首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Du RH  Cui JT  Wang T  Zhang AH  Tan RX 《Toxicon》2012,59(1):143-150
Trichothecin, one of fungal toxins which were encountered in food and in the environment, seriously threatens human and animal health. It has been shown that trichothecin changed the morphology of cellular mitochondria. However, the molecular mechanism remains unknown. Here we found that cell viability was attenuated by trichothecin. Features of apoptosis such as homosomal condensation and inter nucleosomal fragmentation were observed. In consistence with the elevated apoptosis rate, expression of anti-apoptotic protein Bcl-2 was diminished and expression of proapoptotic protein Bax was enhanced at mRNA levels. Furthermore, expression of caspase-9 and activity of caspase-3 were increased after the treatment of trichothecin. Accordingly, the mitochondrial membrane potential (?Ψm) was decreased in a dose-dependent manner. And Ca2+ overload was induced by trichothecin, followed by the generation of reactive oxygen species (ROS). Collectedly, our results suggested that apoptosis induced by trichothecin is mediated by caspase-9 activation and the decrement of mitochondrial function resulted from the overloaded calcium and ROS production.  相似文献   

3.
4.
Every cell in the human body has most of the components of the apoptotic apparatus and is thus principally equipped to die by apoptosis. Situations of increased or decreased apoptosis contribute to many forms of human disease, making this pathway an attractive target of therapeutic intervention. The past few years have seen an enormous refinement in the understanding how apoptosis works on a molecular level and the role of mitochondria as a central element in apoptotic signal transduction has become obvious. Here, the authors consider the events that are critical in this mitochondrial pathway, in particular at mitochondria but also upstream and downstream. The authors' opinion is presented on the merits and feasibility of approaches that aim at treating disease by interfering with the mitochondrial apoptotic pathway.  相似文献   

5.
The method of culturing "whole" rat embryos (days 9.5-11.5 of gestation, i.e. at the early stage of organogenesis) as modified and standardized in our laboratory is presented; We have succeeded in using bovine serum as culture medium instead of rat serum as recommended in the original procedure. Experimental conditions are described for obtaining reproducible results; An improved scoring system was developed which, in connection with a computerized documentation, greatly facilitates the evaluation of the data.  相似文献   

6.
Cadmium chloride, at concentrations of 0.5 or 1 microgram/ml medium, did not affect the trophoblastic invasiveness of mouse embryos treated for 24 hours at 4-cell and morula stages. At higher concentrations of 5 or 10 micrograms/ml medium, most treated embryos in vitro underwent degeneration while a few survivors formed trophoblastic outgrowths with variable areas. Cadmium chloride, at a low concentration of 0.5 microgram/ml medium presented continuously to blastocysts after attachment in vitro, has significantly retarded the trophoblastic outgrowth areas and reduced the number of trophoblastic giant-cell nuclei, though the spreading blastocysts appeared morphologically normal. At higher concentrations of 1 or 5 micrograms/ml medium, cytoplasmic disintegration and detachment of trophoblasts were observed. It is suggested that cadmium may interfere with the cell division and/or the transformation of trophectoderm cells into giant cells, resulting in the retardation of the trophoblastic outgrowths.  相似文献   

7.
Irciniastatin A (ISA)/psymberin, a pederin-type natural product isolated from marine sponge, exhibits extremely potent and selective cytotoxicity against certain human cancer cell lines, but its molecular target and cytotoxic mechanisms are still unknown. Here we show that ISA is a potent inhibitor of protein translation, and induces apoptosis accompanied with activation of the stress-activated protein kinases via the mitochondrial pathway in human leukemia Jurkat cells. ISA potently inhibited protein translation, and induced a slow but prolonged activation of the stress-activated protein kinases, JNK and p38, at between 1h and 6h after treatment. In Bcl-x(L)-transfected cells, the activation of JNK and p38 by ISA was shortened. The same results were obtained in the cells treated with N-acetyl-L-cysteine, suggesting that the prolonged activation of JNK and p38 by ISA is mediated by reactive oxygen species generated from mitochondria. ISA strongly induced apoptosis, which was partially suppressed by the JNK inhibitor SP600125, but not by the p38 inhibitor SB202190. Apoptosis induction by ISA was partially reduced, but not suppressed by SP600125 in caspase-8-deficient Jurkat cells. These results suggest that ISA activates stress-activated kinases by a mitochondria-mediated mechanism, and that activation of JNK is required for caspase-8-dependent apoptosis.  相似文献   

