首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gastric carcinoma is one of the most common types of cancer in Taiwan. Somatic mitochondrial DNA (mtDNA) alteration in gastric carcinoma and its association with clinicopathologic features remain unclear. When we used polymerase chain reaction (PCR) and direct sequencing, 15 of the 31 (48%) gastric carcinomas displayed somatic mutations in the D-loop region, a hot spot for mutations in mtDNA of human cancers. Ten (67%) cancers with the somatic mutations in the D-loop had insertion or deletion mutations in nucleotide position (np) 303-309 in the mononucleotide repeat region. One carcinoma carried tandem duplication and triplication flanked by mononucleotide repeats starting at np 311 and 568, respectively, in the D-loop. We also detected the common 4,977-bp deletion in 17 (55%) of the noncancerous tissue samples, but only in three (9%) carcinomas. Moreover, we quantified the mtDNA content using a competitive PCR technique and found that mtDNA depletion occurred in 17 (55%) of the gastric carcinomas. Although no significant association was found between clinicopathologic features and the mtDNA mutations in the D-loop, mtDNA depletion was observed significantly in the ulcerated, infiltrating (Borrmann's type III) and diffusely thick (Borrmann's type IV) types of gastric carcinomas (P = 0.018). Our results suggest that somatic mtDNA mutations and mtDNA depletion occur in gastric cancer and that mtDNA depletion is involved in carcinogenesis and/or cancer progression of gastric carcinoma.  相似文献   

2.
Mitochondrial DNA (mtDNA) mutations in coding and noncoding regions have been reported in a variety of human cancers. Despite a greater number of studies, the relationship between such alterations and nuclear microsatellite instability (nMSI) of the tumor cells remains controversial. To contribute new data to this discussion, we investigated head and neck squamous cell carcinomas (HNSCC) for mutations and mitochondrial microsatellite instability (mtMSI) in 2 parts of the mitochondrial D-loop as well as mutations in 2 mitochondrial genes and for the delta4977 mtDNA deletion. These results were compared with data of an analysis for microsatellite instability at IGFIIR, hMSH3, hMSH6, and 5 dinucleotide repeats. We found mtMSI, low nMSI, and high nMSI in 42%, 36%, and 13% of HNSCC primary tumors, respectively. A de novo delta4977 mtDNA deletion could be demonstrated in 25% of HNSCCs. A correlation between mtMSI and nMSI or between a de novo occurrence of the delta4977 mtDNA deletion and nMSI could not be detected in our HNSCC samples (P values 0.527 and 0.078, respectively). Nevertheless, the high rate of mtMSI suggests an involvement of mtDNA alterations in the tumorigenesis of this head and neck cancer and supports the proposal that this aberration may be a new tumor marker.  相似文献   

3.
Somatic mutations in mitochondrial DNA (mtDNA) have been demonstrated in various tumors, including breast cancer. However, it still remains unclear whether the alterations in mtDNA are related to the clinicopathological features and/or the prognosis in the breast cancer. We analyzed somatic mutations in the D-loop region, the common 4,977-bp deletion, and the copy number of mtDNA in breast cancer and paired nontumorous breast tissues from 60 Taiwanese patients. We found that 18 of the 60 (30%) breast cancers displayed somatic mutations in mtDNA D-loop region. The incidence of the 4,977-bp deletion in nontumorous breast tissues (47%) was much higher than that in breast cancers (5%). The copy number of mtDNA was significantly decreased in 38 of the 60 (63%) breast cancers as compared to their corresponding nontumorous breast tissues (P = 0.0008). The occurrence of D-loop mutations was associated with an older onset age (>or=50 years old, P = 0.042), and tumors that lacked expressions of estrogen receptor and progesterone receptor (P = 0.024). Patients with mtDNA D-loop mutation and breast cancer had significantly poorer disease-free survival than those without mutation, when assessed by Kaplan-Meier curves and log-rank test (P = 0.005). Multivariate Cox regression analysis indicated that a D-loop mutation is a significant marker that is independent of other clinical variables and that it can be used to assess the prognosis of patients. Our findings suggest that somatic mutations in mtDNA D-loop can be used as a new molecular prognostic indicator in breast cancer.  相似文献   

