首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Narita Y  Hata K  Kagami H  Usui A  Ueda M  Ueda Y 《Tissue engineering》2004,10(7-8):1224-1233
Cell culture in a biomimetic environment is known to improve the mechanical endurance of tissue-engineered cardiovascular components. Our goal was to generate a bioreactor that can reproduce a wide range of pulsatile flows with a completely physiological pressure profile. The morphology and biochemical properties of tissue-engineered products were also studied to test the usefulness of this novel bioreactor. The combination of an outflow valve, compliance chamber, and resistant clamps together with a balloon pumping system was able to successfully reproduce both physiological systolic and diastolic pressures. The compliance chamber was especially effective in transforming the original peaky pressure waveform into a physiological pressure profile. The tissues, cultured under a physiological pressure waveform with pulsatile flow, presented widely distributed cells in close contact with each other. They also showed significantly higher cell numbers, total protein content, and proteoglycan-glycosaminoglycan content than cultured tissues under a peaky pressure wave or under static conditions. This new bioreactor system is suitable for evaluating a favorable environment for tissue-engineered cardiovascular components.  相似文献   

2.
Several different bioreactors have been investigated for tissue-engineering applications. Among these bioreactors are the spinner flask and the rotating wall vessel reactor. In addition, a new type of culture system has been developed and investigated, the flow perfusion culture bioreactor. Flow perfusion culture offers several advantages, notably the ability to mitigate both external and internal diffusional limitations as well as to apply mechanical stress to the cultured cells. For such investigation, a flow perfusion culture system was designed and built. This design is the outgrowth of important design requirements and incorporates features crucial to successful experimentation with such a system.  相似文献   

3.
A new method for hepatocyte attachment in hollow fibre (HF) bioreactors was proposed and verified. A flow of medium with suspended hepatocytes, evoked by transmembrane pressure (TMP), and directed across the membrane into the fibre lumen, has accelerated and improved hepatocyte contact with the HF. It was found that seeding of hepatocytes onto the membrane was optimal at TMP of 50-80 mmHg. Ammonia utilisation and ureagenesis rates in hepatocytes seeded in the bioreactor suggests that the proposed method warrants proper conditions for cell functionality and allows for extended culture of hepatocytes in HF bioreactors. It is speculated that time cutback between introduction of hepatocytes into the bioreactor and the start of the cell attachment process, accomplished by the presented method, leads to substantially improved recovery of freshly isolated hepatocytes, and consequently to better overall performance of HF bioreactor.  相似文献   

4.
Bioreactors for liver assist tested on small animal models are generally scaled-up to treat humans by increasing their size to host a given liver cell mass. In this process, liver cell function in different culture devices is often established based on the metabolite concentration difference between the bioreactor inlet and outlet irrespective of how matter distributes in the bioreactor. In this paper, we report our investigation aimed at establishing whether bioreactor design and operating conditions influence the distribution of matter in two bioreactors proposed for liver assist. We investigated a clinical-scale bioreactor where liver cells are cultured around a three-dimensional network of hollow fiber membranes and a laboratory-scale bioreactor with cells adherent on collagen-coated flat substrata. The distribution of matter was characterized under different operating modes and conditions in terms of the bioreactor residence time distribution evaluated by means of tracer experiments and modeled as a cascade of N stirred tanks with the same volume. Under conditions recommended by the manufacturers, matter distributed uniformly in the clinical-scale bioreactor as a result of the intense backmixing (N=1) whereas axial mixing was negligible in the laboratory-scale bioreactor (N=8). Switching from recycle to single-pass operation definitely reduced axial mixing in the clinical-scale bioreactor (N=2). Increasing feed flow rate significantly enhanced axial mixing in the laboratory-scale bioreactor (N=4). The effects of design, operating mode and conditions on matter distribution in bioreactors for liver cell culture suggest that characterization of the distribution of matter is a necessary step in the scale-up of bioreactors for liver assist and when function of liver cells cultured in different bioreactors is evaluated and compared.  相似文献   

5.
目的 研究一种新型小口径血管生物反应器在不同工况下的流场分布。方法 采用数值方法模拟反应器外筒单独旋转、内筒单独旋转和内外筒同向等速旋转情况下其内部的流场分布,对流速和切应力等参数进行比较分析。结果 血管生物反应器工作时,培养液随内外筒的旋转而旋转流动,速度分布均匀;可为培养液内的细胞提供非破坏性的低切应力环境;并且反应器内部的切应力大小与转速呈二次函数关系。结论 该反应器能为血管培养提供良好的培养环境,本研究可为其实验研究提供指导意见和理论基础。  相似文献   