8.
Rat embryos (9.5-day-old) were cultured for 48 h in the presence of nifedipine (NIF), nimodipine (NIM), nitrendipine (NIT), gallopamil HCl (GAL), verapamil HCl (VER) and diltiazem HCl (DIL). The effects on growth and morphogenetic differentiation in vitro were monitored. Dose-response relationships were evaluated, including an assessment of the no-observed-effect-level (NOEL) or the lowest-observed-effect-level (LOEL), and the lowest concentration tested inducing abnormalities in 100% of the embryos (100% EL). The morphological alterations observed at the highest concentrations were very similar for all six drugs. The abnormalities concerned yolk sac circulation and morphology, as well as heartbeat, the morphology of the heart, head, neural tube, or fore-limbs, and the shape of the embryo. The abnormal embryos were also growth retarded (decrease in protein content and crown-rump length). Interference with calcium channel functions seems to represent an interesting model for studying a special kind of abnormal prenatal development, especially the differentiation of certain mesenchymal structures. The concentration ranges between NOELs and 100% ELs were found to be: NIM=0.1–1 g/ml; NIT and VER=1–10 g/ml; DIL=1–30 g/ml, and LOELs-100%ELs were: GAL=1–10 g/ml; NIF=10–30 g/ml.On leave of absence from: Industrial Toxicology Research Centre, Lucknow, India  相似文献   

9.
GRg1 is one of the most important active agents extracted from ginseng. Although there are numerous reports in the medical literature concerning the beneficial effects of GRg1, little is known about its effects on embryonic development. In our study, whole embryo culture was applied to explore the effects of GRg1 on SD rat and ICR mouse embryos during their critical period of organogenesis. All embryos were exposed to different concentrations of GRg1, and scored for their growth and differentiation at the end of the 48-h culture period. Total morphological score decreased significantly at the concentration of GRg1 of 50 microg/ml to mice and at 30 microg/ml to rats. The whole embryonic growth was affected, represented as reduced crown-rump length and head length, and decreased number of somites from 10 microg/ml both in mice and rats. Morphological development was influenced relatively late. To rats, the scores of flexion, forelimb bud and hindlimb bud were significantly reduced at 30 microg/ml, and heart was among the affected organs. However, the effect on heart was not observed in mice, and flexion and limb buds were influenced at 50 microg/ml. These results demonstrate that GRg1 has embryotoxicity during both rat and mouse organogenetic period and rats might be more sensitive than mice. We suggest that pregnant women of first trimester should use ginseng with caution before the exact conclusion is obtained.  相似文献   

10.
We observed that dimethyl sulfoxide (DMSO) induced apoptotic changes in the EL-4 murine lymphoma cell line and that effect was dependent on the concentration and time period. Incubating cells over a period of 18 h, 2.5% DMSO was found to induce sub-G1 peak in DNA histograms analyzed by flowcytometer and nucleosomal ladder formation in DNA gel electrophoresis. We also found down-regulation of Bcl-2, collapse of mitochondrial membrane potential (delta psi m) occurred following DMSO treatment, and release of cytochrome c from the mitochondria to cytosol. These observations suggest that DMSO converted its pro-apoptotic signal at the mitochondria. In the involvement of caspases, caspase-9 and -3, but not caspase-8, were found to be activated responding to DMSO treatment. Inhibitory experiments demonstrated that caspase cascade of mitochondrial apoptotic pathway was indispensable for DMSO-induced apoptosis. In the caspase cascade, caspase-9 was an upstream initiator and its primary signal could be transduced and amplified by caspase-3, -6 and -7. Kinetic study of these data showed mitochondrial dysfunction and caspase activation occurred at 12 h and apoptotic change of nuclear DNA at 18 h, providing another support for the transduction of DMSO pro-apoptotic signal via the mitochondrial pathway.  相似文献   

11.
The mechanism underlying the cancericidal activity of 3-m-bromoacetylamino benzoic acid ethyl ester (3-BAABE) was investigated. 3-BAABE exerted a strong cancericidal effect on human leukemia and lymphoma cells (IC(50) < 0.2 microgram/mL) and on cell lines of prostate, colon, ductal, and kidney cancer (IC(50) 0.8 to 0.88 microgram/mL). Multiple drug resistance (MDR) had no effect on the susceptibility of human lymphoma cells to 3-BAABE, since Daudi/MDR(20) and wild-type Daudi cells had a similar susceptibility to the cytotoxic effect of 3-BAABE. The cancericidal effect of 3-BAABE, which was not associated with changes in the cell cycle, was mediated by apoptosis. Thus, cells exposed to 3-BAABE displayed the DNA fragmentation ladder characteristic for apoptosis, associated with a marked increase of the activity of apoptosis effector caspases-3 and -6, which was followed by proteolytic cleavage of DNA fragmentation factor (DFF) and poly(ADP-ribose) polymerase (PARP). Exposure of tumor cells to 3-BAABE increased the activity of apical caspase-9, but had no effect on caspase-8. Complete inhibition of 3-BAABE-induced apoptosis was exerted by LEHD-FMK, a caspase-9 inhibitor. DEVD-FMK, a caspase-3 inhibitor, and VEID-FMK, a caspase-6 inhibitor, partially inhibited 3-BAABE-induced apoptosis, whereas exposure to IETD-FMK, a caspase-8 inhibitor, had no effect. The fragmentation and elevated activity of caspase-9 in 3-BAABE-treated cells and the fact that only an inhibitor of caspase-9 abrogated 3-BAABE-induced apoptosis indicate that 3-BAABE is a distinctive compound that elicits apoptosis through a pathway that is limited specifically to activation of apical caspase-9.  相似文献   