4.
5.
Mitochondrial DNA (mtDNA) has been proposed to be involved in carcinogenesis because of its high susceptibility to oxidative DNA damage and limited repair mechanisms. For investigation of the potential role of somatic mtDNA mutations in the tumorigenesis of oral cancer, we screened the occurrence of mtDNA mutations by the temporal temperature gradient gel electrophoresis method. We amplified the entire mitochondrial genome by use of 32 pairs of overlapping primers, and to identify the mutations, we sequenced DNA fragments showing different banding patterns between normal and tumor mtDNA. Fourteen of eighteen (77.8%) oral carcinomas displayed somatic mtDNA mutations, with a total of 26 mutations. Among them, six were in the mRNA coding region. Three were missense mutations (C14F, H186R, T173P) in NADH dehydrogenase subunit 2, and one was a frameshift mutation, 9485delC, in cytochrome c oxidase subunit III. Eight (44%) tumors had insertion or deletion mutations in the nucleotide position 303-309 poly C region of the D-loop. Multiple large deletions were also observed. Our results demonstrate that somatic mtDNA mutations occur in oral cancer. Some missense and frameshift mutations may play an important role in the tumorigenesis of this carcinoma. More extensive biochemical and molecular studies will be necessary for determining the pathologic effect of these somatic mutations.  相似文献   

6.
We sequenced the entire mitochondrial genome in 8 chromophobe renal cell carcinomas (RCCs) and corresponding normal kidneys. Our study disclosed 68 known and 45 new sequence variations occurring 132 and 45 times, respectively. We found 6 somatic nucleotide changes in 5 out of the 8 chromophobe RCCs. One A --> T substitution occurred in the D-loop region and an insertion of a 9-bp sequence in the noncoding region of the MTNC7. One G --> A substitution and one C --> T substitution were seen in the MTRNR1 and MTRNR2 genes, respectively. One C deletion in MTND5 and one T insertion in the MTND3 gene resulted in frameshift mutations in two tumors. All somatic alterations, with the exception of the 9-bp insertion, were heteroplasmic changes. Although somatic mtDNA mutations are found in chromophobe RCCs, their role in the maintenance of tumor cell phenotype or in tumorigenesis remains to be elucidated.  相似文献   

7.
In an attempt to progress in the understanding of the relationship of mitochondrial DNA (mtDNA) alterations and thyroid tumorigenesis, we studied the mtDNA in 79 benign and malignant tumors (43 Hürthle and 36 non-Hürthle cell neoplasms) and respective normal parenchyma. The mtDNA common deletion (CD) was evaluated by semiquantitative polymerase chain reaction. Somatic point mutations and sequence variants of mtDNA were searched for in 66 tumors (59 patients) and adjacent parenchyma by direct sequencing of 70% of the mitochondrial genome (including all of the 13 OXPHOS system genes). We detected 57 somatic mutations, mostly transitions, in 34 tumors and 253 sequence variants in 59 patients. Follicular and papillary carcinomas carried a significantly higher prevalence of non-silent point mutations of complex I genes than adenomas. We also detected a significantly higher prevalence of complex I and complex IV sequence variants in the normal parenchyma adjacent to the malignant tumors. Every Hürthle cell tumor displayed a relatively high percentage (up to 16%) of mtDNA CD independently of the lesion's histotype. The percentage of deleted mtDNA molecules was significantly higher in tumors with D-loop mutations than in mtDNA stable tumors. Sequence variants of the ATPase 6 gene, one of the complex V genes thought to play a role in mtDNA maintenance and integrity in yeast, were significantly more prevalent in patients with Hürthle cell tumors than in patients with non-Hürthle cell neoplasms. We conclude that mtDNA variants and mtDNA somatic mutations of complex I and complex IV genes seem to be involved in thyroid tumorigenesis. Germline polymorphisms of the ATPase 6 gene are associated with the occurrence of mtDNA CD, the hallmark of Hürthle cell tumors.  相似文献   

8.
Role of mitochondrial mutations in cancer   总被引:2,自引:0,他引:2  
A role for mitochondria in cancer causation has been implicated through identification of mutations in the mitochondrial DNA (mtDNA) and in nuclear-encoded mitochondrial genes. Although many mtDNA mutations were detected in common tumors, an unequivocal causal link between heritable mitochondrial abnormalities and cancer is provided only by the germ line mutations in the nuclear-encoded genes for succinate dehydrogenase (mitochondrial complex II) and fumarate hydratase (fumarase). The absence of evidence for highly penetrant tumors caused by inherited mtDNA mutations contrasts with the frequent occurrence of mtDNA mutations in many different tumor types. Thus, either the majority of diverse mtDNA mutations observed in tumors are not important for the process of carcinogenesis or that they play a common oncogenic role.  相似文献   