6.
体外软骨构建是软骨组织工程产业化发展及临床应用的重要手段。然而,采用现有的体外构建技术无法构建功能接近正常的软骨。生物反应器能够在一定程度上模拟体内环境,有望弥补现有体外构建技术的弊端。研究发现,流体剪切力、静态液压力和直接压缩力是体内软骨发育和成熟的重要力学因素,常用软骨生物反应器均据此设计而产生。由于不同类型生物反应器各具特点,研究和开发新型复合式生物反应器将成为未来的发展方向。对目前软骨组织工程生物反应器的研究现状做一综述。  相似文献   

7.
L Xia  T Arooz  S Zhang  X Tuo  G Xiao  TA Susanto  J Sundararajan  T Cheng  Y Kang  HJ Poh  HL Leo  H Yu 《Biomaterials》2012,33(32):7925-7932
Bioartificial liver (BAL) system is promising as an alternative treatment for liver failure. We have developed a bioreactor with stacked sandwich culture plates for the application of BAL. This bioreactor design addresses some of the persistent problems in flat-bed bioreactors through increasing cell packing capacity, eliminating dead flow, regulating shear stress, and facilitating the scalability of the bioreactor unit. The bioreactor contained a stack of twelve double-sandwich-culture plates, allowing 100 million hepatocytes to be housed in a single cylindrical bioreactor unit (7?cm of height and 5.5?cm of inner diameter). The serial flow perfusion through the bioreactor increased cell-fluid contact area for effective mass exchange. With the optimal perfusion flow rate, shear stress was minimized to achieve high and uniform cell viabilities across different plates in the bioreactor. Our results demonstrated that hepatocytes cultured in the bioreactor could re-establish cell polarity and maintain liver-specific functions (e.g. albumin and urea synthesis, phase I&II metabolism functions) for seven days. The single bioreactor unit can be readily scaled up to house adequate number of functional hepatocytes for BAL development.  相似文献   

8.
Clinical use of bioartificial livers (BAL) strongly relies on the development of bioreactors. In this study, we developed a multi-layer radial-flow bioreactor based on galactosylated chitosan nanofiber scaffolds and evaluated its efficacy in vitro. The bioreactor contains 65 layers of stacked flat plates, on which the nanofiber scaffolds were electrospinned for hepatocyte immobilization and aggregation. Culture medium containing pig red blood cells (RBCs) was perfused from the center to periphery, so that exchange materials are sufficient to afford enough oxygen. We determined the parameters for hepatocyte-specific function and general metabolism and also measured the oxygen consumption rate (OCR). Microscope and scanned electron microscopy observation showed a tight adhesion between cells and scaffolds. Compared with the control (bioreactors without nanofiber scaffolds), the number of adhered cells in our bioreactor was 1.59-fold; the protein-synthesis capacity of hepatocytes was 1.73-fold and urea was 2.86-fold. Moreover, the OCR of bioreactors with RBCs was about 1.91-fold that of bioreactors without RBCs. The galactosylated chitosan nanofiber scaffolds introduced into our new bioreactor greatly enhanced cell adhesion and function, and the RBCs added into the culture medium were able to afford enough oxygen for hepatocytes. Importantly, our new bioreactor showed an exciting efficiency, and it may afford the short-term support of patients with hepatic failure.  相似文献   

9.
Flow perfusion culture is used in many areas of tissue engineering and offers several key advantages. However, one challenge to these cultures is the relatively low-throughput nature of perfusion bioreactors. Here, a flow perfusion bioreactor with increased throughput was designed and built for tissue engineering. This design uses an integrated medium reservoir and flow chamber in order to increase the throughput, limit the volume of medium required to operate the system, and simplify the assembly and operation.  相似文献   

