首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The polymerase chain reaction (PCR) methods enable the detection of large number of human papillomavirus (HPV) genotypes that infect the anogenital tract. In this study, two groups of cervical scrapes with abnormal cytomorphology were analysed. The first group was tested with three sets of consensus primers located within the L1 region of HPV genome, MY09/MY11 (i.e. MY), L1C1/L1C2-1/L1C2-2 (i.e. LC) and pI-1/pI-2 (i.e. pI) primer sets, while the second group of samples, which were all negative with the MY primers, was tested further with the LC primers, as well as with the GP5/GP6 (i.e. GP) primers. The GP primers were used in the nested PCR following amplification with the MY primers (i.e. MY/GP nested PCR). Samples from both groups were also tested with type-specific primers for HPV types 6/11, 16, 18, 31 and 33. In the first study group (N=164) there were 76.2% positive results obtained with at least one set of consensus primers. There were 62.2, 39, 62.2 and 59.1% positive results obtained with the MY, the pI, the LC and the HPV type-specific primer sets, respectively. The best results were obtained when both the MY and the LC primer sets were used, because in combination they detected 75% positive samples compared to 62.2% when used alone. There were 2. 4% samples negative with all consensus primers, but positive with one of the HPV type-specific primers, which increased the overall positivity rate to 78.6%. In the second study group (N=250) there were 8.4, 38.8 and 4% samples positive with the LC primers, the nested MY/GP and the HPV type-specific primer sets, respectively. Thus, the use of the MY/GP nested PCR increased significantly the positivity rate of HPV DNA detection and should be used for samples with a low copy number of HPV DNA. In conclusion, the following diagnostic protocol would be appropriate for detection of cancer-related HPVs: preselection of samples with the MY and the LC primers, additional amplification of the MY- and the LC-negative samples with the MY/GP nested PCR and HPV typing of consensus PCR-positive samples with the HPV type-specific primers.  相似文献   

2.
The novel PGMY L1 consensus primer pair is more sensitive than the MY09 and MY11 primer mix for detection and typing with PCR of human papillomavirus (HPV) DNA in genital specimens. We assessed the diagnostic yield of PGMY primers for the detection and typing of HPV by comparing the results obtained with PGMY09/PGMY11 and MY09/MY11/HMB01 on 299 genital samples. Amplicons generated with PGMY primers were typed with the line blot assay (PGMY-line blot), while HPV amplicons obtained with the degenerate primer pool MY09/MY11/HMB01 were detected with type-specific radiolabeled probes in a dot blot assay (standard consensus PCR test). Cervicovaginal lavage samples (N = 272) and cervical scrape samples (N = 27) were tested in parallel with both PCR tests. The PGMY-line blot test detected the presence of HPV DNA more frequently than the standard consensus PCR assay. The concordance for HPV typing between the two assays was 84.3% (214 of 255 samples), for a good kappa value of 0.69. Of the 177 samples containing HPV DNA by at least one method, 40 samples contained at least one HPV type detected only with PGMY-line blot, whereas positivity exclusively with the standard consensus PCR test was found for only 7 samples (P < 0.001). HPV types 45 and 52 were especially more frequently detected with PGMY than MY primers. However, most HPV types were better amplified with PGMY primers, including HPV-16. Samples with discordant results between the two PCR assays more frequently contained multiple HPV types. Studies using PGMY instead of MY primers have the potential to report higher detection rates of HPV infection not only for newer HPV types but also for well-known genital types.  相似文献   

3.
Human papillomavirus associated with oesophageal cancer   总被引:13,自引:0,他引:13  
AIM: To study the prevalence and the different types of human papillomavirus (HPV) in patients with oesophageal cancer from a high risk area of South Africa (Transkei). METHODS: DNA samples from 50 paraffin wax embedded tissue sections were analysed by nested polymerase chain reaction (PCR) using the degenerate HPV L1 consensus primer pairs MY09/MY11 and GP5+/GP6+. Positive PCR samples were subjected to DNA sequence analysis. RESULTS: HPV DNA was detected in 23 of the 50 samples. Sequence analysis revealed that most patients (11) harboured DNA to HPV type 11, whereas other types included DNA HPV type 39 (seven patients), type 16 (two patients), and type 52 (one patient). HPV type 39 has not previously been shown to be associated with oesophageal cancer. In contrast to earlier studies that have found HPV type 16 to be more frequently associated with oesophageal cancer, HPV type 11 was the predominant subtype in this study. CONCLUSIONS: The high frequency of occurrence of HPV in oesophageal tumours (23 of 50 patients; 46%) implicates HPV as one of the possible aetiological factors in this disease. The finding that the low risk HPV subtypes predominate indicates that transformation may be effected via the E6 and E7 proteins.  相似文献   

