首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 575 毫秒
1.
New dual binding site acetylcholinesterase (AChE) inhibitors have been designed and synthesized as new potent drugs that may simultaneously alleviate cognitive deficits and behave as disease-modifying agents by inhibiting the beta-amyloid (A beta) peptide aggregation through binding to both catalytic and peripheral sites of the enzyme. Particularly, compounds 5 and 6 emerged as the most potent heterodimers reported so far, displaying IC50 values for AChE inhibition of 20 and 60 pM, respectively. More importantly, these dual AChE inhibitors inhibit the AChE-induced A beta peptide aggregation with IC50 values 1 order of magnitude lower than that of propidium, thus being the most potent derivatives with this activity reported up to date. We therefore conclude that these compounds are very promising disease-modifying agents for the treatment of Alzheimer's disease (AD).  相似文献   

2.
The synthesis of tacrine-thiadiazolidinone hybrids is described. These compounds are designed as dual acetylcholinesterase inhibitors binding simultaneously to the peripheral and catalytic sites of the enzyme. All tested compounds exhibit significant AChE inhibitory activity. Competition assays using propidium as reference of selective ligand for the peripheral anionic site on acetylcholinesterase indicates the influence of the designed compounds over the peripheral site. They can be considered as new leads in the optimization of Alzheimer's disease modifying agents.  相似文献   

3.
Recently advances in understanding the molecular basis of Alzheimer's disease have led to the consideration of the relationship between cholinergic inhibitors and amyloid deposition as a new hypothesis for the future rational design of effective anti-Alzheimer drugs. In the present review, the non-cholinergic functions of acetylcholinesterase (AChE) and the therapeutic potential of peripheral and dual binding site AChE inhibitors in delaying the neurodegenerative process will be discussed.  相似文献   

4.
Current pharmacotherapy for Alzheimer's disease involves compounds that are aimed at increasing the levels of acetylcholine in the brain by facilitating cholinergic neurotransmission through inhibition of cholinesterase. These drugs, known as acetylcholinesterase inhibitors, have been shown to improve cognition and global functions but have little impact on improving the eventual progression of the disease; however, there is evidence that other cholinesterases such as butyrylcholinesterase can play an important role in cholinergic function in the brain, and the long-suspected non-cholinergic actions of acetylcholinesterase, mainly the interference with the beta-amyloid protein cascade, have recently driven a profound revolution in cholinesterase drug research. Several disease-modifying agents are under development that target these enzymes and have hope of becoming the next generation of effective drugs in the treatment of Alzheimer's disease.  相似文献   

5.
The formation of β-amyloid plaques in the brain is a key neurodegenerative event in Alzheimer’s disease (AD). Interestingly, research on acetylcholinesterase (AChE) enzyme has increased due to findings supporting this enzyme involvement in the β-amyloid peptide fibril formation during AD pathogenesis. In this investigation, chemical features based 3D pharmacophore models were developed from structurally diverse xanthostigmine derivatives, known inhibitors of AChE enzyme, using 3D-QSAR pharmacophore generation module in Discovery Studio2.5 (DS2.5). The constructed pharmacophore models for AChE inhibitors was further cross-validated using test set and Cat-Scramble methodology. The best quantitative pharmacophore model Hypo1, was used for screening the chemical databases of small compounds including Specs, NCI, and IBScreen, to identify the new compounds that are presumably able to act as dual-binding site AChE inhibitors. The screened virtual hits were then subjected to the Lipinski’s rule of five, blood–brain barrier (BBB), PSA, LogS, percent human oral absorption, and toxicity analysis. Finally, 32 compounds were identified as potential leads against AChE enzyme, showing good estimated activities and promising ADMET properties. Molecular docking of these compounds using FlexX software showed catalytic and peripheral anionic binding site interactions, so called dual binding of the AChE enzyme. Docking study was also performed on butyrylcholinesterase in order to understand the compound selectivity. This study may assist in the discovery and design of novel dual binding site and selective AChE inhibitors with potent inhibitory activity.  相似文献   

