首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 616 毫秒
1.
2.
Sirtuin 2 (SIRT2), a NAD+-dependent histone deacetylase, is involved in carcinogenesis and genomic instability and modulates proinflammatory immune responses. However, its role in renal inflammatory injury has not been demonstrated. In this study, we explored the expression patterns of CXCL2 and CCL2 in kidney tissue from Sirt2−/− and Sirt2+/+ mice and in mouse proximal tubular epithelial (MPT) cells. CXCL2 and CCL2 were significantly downregulated at both the mRNA and the protein levels in kidneys of LPS-treated Sirt2−/− mice compared with those of LPS-treated Sirt2+/+ mice. Furthermore, SIRT2 deficiency ameliorated LPS-induced infiltration of neutrophils and macrophages, acute tubular injury, and decrease of renal function. Supporting these observations, CXCL2 and CCL2 expression levels were lower in MPT cells treated with SIRT2-siRNA than in cells treated with control-siRNA, and adenovirus-mediated overexpression of SIRT2 in MPT cells significantly increased the LPS-induced expression of CXCL2 and CCL2 at the mRNA and protein levels. In addition, SIRT2 interacted with mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), and SIRT2-knockdown increased the acetylation of MKP-1 and suppressed the phosphorylation of p38 MAPK and c-Jun N-terminal kinase in LPS-treated MPT cells. SIRT2 also regulated p65 binding to the promoters of CXCL2 and CCL2. Taken together, these findings indicate that SIRT2 is associated with expression of renal CXCL2 and CCL2 and that regulation of SIRT2 might be an important therapeutic target for renal inflammatory injury.  相似文献   

3.
4.
5.
6.
Stemp L 《Anesthesia and analgesia》2004,99(3):955; author replies 955
  相似文献   

7.
8.
采用重组合异种骨(RBX)移植建立BALB/C小鼠股后肌袋模型,以研究对T淋巴细胞分泌IL-2的功能变化及对细胞免疫的影响,结果显示:(1)RBX移植后2天IL-2升高是由于手术创伤刺激所致的应激反应;(2)术后7~14天RBX、bBMP对IL-2产生有显著的抑制作用,28~42天回升:(3)对T淋巴细胞功能的抑制作用主要是BMP所致,经处理的牛板质骨粒不具免疫源性。提示:RBX移植无明显免疫排异反应,BMP能抑制T细胞的活化增殖,使细胞因子分泌减少,因而降低厂细胞免疫水平,BMP可能属于一种新的兔疫调节因子。实验结果对RBX移植既能成骨又不发生明显的免疫排异的机理是一种有意义的探讨。  相似文献   

9.
通过实验室制备,合成了二溴海因/二氧化硅复合粒子,运用扫描电镜(SEM)与红外光谱(IR)进行了表征,SEM结果显示,在SiO2的表面覆合了二溴海因,红外光谱图表明,复合粒子中二溴海因和二氧化硅之间以物理作用方式结合,将单纯二溴海因与二溴海因/二氧化硅复合粒子溶解于水,测定其在水中的释放速度,结果表明:二溴海因/二氧化硅复合粒子中的二溴海因在水中释放的速度明显慢于纯二溴海因,且能维持较长的作用时间,比较纯二溴海因与含等量二溴海因的复合粒子对大肠杆菌、金黄色葡萄球菌、白葡萄球菌和枯草芽孢杆菌的抑制效果,发现在二溴海因含量高于有效抑茵浓度时,复合粒子对茵体的抑制效果高于纯二溴海因。  相似文献   

10.
A multidomain, synthetic peptide designated B2A2 synergizes the activity of BMP-2. B2A2 interacts with BMP receptor isoforms, potentiating the action of BMP-2 in activating alkaline phosphatase and triggering Smad and MAPK signaling. B2A2's design permits its delivery as a local surface coating as well as a soluble co-factor, thus broadening potential bioengineering applications. INTRODUCTION: BMP-2 induces osteogenic differentiation and accelerates bone repair. Although BMP-2 inhibitors have been discovered, no BMP-2 mimetics or enhancers that function in the physiological range have yet been found. Here we report that a synthetic peptide designated B2A2, consisting of (1) a BMP receptor-targeting sequence, (2) a hydrophobic spacer, and (3) a heparin-binding sequence, is a positive modulator of recombinant BMP-2. MATERIALS AND METHODS: Cultures of mesenchymal cell lines C2C12 and C3H10T1/2 were given B2A2, recombinant BMP-2, or both. Alkaline phosphatase (ALP) activity was assayed by conversion of paranitrophenol phosphate (PNPP). Signaling through Smad and MAP kinase pathways was monitored by Western blot. Receptor binding was assessed by incubating immobilized B2A2 with soluble recombinant receptor-Fc chimeras and detecting bound receptor by anti-Fc antibody ELISA. Surface coating of medical device materials was done by first dip-coating with silyl-heparin, followed by B2A2. RESULTS AND CONCLUSIONS: Treatment of cells with B2A2 alone marginally increased ALP activity. However, B2A2 plus BMP-2 resulted in 5- to 40-fold augmentation of ALP compared with BMP-2 alone in C3H10T1/2 or C2C12 cells, respectively. This synergistic enhancement was observed over a broad concentration range (4-1000 ng/ml BMP-2). B2A2 interacted directly with BMP receptor isoforms (preferentially to BMPR-Ib and ActivinR-II). In cells, B2A2 + BMP-2 led to a repression of MAP kinase and an increase of Smad activation, consistent with known activation pathways of BMP-2. B2A2 was ineffective when paired with other cytokine/growth factors (basic fibroblast growth factor [FGF-2], TGF-beta1, vascular endothelial growth factor [VEGF]). Simultaneous co-administration was not strictly required. Pulse-chase experiments revealed that temporal separations up to 1 h were still effective. B2A2 was also effective when delivered in a polystyrene- or stainless steel-coated surface through a heparin platform (silyl-heparin) while BMP-2 was added exogenously in solution. These results suggest that B2A2 might promote aggregation of receptor subunits, enabling BMP-2 to activate signaling pathways at effectively lower concentrations. Synthetic multidomain constructs like B2A2 may be useful to accelerate bone repair/deposition through augmentation of endogenous levels of BMP-2 or through local BMP-2 contained in artificial or engineered matrices.  相似文献   

