首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angelman syndrome (AS) is a neurodevelopmental disorder caused by a lack of expression of the maternal copy of UBE3A. Although the “classic” features of AS are well described, few large‐scale studies have delineated the clinical features in AS. We present baseline data from 92 children with a molecular diagnosis of AS between 5 and 60 months old who are enrolled in the National Institutes of Health Rare Diseases Clinical Research Network Angelman Syndrome Natural History Study from January 2006 to March 2008. Seventy‐four percent of participants had deletions, 14% had either uniparental disomy (UPD) or imprinting defects, and 12% had UBE3A mutations. Participants with UPD/imprinting defects were heavier (P = 0.0002), while those with deletions were lighter, than the general population (P < 0.0001). Twenty out of 92 participants were underweight, all of whom had deletions or UBE3A mutations. Eight out of 92 participants (6/13 (46%) with UPD/imprinting defects and 2/11 (18%) with UBE3A mutations) were obese. Seventy‐four out of 92 participants (80%) had absolute or relative microcephaly. No participant was macrocephalic. The most common behavioral findings were mouthing behavior (95%), short attention span (92%), ataxic or broad‐based gait (88%), history of sleep difficulties (80%), and fascination with water (75%). Frequent, easily provoked laughter was observed in 60%. Clinical seizures were reported in 65% of participants but all electroencephalograms (EEGs) were abnormal. We conclude that the most characteristic feature of AS is the neurobehavioral phenotype, but specific EEG findings are highly sensitive for AS. Obesity is common among those with UPD/imprinting defects. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Prader–Willi syndrome (PWS) is a prototypic genetic condition related to imprinting. Causative mechanisms include paternal 15q11‐q13 deletion, maternal chromosome 15 uniparental disomy (UPD15), Prader–Willi Syndrome/Angelman Syndrome (PWS/AS) critical region imprinting defects, and complex chromosomal rearrangements. Maternal UPD15‐related PWS poses risks of concomitant autosomal recessive (AR) disorders when the mother carries a pathogenic variant in one of the genes on chromosome 15 associated with autosomal recessive inherited disease. Co‐occurrence of autosomal recessive conditions in the setting of UPD leads to increased complexity of the clinical phenotype, and may delay the diagnosis of PWS. We report a patient with PWS and associated congenital ichthyosis due to maternal UPD15, and a homozygous novel pathogenic variant in ceramide synthase 3 (CERS3). We also review the literature of associated disorders reported in the setting of maternal UPD15‐related PWS and provide a summary of the previously described CERS3 variants. This represents the second case of autosomal recessive congenital ichthyosis (ARCI) in the setting of PWS and UPD15. There needs to be a high index of suspicion of this genetic mechanism when there is unexpected phenotype or evolution of the clinical course in a patient with PWS.  相似文献   

3.
4.
Angelman syndrome (AS) is a genetic neurodevelopmental disorder caused by loss or deficient expression of UBE3A on the maternally inherited allele. In 10–15% of individuals with a clinical diagnosis of AS, a molecular diagnosis cannot be established with conventional testing. We describe a 13‐year‐old male with an atypical presentation of AS, who was found to have a novel, maternally inherited, intronic variant in UBE3A (c.3‐12T>A) using genome sequencing (GS). Targeted sequencing of RNA isolated from blood confirmed the creation of a new acceptor splice site. These GS results ended a six‐year diagnostic odyssey and revealed a 50% recurrence risk for the unaffected parents. This case illustrates a previously unreported splicing variant causing AS. Intronic variants identifiable by GS may account for a proportion of individuals who are suspected of having well‐known genetic disorders despite negative prior genetic testing.  相似文献   

