首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the taiep rat, a neurological mutant with severe astrogliosis secondary to demyelination, we have described alterations in spinal cord synaptic transmission. Asynchronous responses result from phasic action potential-derived glutamate release in this mutant. To evaluate whether this anomalous transmission is also produced in other regions of the taiep CNS and whether its nature involves a presynaptic or postsynaptic disruption, we studied the CA3-CA1 hippocampal synapses. Excitatory postsynaptic currents (EPSC) evoked by stimulation of Schaffer collaterals were recorded from CA1 pyramidal cells on picrotoxin-treated slices. Initial fast and time-locked EPSCs were evoked by conventional stimulation in both control and taiep neurons, showing similar latency and amplitude values unimodally distributed. In a high percentage of taiep neurons (47%), the initial EPSC was frequently followed by additional asynchronous synaptic currents (EPSC(ASYN)) with latencies ranging from 10 to 300 msec. As with initial EPSCs, EPSC(ASYN) were action potential dependent, sensitive to tetrodotoxin, and blocked by D-2-amino-5-phosphonovaleric acid and 6-cyano-7-nitroquinoxaline-2,3-dione. The occurrence probability of these events decayed monoexponentially as a function of poststimulus time. The elevation of extracellular Ca(2+) induced a reduction of amplitudes and a rate increase of EPSC(ASYN), in parallel with a reduction of paired pulse facilitation of initial EPSCs. The presynaptic fiber volley, extracellularly recorded, showed no significant differences between groups, with similar mean values of area and decay time. These findings in hippocampal circuitry suggest that, in taiep, the asynchronous evoked activity represents a rather generalized phenotype of the glutamatergic synapses and that EPSC(ASYN) seems to be determined by presynaptic alterations.  相似文献   

2.
Ca(2+) release from internal stores is critical for mediating both normal and pathological intracellular Ca(2+) signaling. Recent studies suggest that the inositol 1,4,5-triphosphate (IP(3)) receptor mediates Ca(2+) release from internal stores upon cholinergic activation of the neuromuscular junction (NMJ) in both physiological and pathological conditions. Here, we report that the type I IP(3) receptor (IP(3)R(1))-mediated Ca(2+) release plays a crucial role in synaptic gene expression, development, and neuromuscular transmission, as well as mediating degeneration during excessive cholinergic activation. We found that IP(3)R(1)-mediated Ca(2+) release plays a key role in early development of the NMJ, homeostatic regulation of neuromuscular transmission, and synaptic gene expression. Reducing IP(3)R(1)-mediated Ca(2+) release via siRNA knockdown or IP(3)R blockers in C2C12 cells decreased calpain activity and prevented agonist-induced acetylcholine receptor (AChR) cluster dispersal. In fully developed NMJ in adult muscle, IP(3)R(1) knockdown or blockade effectively increased synaptic strength at presynaptic and postsynaptic sites by increasing both quantal release and expression of AChR subunits and other NMJ-specific genes in a pattern resembling muscle denervation. Moreover, in two mouse models of cholinergic overactivity and NMJ Ca(2+) overload, anti-cholinesterase toxicity and the slow-channel myasthenic syndrome (SCS), IP(3)R(1) knockdown eliminated NMJ Ca(2+) overload, pathological activation of calpain and caspase proteases, and markers of DNA damage at subsynaptic nuclei, and improved both neuromuscular transmission and clinical measures of motor function. Thus, blockade or genetic silencing of muscle IP(3)R(1) may be an effective and well tolerated therapeutic strategy in SCS and other conditions of excitotoxicity or Ca(2+) overload.  相似文献   