4.
Based on epidemiological and research evidence, HPV has a causal role in cervical carcinogenesis. Several HPV detection methods exist to date; the most commonly used method for detection of genital HPVs consists of nested PCR using the MY09/11 and GP5(+)/6(+) primer sets (MY/GP(+)). Recently, the PGMY09/11 primer set, a modified version of the MY09/11 primer set, was introduced for single PCR and was found to detect a wider range of HPV types. The next logical step was taken and the efficacy of nested PCR using the PGMY09/11 and GP5(+)/6(+) primer sets (PGMY/GP(+)) to detect HPV in cervical samples was evaluated. In this comparative study, nested PCR using the novel PGMY/GP(+) primer set combination was found to be more type sensitive than the nested PCR with the MY/GP(+) primer sets, detecting a wider range of HPV types, low copy HPVs, and better characterizing samples infected with multiple strains of HPV. Standardization and use of the PGMY/GP(+) PCR system could aid physicians in providing more efficient HPV screening and better treatment for patients.  相似文献   

5.
BACKGROUND AND OBJECTIVES: Human papillomaviruses (HPV) are the causal agent for the development of carcinomas in the cervix uteri and further pathological changes of the skin including mucosa, particularly warts, condylomas and dysplasias. Therefore, we investigated the efficacy of different consensus primers pairs for HPV detection by PCR using brushed samples from the oral cavity in comparison with samples from the cervix uteri. STUDY DESIGN: In the present study, we used two well-established sets of PCR primers in different combinations for the detection of HPV DNA in 106 non-invasive brush biopsy samples of the oral mucosa and 56 samples from the cervix uteri. Direct sequencing of PCR products in all cases determined HPV genotype and specificity. RESULTS: Overall, HPV was detected in 69 of 106 oral mucosa samples. HPV specific amplicons were obtained in 35.8% (N = 38) when using GP5+/6+ primers. The positivity rate was increased to 65.1% in a GP5+/6+ auto-nested PCR approach. In contrast, MY9/11 PCR and nested PCR with MY9/11 outer followed by GP5+/6+ inner primers yielded 2.2% and 16.1%, respectively. In gynaecological samples, PCR results were similar independent of the primer combination used. Thus, DNA quality and DNA content could be additional factors influencing the rate of positivity. CONCLUSION: For oral mucosa samples, auto-nested GP5+/6+ PCR is in our hands the most suitable approach for epidemiological studies because of its high sensitivity, high reliability and reproducibility as well as its relatively simple laboratory procedure.  相似文献   

6.
In order to examine a sensitive unbiased consensus PCR with routine sequencing for HPV typing, we analysed Danish male and female patients suspected of having an HPV infection. We used the well-characterised nested PCR setting with MY09/MY11 and GP5+/GP6+ primers, followed by routine cycle sequencing. Of 1283 clinical samples from female patients based on suspected HPV infection, we found 379 (29%) negatives and 894 (70%) positives. Samples containing >5000 HPV copies/ml were genotyped by sequencing. Of the 552 HPV genotyped samples from women >15 years of age, 398 were characterised as high-risk types and the remaining 154 as low-risk types. The most commonly found high-risk types were HPV-16, HPV-31, HPV-33, HPV-18, HPV-58, and HPV-52, and the most commonly found low-risk types were HPV-6, HPV-53 and HPV-11. In addition, we observed that other typing assays could not perform as sensitively or accurately as the nested PCR/cycle sequencing method used in this study. For instance, 87 out of 552 genotyped samples could not have been typed correctly in the Hybrid Capture II assay. Of these 87 samples, 46 (53%) were considered as high-risk types.  相似文献   