5.
Angelman syndrome (AS) is a neurobehavioral disorder caused by lack of function of the maternal copy of the ubiquitin‐protein ligase E3A (UBE3A) gene. In our study, 49 unrelated patients with classic AS phenotypes were confirmed by methylation‐specific PCR (MS‐PCR) analysis, short tandem repeat linkage analysis, and mutation screening of the UBE3A gene. Among the Chinese AS patients, 83.7% (41/49) had deletions on maternal chromosome 15q11.2‐13. Paternal uniparental disomy, imprinting defects, and UBE3A gene mutations each accounted for 4.1% (2/49). Two AS patients were confirmed by MS‐PCR analysis, but the pathogenic mechanism was unknown because their parents' samples were unavailable. Of the two described UBE3A gene mutations, that is, p.Pro400His (c.1199C>A) and p.Asp563Gly (c.1688A>G), the latter has not been reported previously. Mutation transmission analysis showed that the p.Pro400His and p.Asp563Gly mutations originated from asymptomatic mothers. The patients with the maternal deletion showed AS clinical manifestations that were consistent with other studies. However, the incidence of microcephaly (36.7%, 11/30) was lower than that in the Caucasian population (approximately 80%), but similar to that of the Japanese population (34.5%). Our study demonstrated that the occurrence of microcephaly in AS may vary among different populations.  相似文献   

6.
Angelman syndrome: a review of the clinical and genetic aspects   总被引:7,自引:2,他引:7       下载免费PDF全文
Angelman syndrome (AS) is a neurodevelopmental disorder characterised by severe learning difficulties, ataxia, a seizure disorder with a characteristic EEG, subtle dysmorphic facial features, and a happy, sociable disposition. Most children present with delay in developmental milestones and slowing of head growth during the first year of life. In the majority of cases speech does not develop. Patients with AS have a characteristic behavioural phenotype with jerky movements, frequent and sometimes inappropriate laughter, a love of water, and sleep disorder. The facial features are subtle and include a wide, smiling mouth, prominent chin, and deep set eyes. It is caused by a variety of genetic abnormalities involving the chromosome 15q11-13 region, which is subject to genomic imprinting. These include maternal deletion, paternal uniparental disomy, imprinting defects, and point mutations or small deletions within the UBE3A gene, which lies within this region. UBE3A shows tissue specific imprinting, being expressed exclusively from the maternal allele in brain. The genetic mechanisms identified so far in AS are found in 85-90% of those with the clinical phenotype and all interfere with UBE3A expression.  相似文献   

7.
Angelman syndrome (AS) is a profound disorder notable for mental retardation and severe language deficits that results from lack of function of the maternally inherited copy of the UBE3A gene. Chromosome deletions of 15q11q13, paternal uniparental disomy (UPD), UBE3A gene mutations, and imprinting center defects are all commonly recognized mechanisms that disrupt the function of the maternal copy of the UBE3A gene. We report here two patients with different atypical etiologies of AS. The first patient is a 3-year-old boy with global developmental delay, severe speech deficits, seizures, and very happy disposition. Southern blot analysis for the maternal and paternal chromosome 15 methylation products showed a mosaic methylation pattern, suggesting an imprinting center defect. The second patient is a 4(1/2)-year-old boy with global developmental delay, no expressive language, microcephaly, seizures, and ataxic gait. Array-based comparative genomic hybridization (CGH) demonstrated a loss in copy number for two overlapping clones encompassing the UBE3A gene, indicating a partial deletion within UBE3A. His mother, who was adopted, had an identical pattern, suggesting that her deletion was probably on her paternally imprinted allele. These patients illustrate the expanding spectrum of molecular findings in AS, reinforce the need to maintain suspicion when clinical features suggest AS but initial testing is normal, and show the power of CGH as a tool to uncover partial UBE3A deletions.  相似文献   

8.
The spectrum of mutations in UBE3A causing Angelman syndrome   总被引:5,自引:1,他引:4  
Angelman syndrome (AS) is characterized by mental retardation, absence of speech, seizures and motor dysfunction. AS is caused by maternal deletions for chromosome 15q11-q13, paternal uniparental disomy (UPD), imprinting defects or loss-of-function mutations in the UBE3A locus which encodes E6-AP ubiquitin-protein ligase. The UBE3A gene is imprinted with paternal silencing in human brain and similar silencing of the Ube3a locus in Purkinje cells and hippocampal neurons in the mouse. We have sequenced the major coding exons for UBE3A in 56 index patients with a clinical diagnosis of AS and a normal DNA methylation pattern. The analysis identified disease-causing mutations in 17 of 56 patients (30%) including 13 truncating mutations, two missense mutations, one single amino acid deletion and one stop codon mutation predicting an elongated protein. Mutations were identified in six of eight families (75%) with more than one affected case, and in 11 of 47 isolated cases (23%); no mutation was found in one family with two siblings, one with a typical and one with an atypical phenotype. Mutations were de novo in nine of the 11 isolated cases. An amino acid polymorphism of threonine substituted for alanine at codon 178 was identified, and a 3 bp length polymorphism was found in the intron upstream of exon 8. In all informative cases, phenotypic expression was consistent with imprinting with a normal phenotype when a mutation was on the paternal chromosome and an AS phenotype when a mutation was on the maternal chromosome. Laboratory diagnosis and genetic counseling for AS are complex, and mutation analysis is valuable in clinically typical AS patients with a normal methylation analysis.   相似文献   