3.
Hippocampal CA3 pyramidal neurons receive synaptic inputs from both mossy fibres (MFs) and associational fibres (AFs). Long-term potentiation (LTP) at these synapses differs in its induction sites and N-methyl-D-aspartate receptor (NMDAR) dependence. Most evidence favours the presynaptic and postsynaptic mechanisms for induction of MF LTP and AF LTP, respectively. This implies that molecular and functional properties differ between MF and AF synapses at both presynaptic and postsynaptic sites. In this study, we focused on the difference in the postsynaptic trafficking of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) between these synapses. To trace the subunit-specific trafficking of AMPARs at each synapse, GluR1 and GluR2 subunits were introduced into CA3 pyramidal neurons in hippocampal organotypic cultures using the Sindbis viral expression system. The electrophysiologically-tagged GluR2 AMPARs, produced by the viral-mediated transfer of the unedited form of GluR2 (GluR2Q), were inserted into both MF and AF postsynaptic sites in a neuronal activity-independent manner. Endogenous Ca(2+)-impermeable AMPARs at these synapses were replaced with exogenous Ca(2+)-permeable receptors, and Ca(2+) influx via the newly expressed postsynaptic AMPARs induced NMDAR-independent LTP at AF synapses. In contrast, no GluR1 AMPAR produced by the gene transfer was constitutively incorporated into AF postsynaptic sites, and only a small amount into MF postsynaptic sites. The synaptic trafficking of GluR1 AMPARs was triggered by the activity of Ca(2+)/calmodulin-dependent kinase II or high-frequency stimulation to induce LTP at AF synapses, but not at MF synapses. These results indicate that MF and AF postsynaptic sites possess distinct properties for AMPAR trafficking in CA3 pyramidal neurons.  相似文献   

4.
The glutamatergic pyramidal cell (PYR) to pyramidal cell synapse was compared to the PYR to inhibitory interneuron (INT) synapse in area CA3 of rat hippocampal roller-tube cultures. Paired-pulses and tetanic stimulations of a presynaptic PYR were conducted utilizing dual whole-cell patch-clamp recordings of either two PYRs or of a PYR and visually identified stratum oriens INT. Differences in synaptic characteristics were observed, depending on the postsynaptic target cell. Across cell pairs the variation of EPSC amplitudes was much larger for postsynaptic PYRs than for INTs. EPSCs recorded from INTs had faster rise times and shorter decays than those recorded in PYRs. There were also differences in the short-term plasticity of these synapses. Dual PYR:PYR recordings during paired-pulse stimulation at 100 ms interstimulus intervals demonstrated no modulation of EPSC amplitudes, while PYR:INT synapses showed paired-pulse depression. During trains of action potentials, the PYR:PYR EPSCs followed the presynaptic action potential train reliably, with little depression of EPSCs, while PYR:INT EPSCs demonstrated failures of transmission or profound depression after the initial EPSC. These results indicate multiple differences at both the pre- and postsynaptic level in the characteristics of pyramidal cell synapses that depend on the postsynaptic target's identity as either PYR or INT.  相似文献   

5.
Kumar A  Foster TC 《Brain research》2005,1031(1):125-128
Release of Ca(2+) from intracellular Ca(2+) stores (ICS) is involved in age-related changes in the induction of long-term potentiation. However, the role of this Ca(2+) source for the increased susceptibility to long-term depression (LTD) with advanced age is unknown. Extracellular excitatory postsynaptic field potentials were recorded from CA3-CA1 synaptic contacts from hippocampal slices obtained from young (5-8 months) and aged (22-24 months) male Fischer 344 rats. Blockade of Ca(2+)-release from ICS by cyclopiazonic acid, thapsigargin, or ryanodine blocked LTD induction in aged rats. Impaired LTD was not simply due to a loss of a Ca(2+) source. The idea that ICS may play prominent role in regulating synaptic modifiability through regulation of cell excitability and the timing of pre and postsynaptic activity is discussed.  相似文献   