7.
A nested multiplex PCR (NMPCR) assay that combines degenerate E6/E7 consensus primers and type-specific primers was evaluated for the detection and typing of human papillomavirus (HPV) genotypes 6/11, 16, 18, 31, 33, 35, 39, 42, 43, 44, 45, 51, 52, 56, 58, 59, 66, and 68 using HPV DNA-containing plasmids and cervical scrapes (n = 1,525). The performance of the NMPCR assay relative to that of conventional PCR with MY09-MY11 and GP5+-GP6+ primers, and nested PCR with these two primer sets (MY/GP) was evaluated in 495 cervical scrapes with corresponding histologic and cytologic findings. HPV prevalence rates determined with the NMPCR assay were 34.7% (102 of 294) in the absence of cervical intraepithelial neoplasia (CIN 0), 94.2% (113 of 120) in the presence of mild or moderate dysplasia (CIN I/II), and 97.8% (44 of 45) in the presence of severe dysplasia (CIN III). The combination of all four HPV detection methods applied in the study was taken as "gold standard": in all three morphological subgroups the NMPCR assay had significantly (P < 0.0001) higher sensitivities than the MY09-MY11 and GP5+-GP6+ assays and sensitivities comparable or equal to those of the MY/GP assay. All 18 HPV genotypes investigated were detected among the clinical samples. The ratio of high- to low-risk HPV genotypes increased from 4:1 (80 of 103) in CIN 0 to 19:1 (149 of 157) in CIN I to III. Multiple infections were detected in 47.9% (124 of 259) of the patients. In conclusion, the novel NMPCR method is a sensitive and useful tool for HPV DNA detection, especially when exact HPV genotyping and the identification of multiple HPV infections are required.  相似文献   

8.
9.
A single tube nested ‘hanging droplet’ PCR was developed for detection of cutaneous human papillomavirus (HPV) DNA of the phylogenetic group B1. The nested PCR was compared with a single round PCR method by testing 56 fresh biopsies from Australian skin tumour patients. HPV DNA was detected in 64% (36/56) of the biopsies by nested PCR and in 30% (17/56) by single round PCR (P<0.001). HPV DNA was more often detected by nested PCR than by single round PCR in basal cell carcinoma [62% (16/26) vs. 19%; (5/26); P=0.003], squamous cell carcinoma [43% (7/16) vs. 25% (4/16)] and in solar keratosis [93% (13/14) vs. 57% (8/14); P=0.038]. The nested PCR and the single round PCR system detected 26 and 11 different HPV types/putative types/subtypes, respectively. Multiple types were found in eight samples by the nested PCR and two samples by single round PCR. The nested HPV PCR is more sensitive and capable of amplifying a broad spectrum of HPV types from skin tumours, but further improvements are needed before all HPV infections in skin can be detected by a single assay.  相似文献   

10.
Human papillomavirus (HPV) is an etiologic agent of cervical cancer and is the most common sexually transmitted disease in women. PCR amplification of HPV genomes is the most sensitive method for the detection of cervicovaginal HPV. We have compared the two most commonly used PCR primer sets, MY09/MY11 (MY-PCR) and GP5+/GP6+ (GP+-PCR), for the detection of HPV DNA in cervicovaginal lavage samples from 208 women. Oligonucleotide probes for 39 different HPV types were used. Both primer sets amplified a wide spectrum of HPV genotypes and detected similar overall prevalences of 45% (94 of 208) and 43% (89 of 208), respectively. The MY-PCR system detected 27 of 30 (90%) samples with multiple HPV types, whereas the GP+-PCR system detected 14 of 30 (47%) samples with multiple HPV types. Differences in the detection of HPV types 35, 53, and 61 were noted between the two primer systems. Serial dilution of plasmid templates indicated a 3-log decrease in the amplification of HPV type 35 by MY-PCR and HPV types 53 and 61 by GP+-PCR. These results indicate that although the MY-PCR and GP+-PCR identified nearly equivalent prevalences of HPV in a set of clinical samples, differences in the detection of specific types and infections with multiple types were found. Differences in the sensitivities and characteristics of the PCR systems for the detection of HPV within clinical samples should be considered when comparing data between studies and/or in designing new studies or clinical trials.  相似文献   