9.
10.
Angelman syndrome (AS) is a neurodevelopmental disorder caused by the absence of a maternal contribution to chromosome 15q11-q13. There are four classes of AS according to molecular or cytogenetic status: maternal microdeletion of 15q11-q13 (approximately 70% of AS patients); uniparental disomy (UPD); defects in a putative imprinting centre (IM); the fourth includes 20-30% of AS individuals with biparental inheritance and a normal pattern of allelic methylation in 15q11-q13. Mutations of UBE3A have recently been identified as causing AS in the latter group. Few studies have investigated the phenotypic differences between these classes. We compared 20 non-deletion to 20 age-matched deletion patients and found significant phenotypic differences between the two groups. The more severe phenotype in the deletion group may suggest a contiguous gene syndrome.  相似文献   

11.
BACKGROUND—Angelman syndrome (AS) is a severe neurobehavioural disorder caused by defects in the maternally derived imprinted domain located on 15q11-q13. Most patients acquire AS by one of five mechanisms: (1) a large interstitial deletion of 15q11-q13; (2) paternal uniparental disomy (UPD) of chromosome 15; (3) an imprinting defect (ID); (4) a mutation in the E3 ubiquitin protein ligase gene (UBE3A); or (5) unidentified mechanism(s). All classical patients from these classes exhibit four cardinal features, including severe developmental delay and/or mental retardation, profound speech impairment, a movement and balance disorder, and AS specific behaviour typified by an easily excitable personality with an inappropriately happy affect. In addition, patients can display other characteristics, including microcephaly, hypopigmentation, and seizures.
METHODS—We restricted the present study to 104 patients (93 families) with a classical AS phenotype. All of our patients were evaluated for 22 clinical variables including growth parameters, acquisition of motor skills, and history of seizures. In addition, molecular and cytogenetic analyses were used to assign a molecular class (I-V) to each patient for genotype-phenotype correlations.
RESULTS—In our patient repository, 22% of our families had normal DNA methylation analyses along 15q11-q13. Of these, 44% of sporadic patients had mutations within UBE3A, the largest percentage found to date. Our data indicate that the five molecular classes can be divided into four phenotypic groups: deletions, UPD and ID patients, UBE3A mutation patients, and subjects with unknown aetiology. Deletion patients are the most severely affected, while UPD and ID patients are the least. Differences in body mass index, head circumference, and seizure activity are the most pronounced among the classes.
CONCLUSIONS—Clinically, we were unable to distinguish between UPD and ID patients, suggesting that 15q11-q13 contains the only significant maternally expressed imprinted genes on chromosome 15.


  相似文献   

12.
Prader-Willi (PWS) and Angelman (AS) are syndromes of developmental impairment that can result either from a 15q11-q13 deletion, paternal uniparental disomy (UPD), imprinting, or UBE3A mutations. A small cytogenetic subset of PWS and AS patients are carriers of a so-called small supernumerary marker chromosome (sSMC). Here, we report on an previously unreported PWS case with a karyotype 47,XY,+min(15)(pter->q11.1:) plus maternal heterodisomic UPD 15. A review of the literature revealed, that for both, PWS and AS patients, cases with (1) a sSMC plus microdeletion of the PWS/AS critical region, (2) inv dup(15) plus uniparental disomy (UPD) 15 and (3) cases without exclusion of a microdeletion an UBE3A mutation or UPD are described. The present case as well as the review of similar cases provides further evidence for the necessity to test UPD in prenatal cases with a de novo sSMC and in postnatal cases with otherwise unexplainable clinical phenotype.  相似文献   