10.
Despite the success of hollow-fiber membrane bioreactors in tissue engineering, few evaluations of steady- and pulsatile-flow perfusion through these bioreactors have been made. Such evaluations are vital to the optimization of bioreactor culture conditions. In this study, positron emission tomography (PET) was proposed and used to visualize steady- and pulsatile-flow perfusion in hollow-fiber membrane bioreactors for tissue-engineering applications. PET is a noninvasive method that allows measuring the spatial distribution of a radioactive tracer by detecting its activity within porous scaffolds. A radioactive tracer, 18-fluoro-deoxy-glucose (18FDG), was injected into a fluid circuit having a hollow-fiber membrane bioreactor with gel-devoid or gel-filled extracapillary space. Dynamic PET scans of the inlet section were acquired and followed by volumetric PET scans of the whole bioreactor. Results were used to reconstruct dynamic and volumetric two- and three-dimensional images. Pulsatile inlet flow improved the uniformity of perfusion flow within the bioreactor in comparison to the steady inlet flow. Pulsatile flow also reduced the accumulation of radioactive tracer for both gel-devoid and gel-filled bioreactors compared to the steady flow. The stability of the radioactive tracer for both conditions was evaluated. The potential of the PET approach was demonstrated by the quantification of the imaging results for steady- and pulsatile-flow perfusions that can be used for the development of bioreactors for tissue-engineering applications.  相似文献   

11.
Using plants to produce heterologous proteins makes it very attractive due to the potentially low costs. Using this procedure it is possible to produce medicinal protein for clinical applications with the plants bioreactors increasing gradually. The paper proposes the five major systems of the plant bioreactor as well as their advantage and disadvantage and the development of each system. Focuses on the five major systems of the plant bioreactor to produce vaccines, antibodies and medical protein and the research achievement at the present stage and the research on my laboratory. The key technology research of plant bioreactor such as new genes, new biological components,new technologies and new research methods related with plant bioreactor offer a work foundation for a long-term development in future.  相似文献   

12.
The use of hollow-fiber membrane bioreactors (HFMBs) has been proposed for three-dimensional bone tissue growth at the clinical scale. However, to achieve an efficient HFMB design, the relationship between cell growth and environmental conditions must be determined. Therefore, in this work, a dynamic double-porous media model was developed to determine nutrient-dependent cell growth for bone tissue formation in a HFMB. The whole hollow-fiber scaffold within the bioreactor was treated as a porous domain in this model. The domain consisted of two interpenetrating porous regions, including a porous lumen region available for fluid flow and a porous extracapillary space filled with a collagen gel that contained adherent cells for promoting long-term growth into tissue-like mass. The governing equations were solved numerically and the model was validated using previously published experimental results. The contributions of several bioreactor design and process parameters to the performance of the bioreactor were studied. The results demonstrated that the process and design parameters of the HFMB significantly affect nutrient transport and thus cell behavior over a long period of culture. The approach presented here can be applied to any cell type and used to develop tissue engineering hollow-fiber scaffolds.  相似文献   

13.
The production of viable biological heart valves is of central interest in tissue engineering (TE). The aim of this study was to generate decellularized heart valves with an intact ultra-structure and to repopulate these with endothelial cells (EC) under simulated physiological conditions. Decellularization of ovine pulmonary valve conduits was performed under agitation in detergents followed by six wash cycles. Viability of EC cultures exposed to washing solution served to prove efficiency of washing. Resulting scaffolds were free of cells with preserved extracellular matrix. Biomechanical standard tension tests demonstrated comparable parameters to native tissue. Luminal surfaces of decellularized valvular grafts were seeded with ovine jugular vein EC in dynamic bioreactors. After rolling culture for 48 h, pulsatile medium circulation with a flow of 0.1 L/min was started. The flow was incremented 0.3 L/min/day up to 2.0 L/min (cycle rate: 60 beats/min), while pH, pO2, pCO2, lactate and glucose were maintained at constant physiological levels. After 7 days, a monolayer of cells covered the inner valve surface, which expressed vWF, indicating an endothelial origin. A complete endothelialization of detergent decellularized scaffold can be achieved under simulated physiological circulation conditions using a dynamic bioreactor system, which allows continuous control of the culture environment.  相似文献   

14.
Perfusion bioreactors are widely used in tissue engineering and pharmaceutical research to provide reliable models of tissue growth under controlled conditions. Destructive assays are not able to follow the evolution of the growing tissue on the same construct, so it is necessary to adopt non-destructive analysis. We have developed a miniaturized, optically accessible bioreactor for interstitial perfusion of 3D cell-seeded scaffolds. The scaffold adopted was optically transparent, with highly defined architecture. Computational fluid dynamics (CFD) analysis was useful to predict the flow behavior in the bioreactor scaffold chamber (that was laminar flow, Re = 0.179, with mean velocity equal to 100 microns/s). Moreover, experimental characterization of the bioreactor performance gave that the maximum allowable pressure was 0.06 MPa and allowable flow rate up to 25 ml/min. A method, to estimate quantitatively and non destructively the cell proliferation (from 15 to 43 thousand cells) and tissue growth (from 2% to 43%) during culture time, was introduced and validated. An end point viability test was performed to check the experimental set-up overall suitability for cell culture with successful results. Morphological analysis was performed at the end time point to show the complex tridimensional pattern of the biological tissue growth. Our system, characterized by controlled conditions in a wide range of allowable flow rate and pressure, permits to systematically study the influence of several parameters on engineered tissue growth, using viable staining and a standard fluorescence microscope.  相似文献   

