2+) signals prevailing in the undisturbed (wildtype) situation by subtly fine tuning existing components involved in the regulation of Ca(2+) fluxes.  相似文献   

17.
Ca(2+) clearance in frog motor nerve terminals was studied by fluorometry of Ca(2+) indicators. Rises in intracellular Ca(2+) ([Ca(2+)](i)) in nerve terminals induced by tetanic nerve stimulation (100 Hz, 100 or 200 stimuli: Ca(2+) transient) reached a peak or plateau within 6-20 stimuli and decayed at least in three phases with the time constants of 82-87 ms (81-85%), a few seconds (11-12%), and several tens of seconds (less than a few percentage). Blocking both Na/Ca exchangers and Ca(2+) pumps at the cell membrane by external Li(+) and high external pH (9.0), respectively, increased the time constants of the initial and second decay components with no change in their magnitudes. By contrast, similar effects by Li(+) alone, but not by high alkaline alone, were seen only on 200 stimuli-induced Ca(2+) transients. Blocking Ca(2+) pumps at Ca(2+) stores by thapsigargin did not affect 100 stimuli-induced Ca(2+) transients but increased the initial decay time constant of 200 stimuli-induced Ca(2+) transients with no change in other parameters. Inhibiting mitochondrial Ca(2+) uptake by carbonyl cyanide m-chlorophenylhydrazone markedly increased the initial and second decay time constants of 100 stimuli-induced Ca(2+) transients and the amplitudes of the second and the slowest components. Plotting the slopes of the decay of 100 stimuli-induced Ca(2+) transients against [Ca(2+)](i) yielded the supralinear [Ca(2+)](i) dependence of Ca(2+) efflux out of the cytosol. Blocking Ca(2+) extrusion or mitochondrial Ca(2+) uptake significantly reduced this [Ca(2+)](i)-dependent Ca(2+) efflux. Thus Ca(2+)-dependent mitochondrial Ca(2+) uptake and plasmalemmal Ca(2+) extrusion clear out a small Ca(2+) load in frog motor nerve terminals, while thapsigargin-sensitive Ca(2+) pump boosts the clearance of a heavy Ca(2+) load. Furthermore, the activity of plasmalemmal Ca(2+) pump and Na/Ca exchanger is complementary to each other with the slight predominance of the latter.  相似文献   

18.
The mitochondrial protein AFG3L2 forms homo-oligomeric and hetero-oligomeric complexes with paraplegin in the inner mitochondrial membrane, named m-AAA proteases. These complexes are in charge of quality control of misfolded proteins and participate in the regulation of OPA1 proteolytic cleavage, required for mitochondrial fusion. Mutations in AFG3L2 cause spinocerebellar ataxia type 28 and a complex neurodegenerative syndrome of childhood. In this study, we demonstrated that the loss of AFG3L2 in mouse embryonic fibroblasts (MEFs) reduces mitochondrial Ca(2+) uptake capacity. This defect is neither a consequence of global alteration in cellular Ca(2+) homeostasis nor of the reduced driving force for Ca(2+) internalization within mitochondria, since cytosolic Ca(2+) transients and mitochondrial membrane potential remain unaffected. Moreover, experiments in permeabilized cells revealed unaltered mitochondrial Ca(2+) uptake speed in Afg3l2(-/-) cells, indicating the presence of functional Ca(2+) uptake machinery. Our results show that the defective Ca(2+) handling in Afg3l2(-/-) cells is caused by fragmentation of the mitochondrial network, secondary to respiratory dysfunction and the consequent processing of OPA1. This leaves a number of mitochondria devoid of connections to the ER and thus without Ca(2+) elevations, hampering the proper Ca(2+) diffusion along the mitochondrial network. The recovery of mitochondrial fragmentation in Afg3l2(-/-) MEFs by overexpression of OPA1 rescues the impaired mitochondrial Ca(2+) buffering, but fails to restore respiration. By linking mitochondrial morphology and Ca(2+) homeostasis, these findings shed new light in the molecular mechanisms underlining neurodegeneration caused by AFG3L2 mutations.  相似文献   

19.
The hypothesis tested in this study was that the extent to which sarcoplasmic reticulum (SR) Ca(2+)-ATPase is oxidized would correlate with a decline in its activity. For this purpose, changes in the SR Ca(2+)-sequestering ability and the contents of carbonyl and sulfhydryl groups during recovery after exercise were examined in the superficial portions of vastus lateralis muscles from rats subjected to 5 min running at an intensity corresponding to maximal oxygen uptake (50 m min(-1), 10% gradient). A single bout of exercise elicited a 22.4% reduction (P < 0.05) in SR Ca(2+)-ATPase activity. The decreased activity progressively reverted to normal levels during recovery after exercise, reaching normal levels after 60 min of recovery. This change was paralleled by a depressed SR Ca(2+)-uptake rate, and the proportional alteration in these two variables resulted in no change in the ratio of Ca(2+)-uptake rate to Ca(2+)-ATPase activity. The contents of SR Ca(2+)-ATPase protein and sulfhydryl groups in microsomes were unchanged after exercise and during recovery periods. In contrast, the content of carbonyl groups in SR Ca(2+)-ATPase behaved in an opposite manner to that of SR Ca(2+)-ATPase activity. An approximately 80% augmentation (P < 0.05) in the carbonyl group content occurred immediately after exercise. The elevated carbonyl content decreased towards normal levels during 60 min of recovery. These results are strongly suggestive that oxidation of SR Ca(2+)-ATPase is responsible, at least in part, for a decay in the SR Ca(2+)-pumping function produced by high-intensity exercise and imply that oxidized proteins may be repaired during recovery from exercise.  相似文献   

20.
Ca(2+) release from the sarcoplasmic reticulum (SR) in heart muscle grades depending on Ca(2+) influx in the physiological twitch; Ca(2+( wave results from regenerative Ca(2+) release from the SR. To examine if the Ca(2+) release from the SR in the Ca(2+) wave takes a duration similar to the physiological one, a transient rise of intracellular [Ca(2+)] ([Ca(2+)](i) transient) was recorded during both a propagating Ca(2+) wave and an electrically evoked twitch with single rat ventricular myocytes, using a laser scanning confocal microscope. Care was taken to record the fluo-3 fluorescence from a segmental region with little lateral movement, especially during a propagating Ca(2+) wave. During a typical Ca(2+) wave, the time-to-peak (TP) and the half-width (HD) of the averaged [Ca(2+)](i) transient were 161 and 253 ms respectively, but they were 76 and 145 ms during an electrically evoked twitch. The difference in the duration between the two types of [Ca(2+)](i) transients could not be accounted for by modification of duration of [Ca(2+)](i) transient by possible asynchronous Ca(2+) release from the SR during a Ca(2+) wave, suggesting that the regenerative Ca2+) release from the SR in the Ca2+) wave occurs more slowly than the physiological one in rat ventricular myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号