13.
Recent studies have identified a new class of Prader-Willi syndrome (PWS) and Angelman syndrome (AS) patients who have biparental inheritance, but neither the typical deletion nor uniparental disomy (UPD) or translocation. However, these patients have uniparental DNA methylation throughout 15q11-q13, and thus appear to have a mutation in the imprinting process for this region. Here we describe detailed clinical findings of five AS imprinting mutation patients (three families) and two PWS imprinting mutation patients (one new family). All these patients have essentially the classical clinical phenotype for the respective syndrome, except that the incidence of microcephaly is lower in imprinting mutation AS patients than in deletion AS patients. Furthermore, imprinting mutation AS and PWS patients do not typically have hypopigmentation, which is commonly found in patients with the usual large deletion. Molecular diagnosis of these cases is initially achieved by DNA methylation analyses of the DN34/ZNF127, PW71 (D15S63), and SNRPN loci. The latter two probes have clear advantages in the simple molecular diagnostic analysis of PWS and AS patients with an imprinting mutation, as has been found for typical deletion or UPD PWS and AS cases. With the recent finding of inherited microdeletions in PWS and AS imprinting mutation families, our studies define a new class of these two syndromes. The clinical and molecular identification of these PWS and AS patients has important genetic counseling consequences. Am. J. Med. Genet. 68:195–206, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

14.

Background

Patients with Angelman syndrome (AS) are affected by severe intellectual disability with absence of speech, distinctive dysmorphic craniofacial features, ataxia and a characteristic behavioral phenotype. AS is caused by the lack of expression in neurons of the UBE3A gene, which is located in the 15q11.2-q13 imprinted region. Functional loss of UBE3A is due to 15q11.2-q13 deletion, mutations in the UBE3A gene, paternal uniparental disomy and genomic imprinting defects.

Case presentation

We report here two patients with clinical features of AS referred to our hospital for clinical follow-up and genetic diagnosis. Methylation Specific-Multiplex Ligation-Dependent Probe Amplification (MS-MLPA) of the 15q11.2-q13 region was carried out in our laboratory as the first diagnostic tool detecting two novel UBE3A intragenic deletions. Subsequently, the MLPA P336-A2 kit was used to confirm and determine the size of the UBE3A deletion in the two patients. A review of the clinical features of previously reported patients with whole UBE3A gene or partial intragenic deletions is presented here together with these two new patients.

Conclusion

Although rare, UBE3A intragenic deletions may represent a small fraction of AS patients without a genetic diagnosis. Testing for UBE3A intragenic exonic deletions should be performed in those AS patients with a normal methylation pattern and no mutations in the UBE3A gene.
  相似文献   

15.
Angelman syndrome (AS) is a neurogenetic disorder associated with a loss of maternal gene expression in chromosome region 15q11-q13 due to either maternal deletion, paternal uniparental disomy (UPD), imprinting mutation, or mutation in the UBE3A gene. UBE3A encodes an ubiquitin-protein ligase and shows brain-specific imprinting. We have done conformation sensitive gel electrophoresis (CSGE) mutation analysis of the UBE3A coding region in nine AS patients, who had shown a normal biparental inheritance and methylation pattern of the 15q11-q13. Disease-causing mutations were identified in five of them: three deletions (1930delAG, 3093delAAGA) and two missense mutations (902A --> C, 975T --> C). Both deletions have also been detected in other AS patients, suggesting these sites may be prone to deletions in the UBE3A gene. All AS cases were sporadic, but a mosaicism for mutation 902A --> C was present in a patient's mother. Screening for the UBE3A mutations in the AS patients was found useful both for the confirmation of diagnosis and genetic counseling. CSGE was found to be a sensitive and simple screening method for these mutations.  相似文献   

16.
Angelman syndrome (AS) is a distinct neurogenetic syndrome, first described in 1965. The phenotype is well known in infancy and adulthood, but the clinical features may change with age. The main clinical characteristics include severe mental retardation, epileptic seizures and EEG abnormalilties, neurological problems and distinct facial dysmorphic features. Behavioural problems such as hyperactivity and sleeping problems are reported, although these patients present mostly a happy personality with periods of inappropriate laughter. Different underlying genetic mechanisms may cause AS, with deletion of chromosome 15 as the most frequent cause. Other genetic mechanisms such as paternal uniparental disomy, imprinting defect and mutation in the UBE3A gene are present in smaller groups of patients with AS. As the recurrence risk can be up to 50%, the clinical diagnosis of AS should be confirmed by laboratory tesing, and genetic counselling should be provided. Treatment of seizures, physical therapy or other intervention strategies are helpful to ameliorate the symptoms.  相似文献   