15.
The increasing demand for bone grafts, combined with their limited availability and potential risks, has led to much new research in bone tissue engineering. Current strategies of bone tissue engineering commonly use cell-seeded scaffolds and flow perfusion bioreactors to stimulate the cells to produce bone tissue suitable for implantation into the patient's body. The aim of this study was to quantify and compare the wall shear stresses in two bone tissue engineering scaffold types (collagen-glycosaminoglycan (CG) and calcium phosphate) exposed to fluid flow in a perfusion bioreactor. Based on micro-computed tomography images, three-dimensional numerical computational fluid dynamics (CFD) models of the two scaffold types were developed to calculate the wall shear stresses within the scaffolds. For a given flow rate (normalized according to the cross-sectional area of the scaffolds), shear stress was 2.8 times as high in the CG as in the calcium-phosphate scaffold. This is due to the differences in scaffold geometry, particularly the pore size (CG pore size approximately 96 microm, calcium phosphate pore size approximately 350 microm). The numerically obtained results were compared with those from an analytical method that researchers use widely experimentalists to determine perfusion flow rates in bioreactors. Our CFD simulations revealed that the cells in both scaffold types were exposed to a wide range of wall shear stresses throughout the scaffolds and that the analytical method predicted shear stresses 12% to 21% greater than those predicted using the CFD method. This study demonstrated that the wall shear stresses in calcium phosphate scaffolds (745.2 mPa) are approximately 40 times as high as in CG scaffolds (19.4 mPa) when flow rates are applied that have been experimentally used to stimulate the release of prostaglandin E(2). These findings indicate the importance of using accurate computational models to estimate shear stress and determine experimental conditions in perfusion bioreactors for tissue engineering.  相似文献   

16.
Bioreactors for Cardiovascular Cell and Tissue Growth: A Review   总被引:7,自引:0,他引:7  
Heart disease is a major cause of death in the Western world. In the past three decades there has been a number of improvements in artificial devices and surgical techniques for cardiovascular disease; however, there is still a need for novel devices, especially for those individuals who cannot receive conventional therapy. The major disadvantage of current artificial devices lies in the fact that they cannot grow, remodel, or repair in vivo. Tissue engineering offers the possibility of developing a biological substitute material in vitro with the inherent mechanical, chemical, biological, and morphological properties required in vivo, on an individual patient basis. In order to develop a true biological cardiovascular device a dynamic physiological environment needs to be created. One approach that employs the use of a simulated biological environment is a bioreactor in which the in vivo biomechanical and biochemical conditions are created in vitro for functional tissue development. A review of the current state of the art bioreactors for the generation of tissue engineered cardiovascular devices is presented in this study. The effect of the simulated physiological environment of the bioreactor on tissue development is examined with respect to the materials properties of vascular grafts, heart valves, and cardiac muscles developed in these bioreactors. © 2003 Biomedical Engineering Society. PAC2003: 8768+z, 8719Hh, 8717Ee, 8719Ff, 8780Rb  相似文献   

17.
New approaches for in vitro testing of hepato-mediated toxicity are undertaken to offer alternatives to in vivo animal testing. The described bioassay for hepato-mediated toxicity testing is based on a small scale hepatocyte-bioreactor with pig hepatocytes connected to a silicon sensor based microphysiometer system for monitoring of the extracellular acidification rate (EAR) of cells and the microphysiometer alone. EAR represents the metabolic activity of tested cells (hepatocytes and ZR 751 cells) under the influence of perfused media, compared to controls, which were set to 100%. Cyclophosphamide (CYCL), whose cytostatic effect is dependent on CYP 450 biotransformation was used as a model substrate. CYCL showed decrease of EAR in hepatocytes, but not in ZR 751 cells. Bioreactor supernatant including CYCL was pumped into the microphysiometer and EARs of the target ZR 751 cell line were recorded. After 7 h of bioreactor supernatant perfusion the ZR 751 cell line showed an EAR decrease of 18.68% +/- 10.18, as compared to controls (bioreactor supernatant from the identical set-up without CYCL). Thus the presented model of hepato-activated toxicity showed an EAR decrease in the ZR 751 cell line that reflected the toxic activation of CYCL by the bioreactor. This new bioassay serves as an example of future applications for hepatocyte bioreactors in automated toxicity testing devices, e.g. in preclinical drug studies or evaluation of hepato-mediated toxicity, not depending on cell destruction or further assays.  相似文献   