11.
Human papillomavirus (HPV) can be detected by amplification of viral DNA. A novel PCR primer set generating a short PCR fragment (SPF PCR) was used for amplification of a fragment of only 65 bp from the L1 region and permitted ultrasensitive detection of a broad spectrum of HPV genotypes. The intra- and intertypic sequence variations of the 22-bp interprimer region of this amplimer were studied. Among 238 HPV sequences from GenBank and clinical specimens, HPV genotypes were correctly identified based on the 22-bp sequence in 232 cases (97.2%). Genotype-specific probes for HPV genotypes 6, 11, 16, 18, 31, 33 to 35, 39, 40, 42 to 45, 51 to 54, 56, 58, 59, 66, 68, 70, and 74 were selected, and a reverse hybridization line probe assay (LiPA) (the INNO-LiPA HPV prototype research assay) was developed. This LiPA permits the use of amplimers generated by the SPF as well as the MY 09/11 primers. The assay was evaluated with a total of 1, 354 clinical specimens, comprising cervical scrapes (classifications ranging from normal cytology to severe dyskaryosis) and formalin-fixed, paraffin-embedded cervical carcinoma samples. LiPA results were highly concordant with sequence analysis of the SPF amplimer, genotype-specific PCR, and sequence analysis of amplimers generated by MY 09/11 primers. The sensitivity of the SPF primers was higher than that of the GP5(+)/6(+) primers over a broad range of HPV types, especially when multiple HPV genotypes were present. In conclusion, the SPF LiPA method allows extremely sensitive detection of HPV DNA as well as reliable identification of HPV genotypes in both cervical smears and paraffin-embedded materials.  相似文献   

12.
AIM: To determine the prevalence, type, physical state, and viral load of human papillomavirus (HPV) DNA in cases of head and neck cancer and recurrent respiratory papillomatosis (RRP). METHODS: The prevalence and type of HPV DNA was determined in 27 fresh frozen tissue specimens from patients with head and neck cancers and 16 specimens from 10 patients with RRP by MY09/MY11 and GP5+/GP6+ nested polymerase chain reaction (PCR) and subsequent restriction enzyme cleavage. The physical state of HPV DNA was analysed by E1, E2, and E1E2 specific PCRs and Southern blot hybridisation (SBH). RESULTS: HPV DNA was detected in 13 of 27 cancers and 10 of 10 papillomas. Both low risk HPV-6 and HPV-11 and high risk HPV-16 were present in cancers in low copy numbers, whereas papillomas exclusively harboured low risk HPV-6 and HPV-11. E1E2 PCRs failed to determine the physical state of HPV in cancers except one case where HPV-6 DNA was integrated. In contrast to cancers, all papillomas showed the episomal state of HPV DNA and a relatively higher viral load. CONCLUSIONS: Based on the prevalence, type, physical state, and copy number of HPV DNA, cancers and papillomas tend to show a different HPV DNA profile. The 100% positivity rate of low risk HPV types confirms the role of HPV-6 and HPV-11 in the aetiology of RRP.  相似文献   

13.
A gene amplification method that combines PCR with an enzyme immunoassay (PCR-EIA) for quantitation of amplified DNA was developed for the detection of human papillomavirus (HPV). Samples were amplified with consensus primers MY09 and MY11. Amplified DNA products were reacted in solution with type-specific nested RNA probes labelled with digoxigenin-11-UTP. Hybrids were captured on a microtiter plate coated with an antidigoxigenin antibody. Bound DNA-RNA hybrids were quantitated by the addition of an alkaline phosphatase-labelled monoclonal antibody directed against DNA-RNA hybrids and a fluorogenic substrate. The detection limit of PCR-EIA was six copies of HPV type 18 DNA in the original specimen. The assay was used to assess HPV infection of the uterine cervixes of 65 women referred to a colposcopy clinic. In 66 cervicovaginal lavage specimens, all 23 HPV strains detected by a standard isotopic PCR assay were also detected by the PCR-EIA (sensitivity, 100%; 95% confidence interval, 85.2 to 100%). Forty-two of the 43 samples that did not contain HPV types 6/11, 16, 18, 31, 33, 35, and 45 were also negative by PCR-EIA, for a specificity of 97.7%. Low-level cross-reactivity was encountered between HPV types 18 and 45 as well as between types 33 and 58. PCR-EIA provides a convenient means of objectively measuring PCR-amplified HPV DNA from common genital HPV types.  相似文献   