12.
Nicotine inhibits UV-induced activation of the apoptotic pathway.   总被引:5,自引:0,他引:5  
Although nicotine has been implicated as a potential factor in the pathogenesis of cancer in humans, its mechanism of action in the development of cancer remains largely unknown. Growing evidence indicates that the induction of apoptosis is an important mechanism in the prevention of cancer development. In the study presented here, we examined the effects of nicotine on the process of apoptosis. Preincubation of human cells with nicotine completely inhibited ultraviolet light (UV)-induced apoptosis. The inhibition of apoptosis by nicotine was correlated with the prevention of cytochrome c release and caspase activation, which are essential components of the UV-induced apoptotic pathway. Thus, our results suggest that the inhibition of apoptosis by nicotine contributes to the increased incidence of cancer in smokers.  相似文献   

13.
Fas (Apo-1/CD95) ligand, which is a type II membrane protein, is a major inducer of apoptosis. Osthole is a coumarin derivative present in medicinal plants. The effect of osthole on hepatitis induced by anti-Fas antibody in mice was studied. Pretreatment of mice with osthole (10, 50, and 100 mg/kg, i.p.) prevented the elevation of plasma alanine aminotransferase (ALT) caused by anti-Fas antibody (175 microg/kg, i.v.). Administration of osthole to mice even at a dose of 10 mg/kg significantly inhibited of anti-Fas antibody-induced elevation of plasma ALT. Capase-3 is a cysteine protease, and treatment of mice with anti-Fas antibody caused an elevation of caspase-3 activity at 3.5 and 6 hr. Pretreatment of mice with osthole (100 mg/kg, i.p.) inhibited the elevation of caspase-3 activity caused by anti-Fas antibody. However, the addition of osthole (up to 10(-4)M) to a liver cytosol fraction isolated from mice treated with anti-Fas antibody did not inhibit caspase-3 activity in vitro. Thus, treatment of mice with osthole inhibited caspase-3 activity by an effect upstream of caspase-3 activation. The livers of mice treated with anti-Fas antibody contained apoptotic and dead cells; osthole attenuated the development of this apoptosis and cell death. The present results show that osthole prevented anti-Fas antibody-induced hepatitis by inhibiting the Fas-mediated apoptotic pathway.  相似文献   

14.
Population surveys and animal experiments have shown that rare earth elements (REEs) cause neurological defects. However, the detailed mechanisms underlying these effects are still unclear. Given that lanthanum is commonly used for investigating into REEs‐induced neurological defects, this study chose lanthanum chloride (LaCl3) to show that LaCl3 promotes mitochondrial apoptotic pathway in primary cultured rat astrocytes by regulating expression of Bcl‐2 family proteins. The main findings of this study are (1) LaCl3 treatment (0.25, 0.5, and 1.0 mM for 12–48 h) induced the astrocytes damages with a concentration‐dependent manner, which were confirmed with methyl thiazolyl tetrazolium and lactate dehydrogenase release assays, and morphological examination. (2) A 24 h treatment of LaCl3 concentration‐dependently decreased mitochondrial membrane potential, increased cytochrome c release from mitochondria into cytosol, elevated caspase 9 and 3 expression, and promoted astrocyte apoptosis. (3) LaCl3 treatment increased the ratio of pro‐apoptotic Bax and antiapoptotic Bcl‐2 proteins, which in turn broke the balance among pro‐apoptotic and antiapoptotic Bcl‐2 family proteins, leading to astrocyte apoptosis. Our results indicate that LaCl3 alters Bcl‐2 family protein expressions, which in turn promote mitochondrial apoptotic pathway, and thus astrocytic damage. © 2011 Wiley Periodicals, Inc. Environ Toxicol 28: 489–497, 2013.  相似文献   