6.
7.
8.
New dual binding site acetylcholinesterase (AChE) inhibitors have been designed and synthesized as a new drug candidate for the treatment of Alzheimer's disease (AD) through the binding to both catalytic and peripheral sites of the enzyme. Therefore, a series of 7H‐thiazolo[3,2‐b]‐1,2,4‐triazin‐7‐one derivatives 6a – j were synthesized and investigated for their ability to inhibit the activity of human AChE (hAChE) in comparison with huperzine‐A. All the compounds were found to inhibit AChE activity, especially compounds 6c and 6i with the inhibition value of 76.10% and 77.82%, respectively. The molecular docking study indicated that they were nicely accommodated by AChE. The molecular docking study revealed that 6c and 6i possessed a more optimal binding conformation than 6a and can perfectly fit into the active and peripheral site of hAChE, and consequently exhibited highly improved inhibitor potency to hAChE.  相似文献   

9.
The cholinergic hypofunction in Alzheimer's disease (AD) appears to be linked with two other major hallmarks of this disease, beta-amyloid and hyperphosphorylated tau protein. Formation of beta-amyloids might impair the coupling of M1 muscarinic acetylcholine receptors (mAChR) with G-proteins. This can lead to decreased signal transduction, a decrease of trophic and non-amyloidogenic amyloid precursor protein (APPs) and generation of more beta-amyloids, aggravating further the cholinergic deficiency. This review is an attempt to explore the M1 mAChR regulation of beta-amyloid metabolism, tau hyperphosphorylation and cognitive functions. The therapeutic potential of M1-selective muscarinic agonists including AF102B, AF150(S), AF267B (the AF series) is evaluated and compared, when possible, with several FDA-approved acetylcholinesterase inhibitors. These M1 agonists can elevate APPs, decrease tau protein phosphorylation/hyperphosphorylation in vitro and in vivo and restore cognitive impairments in several animal models for AD. Except for the M1 agonists, no other compounds were reported yet with combined effects; e.g., amelioration of cognition dysfunction and beneficial modulation of APPs/beta-amyloid together with tau hyperphosphorylation/phosphorylation. This property of M1 agonists to alter different aspects associated with AD pathogenesis could represent the most remarkable clinical value of such drugs.  相似文献   

10.
Neurodegenerative disorders, such as Alzheimer's disease, are often characterised by the degeneration of the cholinergic system. Thus, the aim of many treatment regimens is to support this system either by means of muscarinic agonists or by inhibitors of acetylcholinesterase (AChE), the latter being able to increase the concentration of acetylcholine. However, both pharmacological groups of drugs can only help in the beginning of the progressive disease. The finding that the occupation of the peripheral anionic site of AChE is able to stop the formation of the amyloid plaque led to the development of bivalent ligands that occupy both the active and the peripheral site. This dual action might be more beneficial for treatment of Alzheimer s disease than simple inhibition of the acetylcholine hydrolysis. Thus, the new bivalent ligands are the focus of this review.  相似文献   

11.
Neurodegenerative disorders, such as Alzheimer’s disease, are often characterised by the degeneration of the cholinergic system. Thus, the aim of many treatment regimens is to support this system either by means of muscarinic agonists or by inhibitors of acetylcholinesterase (AChE), the latter being able to increase the concentration of acetylcholine. However, both pharmacological groups of drugs can only help in the beginning of the progressive disease. The finding that the occupation of the peripheral anionic site of AChE is able to stop the formation of the amyloid plaque led to the development of bivalent ligands that occupy both the active and the peripheral site. This dual action might be more beneficial for treatment of Alzheimer´s disease than simple inhibition of the acetylcholine hydrolysis. Thus, the new bivalent ligands are the focus of this review.  相似文献   