17.
Wiedemann‐Steiner syndrome (WSS) is a rare genetic disorder characterized by growth retardation, facial dysmorphism, hypertrichosis cubiti and neurodevelopment delay. It is caused by pathogenic variants in the KMT2A gene. This report describes two unrelated Portuguese patients, age 11 and 17 years, with a phenotype concordant with WSS and clinical and molecular diagnosis of WSS by the identification of two novel frameshift variants in the KMT2A gene. This work also highlights the presence of certain clinical features in patients with growth retardation and development delay and should draw attention to the diagnosis of WSS, when hirsutism, particularly hypertrichosis cubiti is present.  相似文献   

18.
Variants in the SCN1A gene are associated with a wide range of disorders including genetic epilepsy with febrile seizures plus (GEFS+), familial hemiplegic migraine (FHM), and the severe childhood epilepsy Dravet syndrome (DS). Predicting disease outcomes based on variant type remains challenging. Despite thousands of SCN1A variants being reported, only a minority has been functionally assessed. We review the functional SCN1A work performed to date, critically appraise electrophysiological measurements, compare this to in silico predictions, and relate our findings to the clinical phenotype. Our results show, regardless of the underlying phenotype, that conventional in silico software correctly predicted benign from pathogenic variants in nearly 90%, however was unable to differentiate within the disease spectrum (DS vs. GEFS+ vs. FHM). In contrast, patch‐clamp data from mammalian expression systems revealed functional differences among missense variants allowing discrimination between disease severities. Those presenting with milder phenotypes retained a degree of channel function measured as residual whole‐cell current, whereas those without any whole‐cell current were often associated with DS (p = .024). These findings demonstrate that electrophysiological data from mammalian expression systems can serve as useful disease biomarker when evaluating SCN1A variants, particularly in view of new and emerging treatment options in DS.  相似文献   

19.
Angelman syndrome (AS) is characterised by severe developmental delay, severe speech impairment, gait ataxia and/or limb tremor and a unique behavioural phenotype. The diagnosis of AS is based on a combination of clinical features and molecular genetic testing. Currently, molecular genetic testing (methylation analysis and UBE3A sequence analysis) identifies anomalies in about 90% of individuals. The aetiology of the remaining 10% is still unknown. We report a novel deletion encompassing the exons 5-12 of the UBE3A gene in a girl with AS, identified by MLPA (Multiplex Ligation-dependent Probe Amplification), which was not detected by the conventional diagnostic protocol. We propose that copy number analysis of the UBE3A gene should be considered in individuals whose clinical examination is strongly suggestive of AS, after more common mechanisms have been excluded.  相似文献   

20.
The causal heterogeneity of Angelman syndrome (AS) makes providing information regarding recurrence risk both important and challenging, and may have a dramatic impact on reproductive decision-making for the nuclear and extended family. Most cases of AS result from typical large de novo deletions of 15q11–q13, and are expected to have a low (<1%) risk of recurrence. AS due to paternal uniparental disomy (UPD), which occurs in the absence of a parental translocation, is likewise expected to have a <1% risk of recurrence. Parental transmission of a structurally or functionally unbalanced chromosome complement can lead to 15q11–q13 deletions or to UPD and will result in case-specific recurrence risks. In instances where there is no identifiable large deletion or UPD, the risk for recurrence may be as high as 50% as the result of either a maternally inherited imprinting center (IC) mutation or a ubiquitin-protein ligase (UBE3A) gene mutation. Individuals with AS who have none of the above abnormalities comprise a significant proportion of cases, and some may be at a 50% recurrence risk. Misdiagnoses, as well, can be represented in this group. In light of the many conditions which are clinically similar to AS, it is essential to address the possibility of diagnostic uncertainty and potential misdiagnosis prior to the provision of genetic counseling. Summaries of the different causal classes of AS as an algorithm for determination of recurrence risks are presented. Am. J. Med. Genet. 77:54–59, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号