11.
12.
13.
Urinary excretion of lipocalin-type PGD2 synthase (L-PGDS), which converts PG H2 to PGD2, increases in early diabetic nephropathy. In addition, L-PGDS expression in the tubular epithelium increases in adriamycin-induced nephropathy, suggesting that locally produced L-PGDS may promote the development of CKD. In this study, we found that L-PGDS–derived PGD2 contributes to the progression of renal fibrosis via CRTH2-mediated activation of Th2 lymphocytes. In a mouse model, the tubular epithelium synthesized L-PGDS de novo after unilateral ureteral obstruction (UUO). L-PGDS-knockout mice and CRTH2-knockout mice both exhibited less renal fibrosis, reduced infiltration of Th2 lymphocytes into the cortex, and decreased production of the Th2 cytokines IL-4 and IL-13. Furthermore, oral administration of a CRTH2 antagonist, beginning 3 days after UUO, suppressed the progression of renal fibrosis. Ablation of IL-4 and IL-13 also ameliorated renal fibrosis in the UUO kidney. Taken together, these data suggest that blocking the activation of CRTH2 by PGD2 might be a strategy to slow the progression of renal fibrosis in CKD.Kidney failure is a public health problem worldwide, with increasing incidence and prevalence, high costs, and poor outcomes. CKD is generally progressive, incurable, and ultimately fatal, although some patients resolve with little or no sequelae. Because current treatment is basically limited to slowing the progression to ESRD using angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor blockers, more efficient therapies with different or additional modes of action are clearly needed.Regardless of disease etiology, tubulointerstitial fibrosis is the common pathway leading to ESRD in many kidney diseases and is regarded as a prognostic factor for renal function.13 It is noteworthy that some clinical trials are proving that antifibrotic therapies, such as pirfenidone against diabetic nephropathy,4 are also effective for CKD. Therefore, elucidating the etiological mechanism underlying renal fibrosis and developing novel therapeutic strategies remains a serious, unmet medical need.Lipocalin-type PGD2 synthase (L-PGDS) is a secretary protein of the lipocalin superfamily that converts PG H2, a common precursor of prostanoids, to PGD2. Because the urinary excretion of L-PGDS increases in the early stage of diabetic nephropathy,5,6 as well as in patients with essential hypertension without any apparent renal injury,7 urinary L-PGDS may be an early diagnostic marker of renal injury in these patients. There is evidence indicating that, in the monkey kidney, L-PGDS is synthesized de novo in the loop of Henle, podocytes, and Bowman’s capsule of the glomeruli.8 Furthermore, L-PGDS gene expression in the tubular epithelium was increased in adriamycin-induced nephropathy.9 These findings suggest that, under conditions of tubulointerstitial stress, locally produced L-PGDS may be involved in the development of CKD. However, the precise pathophysiological significance of L-PGDS in the kidney remains to be determined.PGD2 interacts with two receptors, the prostanoid DP1 receptor and the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). Activation of the DP1 receptor by PGD2 has been shown to produce vasodilation10 and bronchodilation.11 Furthermore, the DP1 receptor is expressed by certain leukocyte populations,12,13 including dendritic cells, where it controls various functions, including cytokine production. CRTH2 was originally identified as an orphan receptor expressed by Th2 lymphocytes. CRTH2 is not structurally related to the DP1 receptor and belongs to the family of chemokine receptors. Activation of CRTH2 by PGD2 plays an important role in allergic inflammation via the recruitment of Th2 lymphocytes and other leukocytes14 and, perhaps more importantly, by driving the production of the Th2 cytokines IL-4, IL-5, and IL-13.15  相似文献   

14.
15.
16.
Contents 2     
《Arthroscopy》2005,21(6):A10
  相似文献   

17.
18.
19.
Contents 2     
《Arthroscopy》2005,21(3):A10
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号