15.
16.
17.
Styryl-lactones such as goniothalamin represent a new class of compounds with potential anti-cancer properties. In this study, we investigated the mechanisms of goniothalamin (GTN), a plant styryl-lactone induced apoptosis in human promyelocytic leukemia HL-60 cells. This plant extract resulted in apoptosis in HL-60 cells as assessed by the externalisation of phosphatidylserine. Using the mitochondrial membrane dye (DIOC(6)) in conjunction with flow cytometry, we found that GTN treated HL-60 cells demonstrated a loss of mitochondrial transmembrane potential (Deltapsi(m)). Further immunoblotting on these cells showed activation of initiator caspase-9 and the executioner caspases-3 and -7. Pretreatment with the pharmacological caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) abrogated apoptosis as assessed by all of the apoptotic features in this study. In summary, our results demonstrate that goniothalamin-induced apoptosis occurs via the mitochondrial pathway in a caspase dependent manner.  相似文献   

18.
Chelerythrine, formerly identified as a protein kinase C inhibitor, has also been shown to inhibit the anti-apoptotic Bcl-2 family proteins. However, recent studies have now demonstrated that chelerythrine can induce the loss of mitochondrial membrane potential (ΔΨm), a membrane permeability transition (MPT), and the subsequent activation of the mitochondrial apoptotic pathway, even in the cells deficient in Bax and Bak. This suggests the existence of an alternative Bax/Bak-independent pathway for apoptosis. The generation of reactive oxygen species (ROS) from the mitochondrial electron transport chain (ETC) is also implicated in the cytotoxity elicited by chelerythrine. In our current study, we show that chelerythrine induces the rapid apoptotic death of H9c2 cardiomyocyte-derived cells within 8 min of treatment. The proteolytic activation of caspase9 and caspase3, crucial mediators of the mitochondrial apoptotic pathway, are also observed within 6 min of exposure to this drug. The generation of ROS is detected but at only marginal levels in the treated cells. The inhibition of the mitochondrial ETC by rotenone and malonate had almost no effects on ROS generation but in both cases effectively inhibited both cell death and the caspase activation induced by chelerythrine. Hence, chelerythrine initiates the rapid mitochondrial apoptotic death of H9c2 cardiomyoblastoma cells in a manner that is likely independent of the generation of ROS from mitochondria.  相似文献   

19.
Diepoxybutane (DEB) is the most potent metabolite of the environmental chemical 1,3-butadiene (BD), which is prevalent in petrochemical industrial areas. BD is a known mutagen and human carcinogen, and possesses multi-systems organ toxicity. We recently reported that DEB-induced cell death in TK6 lymphoblasts was due to the occurrence of apoptosis, and not necrosis. In this study, we investigated the molecular mechanisms responsible for DEB-induced apoptosis in these cells. Bax and Bak were found to be over-expressed and activated, and the mitochondrial trans-membrane potential was attenuated in cells undergoing DEB-induced apoptosis. Cytochrome c was depleted from the mitochondria of TK6 cells undergoing apoptosis, and was released into the cytosol in Jurkat T-lymphoblasts exposed to the same concentrations of DEB. Executioner caspase 3 was deduced to be activated by initiator caspase 9. DEB-induced reactive oxygen species (ROS) formation, and the ROS scavenger N-acetyl-L-cysteine effectively blocked DEB-induced apoptosis in TK6 cells. Collectively, these results demonstrate that the mitochondrial apoptotic pathway is activated to mediate DEB-induced apoptosis in human TK6 lymphoblasts. These results further demonstrate that DEB-induced apoptosis is also mediated by the DEB-induced generation of ROS. This is the first report to examine the mechanism of DEB-induced apoptosis in human lymphoblasts.  相似文献   

20.
In order to determine the effect of X-irradiation on intracellular signal transduction in mouse oocytes and embryos, JNK, ERK and p38 kinase activities were measured by the state of phosphorylation of their respective substrates (c-Jun, Elk-1 and ATF-2, respectively) in two mouse strains differing in radiation sensitivity, namely C57BL and BALB/c. In a first step, control oocytes and embryos were compared for their respective kinase activities at various stages of oocyte maturation (germinal vesicle and metaphases of 1st and 2nd meiosis stages) and early embryonic development (1-, 2-, 4-, 8- and 16-cell, morula and blastula stages). Levels of p38, ERK or JNK kinase activities were shown to vary with the stage of oocyte maturation and embryo development. In a second step, 1- and 2-cell embryos were X-irradiated with 2.5 Gy during the S-phase of the 1st or the 2nd cell-cycle, respectively. There were no significant differences in p38, ERK and JNK kinase activities between control and irradiated embryos, whatever the stage or mouse strain was considered. In conclusion, p38, ERK and JNK kinase activities were shown to vary during oocyte maturation and early embryonic development. Apparently, X-irradiation did not affect these kinase activities at the 1- and 2-cell stages in either mouse strains regardless of their difference in radiation sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号