6.
We have examined factors that determine the strength and dynamics of GABAergic synapses between interneurons [dentate gyrus basket cells (BCs)] and principal neurons [dentate gyrus granule cells (GCs)] using paired recordings in rat hippocampal slices at 34 degrees C. Unitary IPSCs recorded from BC-GC pairs in high intracellular Cl(-) concentration showed a fast rise and a biexponential decay, with mean time constants of 2 and 9 msec. The mean quantal conductance change, determined directly at reduced extracellular Ca(2+)/Mg(2+) concentration ratios, was 1.7 nS. Quantal release at the BC-GC synapse occurred with short delay and was highly synchronized. Analysis of IPSC peak amplitudes and numbers of failures by multiple probability compound binomial analysis indicated that synaptic transmission at the BC-GC synapse involves three to seven release sites, each of which releases transmitter with high probability ( approximately 0.5 in 2 mm Ca(2+)/1 mm Mg(2+)). Unitary BC-GC IPSCs showed paired-pulse depression (PPD); maximal depression, measured for 10 msec intervals, was 37%, and recovery from depression occurred with a time constant of 2 sec. Paired-pulse depression was mainly presynaptic in origin but appeared to be independent of previous release. Synaptic transmission at the BC-GC synapse showed frequency-dependent depression, with half-maximal decrease at 5 Hz after a series of 1000 presynaptic action potentials. The relative stability of transmission at the BC-GC synapse is consistent with a model in which an activity-dependent gating mechanism reduces release probability and thereby prevents depletion of the releasable pool of synaptic vesicles. Thus several mechanisms converge on the generation of powerful and sustained transmission at interneuron-principal neuron synapses in hippocampal circuits.  相似文献   

7.
Astrocytes respond to neuronal activity by propagating Ca(2+) waves elicited through the inositol 1,4,5-trisphosphate pathway. We have previously shown that wave propagation is supported by specialized Ca(2+) release sites, where a number of proteins, including inositol 1,4,5-trisphosphate receptors (IP(3)R), occur together in patches. The specific IP(3)R isoform expressed by astrocytes in situ in rat brain is unknown. In the present report, we use isoform-specific antibodies to localize immunohistochemically the IP(3)R subtype expressed in astrocytes in rat brain sections. Astrocytes were identified using antibodies against the astrocyte-specific markers, S-100 beta, or GFAP. Dual indirect immunohistochemistry showed that astrocytes in all regions of adult rat brain express only IP(3)R2. High-resolution analysis showed that hippocampal astrocytes are endowed with a highly branched network of processes that bear fine hair-like extensions containing punctate patches of IP(3)R2 staining in intimate contact with synapses. Such an organization is reminiscent of signaling microdomains found in cultured glial cells. Similarly, Bergmann glial cell processes in the cerebellum also contained fine hair-like processes containing IP(3)R2 staining. The IP(3)R2-containing fine terminal branches of astrocyte processes in both brain regions were found juxtaposed to presynaptic terminals containing synaptophysin as well as PSD 95-containing postsynaptic densities. Corpus callosum astrocytes had an elongated morphology with IP(3)R2 studded processes extending along fiber tracts. Our data suggest that PLC-mediated Ca(2+) signaling in astrocytes in rat brain occurs predominantly through IP(3)R2 ion channels. Furthermore, the anatomical arrangement of the terminal astrocytic branches containing IP(3)R2 ensheathing synapses is ideal for supporting glial monitoring of neuronal activity.  相似文献   

8.
Inositol 1,4,5-trisphosphate receptors (IP(3)R) are ligand-gated intracellular Ca(2+)channels that mediate release of Ca(2+) from intracellular stores into the cytosol on activation by second messenger IP(3.). Similarly, IP(3)R mediated changes in cytosolic Ca(2+) concentrations control neuronal functions ranging from synaptic transmission to differentiation and apoptosis. IP(3)R-generated cytosolic Ca(2+) transients also control intracellular Ca(2+) release and subsequent retinal ganglion cell (RGC) physiology and pathophysiology. The distribution of IP(3)R isotypes in primary adult mouse RGC cultures was determined to identify molecular substrates of IP(3)R mediated signaling in these neurons. Immunocytochemical labeling of IP(3)Rs in retinal sections and cultured RGCs was carried out using isoform specific antibodies and was detected with fluorescence microscopy. RGCs were identified by the use of morphologic criteria and RGC-specific immunocytochemical markers, neurofilament 68 kDa, Thy 1.1, and Thy 1.2. RGC morphology and immunoreactivity to neurofilament 68 kDa and Thy 1.1 or Thy 1.2 were identified in both RGC primary cultures and tissue cryosections. RGCs showed localization on intracellular membranes with a differential distribution of IP(3)R isoforms 1, 2, and 3. IP(3)R Types 1 and 3 were detected intracellularly throughout the cell whereas Type 2 was expressed predominantly in soma. Expression of all three IP(3)Rs by RGCs indicates that all IP(3)R types potentially play a role in Ca(2+) homeostasis and Ca(2+) signaling in these cells. Differential localization of IP(3) receptor subtypes in combination with biophysical properties of IP(3)R types may be an important molecular mechanism by which RGCs organize their cytosolic Ca(2+) signals.  相似文献   