14.
Human papillomavirus (HPV) is the main risk factor associated with the development of cervical cancer (CC); however, there are other factors, such as immunosuppression caused by the human immunodeficiency virus (HIV), that favor progression of the illness. This study was thus aimed at evaluating the functionality of classical PCR-based molecular tests for the generic identification of HPV DNA (GP5+/GP6+, MY09/MY11, and pU1M/2R primers, individually or in combination) using cervical and urine samples from 194 HIV-positive women. Infected samples were tested with type-specific primers for six high-risk types (HPV-16, -18, -31, -33, -45, and -58) and two low-risk types (HPV-6 and -11). HPV infection prevalence rates were 70.1% for the cervical samples and 63.9% for the urine samples. HPV-16 was the most prevalent viral type in the cervical and urine samples, with higher rates of multiple infections than single infections detected in such samples. HPV DNA detection by PCR (mainly with the pU1M/2R primer set) in urine samples was positively associated with abnormal cytological findings (atypical squamous cells of undetermined significance/squamous intraepithelial lesions [ASCUS/SIL]). It was determined that the operative characteristics for detection of cytological abnormalities were similar for cervical and urine samples. This suggested using PCR for the detection of HPV DNA in urine samples as a potential screening strategy for CC prevention in future prevention and control programs along with currently implemented strategies for reducing the impact of the disease, i.e., urine samples are economical, are easy to collect, have wide acceptability among women, and have operative characteristics similar to those of cervical samples.  相似文献   

15.
AIM: To develop a unified diagnostic approach for the detection of human papillomavirus (HPV) DNA in skin and mucosal biopsies from both immunocompetent and immunosuppressed individuals using a degenerate polymerase chain reaction (PCR) method. METHODS: The sensitivity and specificity of three published degenerate primer sets (HVP2/B5 and F14/B15; MY09/MY11; CP62/69 outer and CP65/68 nested primer pairs) were evaluated in PCR reactions with serial dilutions of 12 representative cloned HPV types. This combination of primers was then used to detect HPV DNA in 49 benign and malignant lesions of cutaneous and mucosal origin from immunosuppressed, immunocompetent, and epidermodysplasia verruciformis (EV) patients, and compared with detection rates using single primer sets alone. RESULTS: The observed sensitivity of MY09/MY11 and CP62/69 + CP65/68 was high for mucosal and EV HPV types, respectively. The sensitivity of all primer sets for cutaneous types was low, but nonetheless the use of this combination of primers allowed HPV DNA detection in all of the benign warts analysed. Several mixed infections were also identified. A high prevalence of HPV DNA was similarly detected in squamous cell carcinomas from immunocompromised patients; the HPV types found were exclusively EV related. CONCLUSIONS: The use of a combined degenerate primer PCR approach considerably improves HPV DNA detection over individual primer sets and allows detection of mixed infections. The findings may help explain the discrepancies in published reports relating to HPV DNA detection in benign and malignant skin lesions. Further modifications to this method are in progress which should significantly improve comprehensive HPV detection and typing for diagnostic purposes.  相似文献   

16.
The line blot assay, a gene amplification method that combines PCR with nonisotopic detection of amplified DNA, was evaluated for its ability to detect human papillomavirus (HPV) DNA in genital specimens. Processed samples were amplified with biotin-labeled primers for HPV detection (primers MY09, MY11, and HMB01) and for beta-globin detection (primers PC03 and PC04). Amplified DNA products were hybridized by a reverse blot method with oligonucleotide probe mixtures fixed on a strip that allowed the identification of 27 HPV genotypes. The line blot assay was compared to a standard consensus PCR test in which HPV amplicons were detected with radiolabeled probes in a dot blot assay. Two hundred fifty-five cervicovaginal lavage specimens and cervical scrapings were tested in parallel by both PCR tests. The line blot assay consistently detected 25 copies of HPV type 18 per run. The overall positivity for the DNA of HPV types detectable by both methods was 37.7% (96 of 255 samples) by the line blot assay, whereas it was 43. 5% (111 of 255 samples) by the standard consensus PCR assay. The sensitivity and specificity of the line blot assay reached 84.7% (94 of 111 samples) and 98.6% (142 of 144 samples), respectively. The agreement for HPV typing between the two PCR assays reached 83.9% (214 of 255 samples). Of the 37 samples with discrepant results, 33 (89%) were resolved by avoiding coamplification of beta-globin and modifying the amplification parameters. With these modifications, the line blot assay compared favorably to an assay that used radiolabeled probes. Its convenience allows the faster analysis of samples for large-scale epidemiological studies. Also, the increased probe spectrum in this single hybridization assay permits more complete type discrimination.  相似文献   