12.
Combined docking and molecular dynamics (MD) simulations were carried out in order to investigate the binding mode of propidium at the human acetylcholinesterase (HuAChE) peripheral site. Two different docking protocols followed by cluster analyses were performed, allowing the identification of five high-populated and low-energy configuration families. To dynamically explore the behavior of the ligand at the peripheral HuAChE binding site, six complexes (five low-energy and one high-energy) were submitted to 2.5 ns of MD simulations. The representative propidium/HuAChE binding modes were chosen on the basis of both the docking energy score and the dynamic stability of the complexes throughout the MD simulations. The most stable poses of propidium at HuAChE PAS were similar to those experimentally determined with the murine enzyme. We therefore suggest that the present modeling protocol might be used in the dynamic investigation of the interactions of a small-molecule inhibitor with a surface-like binding site of a protein. Finally, because of the biological relevance of the target studied here, the present results can be of interest for the rational design of molecules potentially useful in the treatment of the Alzheimer's disease.  相似文献   

13.
In recent years, the investigation of acetylcholinesterase (AChE) inhibitors has gained further interest, because the involvement of the peripheral site of the enzyme in the beta-amyloid (Abeta) aggregation process has been disclosed. We present here, for the first time, a direct evidence of the Abeta antiaggregating action of an AChE inhibitor (AP2238) purposely designed to bind at both the catalytic and the peripheral sites of the human enzyme.  相似文献   

14.
The cholinergic hypothesis of Alzheimer's disease has spurred the development of numerous structural classes of compounds with different pharmacological profiles aimed at increasing central cholinergic neurotransmission, thus providing a symptomatic treatment for this disease. Indeed, the only drugs currently approved for the treatment of Alzheimer's disease are cholinomimetics with the pharmacological profile of acetylcholinesterase inhibitors. Recent evidence of a potential disease modifying role of acetylcholinesterase inhibitors and M(1) muscarinic agonists have led to a revival of this approach, which might be considered as more than a symptomatic treatment.  相似文献   

15.
A set of 17 coumarin and 2 chromone derivatives with known inhibitory activity toward monoamine oxidase (MAO) A and B were tested as acetylcholinesterase (AChE) inhibitors. All compounds inhibited AChE with values in the micromolar range (3-100 microM). A kinetic study showed that most compounds acted as noncompetitive AChE inhibitors. This finding may be of interest in the context of Alzheimer's disease because recent observations suggest that MAO and AChE inhibition might decrease beta-amyloid deposition.  相似文献   

16.
New dual binding site acetylcholinesterase (AChE) inhibitors have been designed and synthesized as a new drug candidate for the treatment of Alzheimer’s disease (AD) through the binding to both catalytic and peripheral sites of the enzyme. Therefore, a series of thienopyridine analogs of tacrine were synthesized and investigated for their ability to inhibit the activity of AChE in comparison with tacrine. All the compounds were found to inhibit AChE activity, especially compounds 7b and 11a, which were found to be more potent than tacrine.  相似文献   

17.
Protection of the enzyme acetylcholinesterase (AChE) from the toxic effects of organophosphate insecticides and chemical warfare agents (OPs) may be provided by inhibitors that bind at the peripheral binding site (P-site) near the mouth of the active-site gorge. Compounds that bind to this site may selectively block access to the acylation site (A-site) catalytic serine for OPs, but not acetylcholine itself. To identify such compounds, we employed a virtual screening approach using AutoDock 4.2 and AutoDock Vina, confirmed using compounds experimentally known to bind specifically to either the A-site or P-site. Both programs demonstrated the ability to correctly predict the binding site. Virtual screening of the NCI Diversity Set II was conducted using the apo form of the enzyme, and with acetylcholine bound at the crystallographic locations in the A-site only and in both and A- and P-sites. The docking identified 32 compounds that were obtained for testing, and one was demonstrated to bind specifically to the P-site in an inhibitor competition assay.  相似文献   