9.
Neuropeptides collaborate with conventional neurotransmitters to regulate synaptic output. Pituitary adenylate cyclase-activating polypeptide (PACAP) co-localizes with acetylcholine in presynaptic nerve terminals, is released by stimulation, and enhances nicotinic acetylcholine receptor- (nAChR-) mediated responses. Such findings implicate PACAP in modulating nicotinic neurotransmission, but relevant synaptic mechanisms have not been explored. We show here that PACAP acts via selective high-affinity G-protein coupled receptors (PAC1Rs) to enhance transmission at nicotinic synapses on parasympathetic ciliary ganglion (CG) neurons by rapidly and persistently increasing the frequency and amplitude of spontaneous, impulse-dependent nicotinic excitatory postsynaptic currents (sEPSCs). Of the canonical adenylate cyclase (AC) and phospholipase-C (PLC) transduction cascades stimulated by PACAP/PAC1R signaling, only AC-generated signals are critical for synaptic modulation since the increases in sEPSC frequency and amplitude were mimicked by 8-Bromo-cAMP, blocked by inhibiting AC or cAMP-dependent protein kinase (PKA), and unaffected by inhibiting PLC. Despite its ability to increase agonist-induced nAChR currents, PACAP failed to influence nAChR-mediated impulse-independent miniature EPSC amplitudes (quantal size). Instead, evoked transmission assays reveal that PACAP/PAC1R signaling increased quantal content, indicating that it modulates synaptic function by increasing vesicular ACh release from presynaptic terminals. Lastly, signals generated by the retrograde messenger, nitric oxide- (NO-) are critical for the synaptic modulation since the PACAP-induced increases in spontaneous EPSC frequency, amplitude and quantal content were mimicked by NO donor and absent after inhibiting NO synthase (NOS). These results indicate that PACAP/PAC1R activation recruits AC-dependent signaling that stimulates NOS to increase NO production and control presynaptic transmitter output at neuronal nicotinic synapses.  相似文献   

10.
The mechanisms of induction and the site of expression of long-term depression (LTD) at the hippocampal mossy fiber-CA3 synapses are not clear. Here, we show that a brief bath application of insulin induces a novel form of mossy fiber LTD. This insulin-LTD is (1) induced and expressed postsynaptically, (2) entirely independent of synaptic stimulation during insulin application, (3) involving a rise in postsynaptic [Ca(2+)](i) and L-type voltage-activated Ca(2+) channel activation, (4) mechanistically distinct from low-frequency stimulation-induced LTD, (5) dependent on phosphatidylinositol 3-kinase signaling, and (6) associated with a clathrin-mediated endocytotic removal of surface 3-hydroxy-5-methylisoxazole-4-propionic acid receptors from the postsynaptic neurons. Moreover, insulin-LTD is specific to mossy fibers to CA3 pyramidal cell synapses, and is not present at associational commissural synapses. These findings not only support a postsynaptic locus of mossy fiber LTD, but also provide a further link between the AMPA receptor trafficking and the bidirectional expression of long-term synaptic plasticity.  相似文献   

11.
The structure of the actin cytoskeleton in dendritic spines is thought to underlie some forms of synaptic plasticity. We have used fixed and live-cell imaging in rat primary hippocampal cultures to characterize the synaptic dynamics of the F-actin binding protein inositol trisphosphate 3-kinase A (IP3K), which is localized in the spines of pyramidal neurons derived from the CA1 region. IP3K was intensely concentrated as puncta in spine heads when Ca(2+) influx was low, but rapidly and reversibly redistributed to a striated morphology in the main dendrite when Ca(2+) influx was high. Glutamate stimulated the exit of IP3K from spines within 10 s, and re-entry following blockage of Ca(2+) influx commenced within a minute; IP3K appeared to remain associated with F-actin throughout this process. Ca(2+)-triggered F-actin relocalization occurred in about 90% of the cells expressing IP3K endogenously, and was modulated by the synaptic activity of the cultures, suggesting that it is a physiological process. F-actin relocalization was blocked by cytochalasins, jasplakinolide and by the over-expression of actin fused to green fluorescent protein. We also used deconvolution microscopy to visualize the relationship between F-actin and endoplasmic reticulum inside dendritic spines, revealing a delicate microorganization of IP3K near the Ca(2+) stores. We conclude that Ca(2+) influx into the spines of CA1 pyramidal neurons triggers the rapid and reversible retraction of F-actin from the dendritic spine head. This process contributes to changes in spine F-actin shape and content during synaptic activity, and might also regulate spine IP3 signals.  相似文献   