18.
Oxygen transfer to cultured hepatocytes in microchannel parallel-plate bioreactors with and without an internal membrane oxygenator was investigated with a mathematical model and the results were corroborated with fluorescence imaging experiments. The consumption of oxygen by hepatocytes was assumed to follow Michaelis–Menten kinetics. Our simulations indicate that under conditions of low Péclet (Pe) number (<80) and fixed Damkohler number (=0.14, corresponding to rat hepatocytes) the cells are hypoxic in the bioreactor without an internal membrane oxygenator. Under the same conditions, the bioreactor with an internal membrane oxygenator can avoid cell hypoxia by appropriate selection of membrane Sherwood number and/or the gas phase oxygen partial pressure, thus providing greater control of cell oxygenation. At high Pe, both bioreactors are well oxygenated. Experimentally determined oxygen concentrations within the bioreactors were in good qualitative agreement with model predictions. At low Pe, cell surface oxygen depletion was predicted from analytically derived criteria. Hepatocytes with oxygen dependent functional heterogeneity may exhibit optimal function in the bioreactor with the internal membrane oxygenator. © 2001 Biomedical Engineering Society. PAC01: 8717Aa, 8780-y  相似文献   

19.
Within the scope of developing an in vitro culture model for pharmacological research on human liver functions, a three-dimensional multicompartment hollow fiber bioreactor proven to function as a clinical extracorporeal liver support system was scaled down in two steps from 800 mL to 8 mL and 2 mL bioreactors. Primary human liver cells cultured over 14 days in 800, 8, or 2 mL bioreactors exhibited comparable time-course profiles for most of the metabolic parameters in the different bioreactor size variants. Major drug-metabolizing cytochrome P450 activities analyzed in the 2 mL bioreactor were preserved over up to 23 days. Immunohistochemical studies revealed tissue-like structures of parenchymal and nonparenchymal cells in the miniaturized bioreactor, indicating physiological reorganization of the cells. Moreover, the canalicular transporters multidrug-resistance-associated protein 2, multidrug-resistance protein 1 (P-glycoprotein), and breast cancer resistance protein showed a similar distribution pattern to that found in human liver tissue. In conclusion, the down-scaled multicompartment hollow fiber technology allows stable maintenance of primary human liver cells and provides an innovative tool for pharmacological and kinetic studies of hepatic functions with small cell numbers.  相似文献   

20.
Application of mechanical stimulation, using dynamic bioreactors, is considered an effective strategy to enhance cellular behavior in load-bearing tissues. In this study, two types of perfusion mode (direct and free flow) are investigated in terms of the biosynthetic activities of chondrocytes grown in collagen sponges by assessment of cell proliferation rate, matrix production, and tissue morphology. Effects of the duration of preculture and dynamic conditioning are further determined. Our results have demonstrated that both bovine and human-derived chondrocytes demonstrate a dose-dependent response to flow rate (0-1 mL/min) in terms of cell number and glycosaminoglycan (GAG) content. This may reflect the weak adhesion of cells to the sponge scaffolds and the immature state of the constructs even after 3 weeks of proliferative culture. Our studies define an optimal flow rate between 0.1 and 0.3 mL/min for direct perfusion and free flow bioreactors. Using fresh bovine chondrocytes and a lower flow rate of 0.1 mL/min, a comparison was made between free flow system and direct perfusion system. In the free flow bioreactor, no cell loss was observed and higher GAG production was measured compared with static cultured controls. However, as with direct perfusion, the enhancement effect of free flow perfusion was strongly dependent on the maturation and organization of the constructs before the stimulation. To address the maturation of the matrix, preculture periods were varied before mechanical conditioning. An increase in culture duration of 18 days before mechanical conditioning resulted in enhanced GAG production compared with controls. Interestingly, additional enhancement was found in specimens that were further subjected to a prolonged duration of perfusion (63% increase after an additional 4 days of perfusion) after prematuration. The free flow system has an advantage over the direct perfusion system, especially when using sponge scaffolds, which have lower mechanical properties; however, mass transfer of nutrients is still more optimal throughout the scaffolds in a direct perfusion system as demonstrated by histological analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号