18.
Neurotoxic organophosphorous compounds are known to modulate their biological effects through the inhibition of a number of esterases including acetylcholinesterase (AChE), the enzyme responsible for the degradation of the neurotransmitter acetylcholine. In this light, molecular modeling studies were performed on a collection of organophosphorous acetylcholinesterase inhibitors by the combined use of conformational analysis and 3D-QSAR methods to rationalize their inhibitory potencies against the enzyme. The Catalyst program was used to identify the structural features in the group of 8 inhibitors whose IC(50) values ranged from 0.34 nM to 1.2 microM. The 3-D pharmacophore models are characterized by at least one hydrogen bond acceptor site and 2-3 hydrophobic sites and demonstrate very good correlation between the predicted and experimental IC(50) values. Our models can be useful in screening databases of organophosphorous compounds for their neurotoxicity potential via the inhibition of acetylcholinesterase. Also, the pharmacophores offer an additional means of designing AChE inhibitors as potential therapeutic agents for central nervous system diseases.  相似文献   

19.
Treatment of Alzheimer's disease has been dominated by the use of acetylcholinesterase (AChE) inhibitors. These drugs compensate for the death of cholinergic neurons and offer symptomatic relief by inhibiting acetylcholine (ACh) turnover and restoring synaptic levels of this neurotransmitter. Recently, however, AChE itself has been implicated in the pathogenesis of Alzheimer's disease. In particular, it appears that AChE may directly interact with amyloid-beta in a manner that increases the deposition of this peptide into insoluble plaques. This new role suggests that properly designed AChE inhibitors might be able to act as disease-modifying agents rather than as mere palliatives. Additionally, numerous studies have suggested that cholinergic modulation and other functional consequences of AChE inhibition may affect amyloid precursor protein processing and protect neurons against a variety of insults. It therefore seems likely that new AChE inhibitors, which capitalize on all these strengths would be excellent candidates for future Alzheimer's disease therapy.  相似文献   

20.
1,3,5-Tri-N-alkylcarbamylphloroglucinols (1-4) are synthesized as a new series of bulky inhibitors of acetylcholinesterase that may block the catalytic triad, the anionic substrate binding site, and the entrance of the enzyme simultaneously. Among three series of phloroglucinol-derived carbamates, tridentate inhibitors 1,3,5-tri-N-alkylcarbamylphloroglucinols (1-4), bidentate inhibitors 3,5-di-N-n-alkylcarbamyloxyphenols (5-8), and monodentate inhibitors 5-N-n-alkylcarbamyloxyresorcinols (9-12), tridentate inhibitors 1-4 are the most potent inhibitors of mouse acetylcholinesterase. When different n-alkylcarbamyl substituents in tridentate inhibitors 1-4 are compared, n-octylcarbamate 1 is the most potent inhibitor of the enzyme. All inhibitors 1-12 are characterized as the pseudo substrate inhibitors of acetylcholinesterase. Thus, tridentate inhibitors 1-4 are supposed to be hydrolyzed to bidentate inhibitors 5-8 after the enzyme catalysis. Subsequently, bidentate inhibitors 5-8 and monodentate inhibitors 9-12 are supposed to yield monodentate inhibitors 9-12 and phloroglucinol, respectively, after the enzyme catalysis. This means that tridentate inhibitors 1-4 may act as long period inhibitors of the enzyme. Therefore, inhibitors 1-4 may be considered as a new methodology to develop the long-acting drug for Alzheimer's disease. Automated dockings of inhibitor 1 into the X-ray crystal structure of acetylcholinesterase suggest that the most suitable configuration of inhibitor 1 to the enzyme binding is the (1,3,5)- (cis,trans,trans)-tricarbamate rotamer. The cis-carbamyl moiety of this rotamer does not bind into the acetyl group binding site of the enzyme but stretches out itself to the entrance. The other two trans-carbmayl moieties of this rotamer bulkily block the tryptophan 86 residue of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号