17.
Mucosal human papillomaviruses (HPVs) that infect the genital area have also been shown to infect the oral cavity. In this study a restriction fragment length polymorphism (RFLP) method was developed on a nested polymerase chain reaction (PCR) product to identify ten high risk HPV types 16, 18, 31, 33, 35, 45, 51, 52, 58 and 59 as well as the low risk HPV 11. HPV DNA was detected in 23/31 (74%) of buccal specimens using a sensitive nested PCR employing degenerate consensus primers (Williamson and Rybicki, 1991). Consensus PCR using the PGMy09/11 primers. was able to detect HPV in only 29% of the specimens that had tested positive using the nested HPV PCR primers. HPV 11 type specific primers detected HPV 11 DNA in only 66% of the specimens showing HPV 11 DNA by means of nested PCR and RFLP. A Genbank search revealed that the PCR primers could detect a wide range of mucosal HPV types including types HPV 70, 72 and 73 which have all been isolated from immunocompromised patients. Of the 23 buccal specimens that were positive for HPV DNA, 13 were single infections, five were dual infections and three were triple infections. The HPV types identified by RFLP were: HPV 11 (18/23), HPV 18 (8/23), HPV 16 (3/23), and HPV 33 (1/23). HPV 13 (2/23) was identified by direct sequencing of the inner amplicon of the PCR product.  相似文献   

18.
The aim of this study was to assess the validity and usefulness of vaginal scrapes in detecting cervical human papillomavirus (HPV) DNA by the polymerase chain reaction (PCR). The study group comprised 23 women tested positive and 28 women tested negative for cervical HPV DNA by PCR, and confirmed by histopathology. At the time of specimen collection, both vaginal and endocervical scrapes were taken from these women, and tested for HPV DNA by PCR, using MY09/MY11 primer system. HPV genotypes were analyzed by hybridizing PCR products with HPV type-specific biotinylated probes. HPV DNA was detected in both vaginal and cervical scrapes from the HPV-positive, but not from HPV-negative group. In the HPV-positive group, the same HPV type was found in vaginal and endocervical scrapes, giving a positive predictive value of 1.0. The results indicate that HPV types can be detected in vaginal scrapes, and recommend utilization of the less invasive vaginal testing for the routine detection of HPV DNA.  相似文献   

19.
An in-house polymerase chain reaction direct sequencing (PCR-DS) approach for HPV detection and typing was developed, taking advantage of two widely used pairs of human papillomavirus (HPV)-specific PCR primers, MY09/MY11 and GP5/GP6, and 33P-labeled dideoxynucleotides. In this study, 105 pathological specimens were examined: 89% were diagnosed as cervical intraepithelial neoplasia (CIN) grade I-III, 76.2% were HPV-positive by PCR-DS. The PCR using GP5/GP6 (first tier) and MY09/MY11 primers (second tier for the GP5/GP6-negative samples) detected additional 15%-25% HPV-positive samples compared with each pair used separately. Direct sequencing was then used to type the HPV. A readout of a sequence as short as 34 nucleotides within a specific region in the L1 gene is sufficient to type known or novel sequences. Because of its high sensitivity and cost-effectiveness, the two-tier PCR-DS was adopted by the authors as the current method of choice for HPV diagnosis with ultimate sequence precision.  相似文献   

20.
Thirty-nine patients with condylomas (12 women and 27 men) attending a dermatology clinic were tested for genital human papillomavirus (HPV) DNA and for seroprevalence to HPV type 6 (HPV6) L1 virus-like particles. The L1 consensus PCR system (with primers MY09 and MY11) was used to determine the presence and types of HPV in sample specimens. All 37 (100%) patients with sufficient DNA specimens were positive for HPV DNA, and 35 (94%) had HPV6 DNA detected at the wart site. Three patients (8%) had HPV11 detected at the wart site, and one patient had both HPV6 and -11 detected at the wart site. Thirteen additional HPV types were detected among the patients; the most frequent were HPV54 (8%) and HPV58 (8%). Baculovirus-expressed HPV6 L1 virus-like particles were used in enzyme-linked immunosorbent assays to determine seroprevalence among the patients with warts. Seronegativity was defined by a control group of 21 women who were consistently PCR negative for HPV DNA. Seroprevalence was also determined for reference groups that included cytologically normal women who had detectable DNA from either HPV6 or HPV16 and women with HPV16-associated cervical intraepithelial neoplasia. Among the asymptomatic women with HPV6, only 2 of 9 (22%) were seropositive, compared with 12 of 12 (100%) female patients with warts. A similar trend in increased HPV6 seropositivity with increased grade of disease was found with the HPV16 DNA-positive women, whose seroprevalence increased from 1 in 11 (9%) in cytologically normal women to 6 in 15 (40%) among women with cervical intraepithelial neoplasia 1 or 3. However, only 4 of 25 (16%) male patients were seropositive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号