12.
Cerebellar long-term depression (LTD) is a form of long-term synaptic plasticity that is triggered by calcium(Ca2+) signals in the postsynaptic Purkinje cell. This Ca2+comes both from IP3-mediated release from intracellular Ca2+ stores, as well as from Ca2+ influx through voltage-gated Ca2+ channels. The Ca2+ signal that triggers LTD occurs locally within dendritic spines and is due to supralinear summation of signals coming from these two Ca2+ sources. The properties of this postsynaptic Ca2+signal can explain several features of LTD, such as its associativity, synapse specificity, and dependence on thetiming of synaptic activity, and can account for the slow kinetics of LTD expression. Thus, from a Ca2+ signaling perspective, LTD is one of the best understood forms of synaptic plasticity.  相似文献   

13.
Reduced IP3 sensitivity of IP3 receptor in Purkinje neurons   总被引:3,自引:0,他引:3  
Fujiwara A  Hirose K  Yamazawa T  Iino M 《Neuroreport》2001,12(12):2647-2651
The inositol 1,4,5-trisphosphate receptor (IP3R) is highly expressed in Purkinje neurons (PNs) and is thought to be essential for the induction of long-term depression at parallel-fiber-PN synapses. Here, by imaging the fluorescence intensity of the low-affinity Ca2+ indicator inside the Ca2+ stores in the permeabilized single PNs, we analyzed the kinetics of Ca2+ release via the IP3R in controlled cytoplasmic environments. The rate of Ca2+ release is dependent on the IP3 concentration with an EC50 of 25.8 microM, which is > 20-fold greater than that of the IP3R in the isolated preparations or in peripheral cells. This property would be advantageous in inducing the release of Ca2+ in a localized space adjacent to the site of synaptic inputs.  相似文献   

14.
Youn DH 《Neuroreport》2008,19(7):733-738
This study for the first time demonstrates early developmental changes of passive/active membrane properties, and long-term potentiation (LTP) of excitatory synaptic transmission at spinal trigeminal subnucleus caudalis (Vc)-to-oralis (Vo) synapses. During postnatal development, the probability of Vo neurons with monosynaptic excitatory postsynaptic currents (EPSCs) upon Vc stimulation significantly increased, whereas the input resistances of Vo neurons and the latencies of monosynaptic EPSCs significantly decreased. Application of a 'pairing' protocol that comprises 2 Hz-conditioning stimulation of Vc with postsynaptic depolarization of Vo neuron to +30 mV generated LTP of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor-mediated monosynaptic EPSC amplitude in more than 70% of Vo neurons. The induction of LTP required the activation of N-methyl-D-aspartate receptor, but its magnitudes had correlation neither with postnatal ages nor with baseline EPSC amplitudes.  相似文献   

15.
An input-dependent increase in postsynaptic Ca2+ may play a role in long-term potentiation (LTP) of synaptic transmission while no or subthreshold increase in Ca2+ is associated with long-term depression (LTD) in the developing visual cortex. To see whether LTD is induced only at tetanized synapses, a Ca(2+)-chelator was injected into layer 2/3 neurons in cortical slices from young rats, and excitatory postsynaptic potentials (EPSPs) of these cells, after test stimulation of the white matter and layer 1/2, were observed before and after tetanic stimulation of the former site. The chelator injection led to LTD of EPSPs at tetanized synapses, but no changes were seen at non-tetanized synapses. These results suggest that tetanic inputs induce LTD at tetanized synapses when they are associated with no or subtle increase in postsynaptic Ca2+.  相似文献   

16.
Astrocytes can modulate synaptic transmission by releasing glutamate in a Ca(2+)-dependent manner. Although the internal Ca(2+) stores have been implicated as the predominant source of Ca(2+) necessary for this glutamate release, the contribution of different classes of these stores is still not well defined. To address this issue, we cultured purified solitary cortical astrocytes and monitored changes in their internal Ca(2+) levels and glutamate release into the extracellular space. Ca(2+) levels were monitored by using the Ca(2+) indicator fluo-3 and quantitative fluorescence microscopy. Glutamate release was monitored by an L-glutamate dehydrogenase-linked detection system. Astrocytes were mechanically stimulated with a glass pipette, which reliably caused an increase in internal Ca(2+) levels and glutamate release into the extracellular space. Although we find that the presence of extracellular Cd(2+), a Ca(2+) channel blocker, significantly reduces mechanically induced glutamate release from astrocytes, we confirm that internal Ca(2+) stores are the predominant source of Ca(2+) necessary for this glutamate release. To test the involvement of different classes of internal Ca(2+) stores, we used a pharmacological approach. We found that diphenylboric acid 2-aminoethyl ester, a cell-permeable inositol 1,4,5-trisphosphate (IP(3)) receptor antagonist, greatly reduced mechanically induced glutamate release. Additionally, the preincubation of astrocytes with caffeine or ryanodine also reduced glutamate release. Taken together, our data are consistent with dual IP(3)- and caffeine/ryanodine-sensitive Ca(2+) stores functioning in the control of glutamate release from astrocytes.  相似文献   

17.
The sulphydryl alkylating agent N-ethylmaleimide (NEM) has been often used as an uncoupler of pertussis toxin-sensitive G-proteins. However, the effects of NEM on gamma-aminobutyric acid (GABA)ergic synaptic transmission remain controversial. Using the whole-cell patch-clamp technique, GABA(A) receptor-mediated postsynaptic currents (IPSCs) have been recorded from Cajal-Retzius (CR) cells in layer I of the neonatal mouse visual cortex. NEM increased the frequencies of both spontaneous and miniature IPSCs (mIPSCs) without an effect on the median mIPSC amplitudes or mIPSC kinetics. The NEM actions on mIPSCs did not depend on the extracellular Ca(2+), Ca(2+) release from intracellular stores, adenylyl cyclase and protein kinase A activities. NEM increased the mean amplitudes of evoked IPSCs and strongly decreased the paired-pulse ratio. The size of the readily releasable pool of presynaptic vesicles (RRP) was estimated using a high-frequency stimulation protocol. The RRP size was not affected by NEM. In addition, NEM significantly decreased the latency between the stimulus and the onset of GABA release. These results suggest that NEM selectively increases GABA release probability. At postnatal day 2, mIPSCs were observed only in about 30% of CR cells. NEM application revealed, however, that more than 90% of CR cells receive GABAergic inputs. Therefore, NEM seems to be a useful tool to verify the existence of 'silent' GABAergic synapses.  相似文献   

18.
Using single cell Ca(2+) imaging and whole cell current clamp recordings, this study aimed to identify the signal transduction mechanisms involved in mACh receptor-mediated, enhanced synaptic signaling in primary cultures of hippocampal neurons. Activation of M(1) mACh receptors produced a 2.48 +/- 0.26-fold enhancement of Ca(2+) transients arising from spontaneous synaptic activity in hippocampal neurons. Combined imaging of spontaneous Ca(2+) signals with inositol 1,4,5-trisphosphate (IP(3)) production in single neurons demonstrated that the methacholine (MCh)-mediated enhancement required activated G(q/11)alpha subunits and phospholipase C activity but did not require measurable increases in IP(3). Electrophysiological studies demonstrated that MCh treatment depolarized neurons from -64 +/- 3 to -45 +/- 3 mV and increased action potential generation. Depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) enhanced neuronal excitability and prolonged the action of MCh. These studies suggest that, in addition to producing the second messengers IP(3) and diacylglycerol, mACh receptor activation may directly utilize PIP(2) hydrolysis to regulate neuronal excitability.  相似文献   

19.
Mossy fiber synapses act as the critical mediators of highly dynamic communication between hippocampal granule cells in the dentate gyrus and CA3 pyramidal neurons. Excitatory synaptic strength at mossy fiber to CA3 pyramidal cell synapses is potentiated rapidly and reversibly by brief trains of low-frequency stimulation of mossy fiber axons. We show that slight modifications to the pattern of stimulation convert this short-term potentiation into prolonged synaptic strengthening lasting tens of minutes in rodent hippocampal slices. This low-frequency potentiation of mossy fiber EPSCs requires postsynaptic mGlu1 receptors for induction but is expressed presynaptically as an increased release probability and therefore impacts both AMPA and NMDA components of the mossy fiber EPSC. A nonconventional signaling pathway initiated by mGlu1 receptors contributes to induction of plasticity, because EPSC potentiation was prevented by a tyrosine kinase inhibitor and only partially reduced by guanosine 5'-O-(2-thiodiphosphate). A slowly reversible state of enhanced synaptic efficacy could serve as a mechanism for altering the integrative properties of this synapse within a relatively broad temporal window.  相似文献   

20.
The involvement of Ca(2+)-storage organelles in the modulation of synaptic transmission is well-established [M.K. Bennett, Ca(2+) and the regulation of neurotransmitter secretion, Curr. Opin. Neurobiol. 7 (1997) 316-322 [1]; M.J. Berridge, Neuronal calcium signaling, Neuron 21 (1998) 13-26 [2]; Ph. Fossier, L. Tauc, G. Baux, Calcium transients and neurotransmitter release at an identified synapse, Trends Neurosci. 22 (1999) 161-166 [7] ]. Various Ca(2+) sequestering reservoirs (mitochondria, endoplasmic reticulum and synaptic vesicles) have been reported at the level of brain nerve terminals [P. Kostyuk, A. Verkhratsky, Calcium stores in neurons and glia, Neuroscience 63 (1994) 381-404 [18]; V. Mizuhira, H. Hasegawa, Microwave fixation and localization of calcium in synaptic terminals using X-ray microanalysis and electron energy loss spectroscopy imaging, Brain Res. Bull. 43 (1997) 53-58 [21]; A. Parducz, Y. Dunant, Transient increase of calcium in synaptic vesicles after stimulation, Neuroscience 52 (1993) 27-33 [23]; O.H. Petersen, Can Ca(2+) be released from secretory granules or synaptic vesicles?, Trends Neurosci. 19 (1996) 411-413 [24] ]. However, the knowledge of the specific contribution of each compartment for spatial and temporal control of the cytoplasmic Ca(2+) concentration requires detailed characterization of the Ca(2+) uptake and Ca(2+) release mechanisms by the distinct intracellular stores. In this work, we described rapid and simple experimental procedures for analysis of a Ca(2+)/H(+) antiport system that transport Ca(2+) into synaptic vesicles at expenses of the energy of a DeltapH generated either by activity of the proton pump or by a pH jumping of the vesicles passively loaded with protons. This secondary active Ca(2+) transport system requires high Ca(2+)100 microM) for activation, it is dependent on the chemical component (DeltapH) of the proton electrochemical gradient across the synaptic vesicle membrane and its selectivity is essentially determined by the size of the transported cation [P.P. Gon?alves, S.M. Meireles, C. Gravato, M.G. P. Vale, Ca(2+)-H(+)-Antiport activity in synaptic vesicles isolated from sheep brain cortex, Neurosci. Lett. 247 (1998) 87-90 [10]; P.P. Gon?alves, S.M. Meireles, P. Neves, M.G.P. Vale, Ionic selectivity of the Ca(2+)/H(+) antiport in synaptic vesicles of sheep brain cortex, Mol. Brain Res. 67 (1999) 283-291 [11]; P.P. Gon?alves, S.M. Meireles, P. Neves, M.G.P. Vale, Synaptic vesicle Ca(2+)/H(+) antiport: dependence on the proton electrochemical gradient, Mol. Brain Res. 71 (1999) 178-184 [12] ]. The protocols described here allow to ascertain the characteristics of the Ca(2+)/H(+) antiport in synaptic vesicles and, therefore, may be useful for clarification of the physiological role of synaptic vesicles in fast buffering of Ca(2+) at various sites of the neurotransmission machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号