9.
小鼠肿瘤线粒体DNA突变研究   总被引:6,自引:1,他引:6  
目的探讨线粒体DNA(mtDNA)突变与肿瘤发生发展的关系。方法采用聚合酶链反应(PCR)技术结合限制性片段长度多态性分析(PCR—RFLP)和单链构象多态性分析(PCR—SSCP)技术了解Lewis肺癌、LA795、Hca—F、Hca—P、CT26、SCC891共6个小鼠肿瘤细胞系mtDNA的基因变异。结果经PCR—RFLP分析发现,这些肿瘤细胞系mtDNA编码区的tRNA^lle Glu Met及ND1基因核酸序列,在27个限制性内切酶酶切位点上均无差异。而在非编码区(D-loop),与对照小鼠相比,Hca—F出现了Hinf Ⅰ的新酶切位点;用PCR—SSCP分析方法对这些肿瘤细胞系mtDNA的D—loop的5’及3’端作进一步分析,在6个肿瘤细胞系中,有4个在mtDNA非编码区上存在着突变。结论D—loop是肿瘤细胞mtDNA突变的高发区,mtDNA突变在肿瘤的发生发展中可能起作用。  相似文献   

10.
《Genetics in medicine》2021,23(9):1769-1778
PurposeDiseases caused by defects in mitochondrial DNA (mtDNA) maintenance machinery, leading to mtDNA deletions, form a specific group of disorders. However, mtDNA deletions also appear during aging, interfering with those resulting from mitochondrial disorders.MethodsHere, using next-generation sequencing (NGS) data processed by eKLIPse and data mining, we established criteria distinguishing age-related mtDNA rearrangements from those due to mtDNA maintenance defects. MtDNA deletion profiles from muscle and urine patient samples carrying pathogenic variants in nuclear genes involved in mtDNA maintenance (n = 40) were compared with age-matched controls (n = 90). Seventeen additional patient samples were used to validate the data mining model.ResultsOverall, deletion number, heteroplasmy level, deletion locations, and the presence of repeats at deletion breakpoints were significantly different between patients and controls, especially in muscle samples. The deletion number was significantly relevant in adults, while breakpoint repeat lengths surrounding deletions were discriminant in young subjects.ConclusionAltogether, eKLIPse analysis is a powerful tool for measuring the accumulation of mtDNA deletions between patients of different ages, as well as in prioritizing novel variants in genes involved in mtDNA stability.  相似文献   

11.
12.
Somatic mitochondrial mutation in gastric cancer.   总被引:11,自引:1,他引:11       下载免费PDF全文
Likely hot spots for mutations are mitochondrial sequences as there is less repair and more damage by carcinogens compared with nuclear sequences. A somatic 50-bp mitochondrial D-loop deletion was detected in four gastric adenocarcinomas. The deletion included the CSB2 region and was flanked by 9-bp direct repeats. The deletion was more frequent in adenocarcinomas arising from the gastroesophageal junction (4/32, 12.5%) compared with more distal tumors (0/45). Topographical analysis revealed the absence of the deletion from normal tissues except in focal portions of smooth muscle in one case. In two cases, apparent mutant homoplasmy was present throughout two tumors, including their metastases. In the two other cases, the mutation was present in only minor focal portions ( < 5%) of their primary tumors. These findings document the presence of somatic mitochondrial alterations in gastric cancer, which may reflect the environmental and genetic influences operative during tumor progression.  相似文献   

13.
Uterine fibroids (UFs) are the most common benign neoplasms, but their pathogenesis is not completely understood. Thus far, alterations in the mitochondrial DNA (mtDNA) content and the mtDNA 4977‐bp deletion level in UFs, as well as the corresponding nontumorous tissue, have remained elusive. To test whether large mtDNA deletions and mtDNA content are involved in the pathogenesis of UFs, a total of 309 UF tissues and 28 paired adjacent myometrium from 270 UF patients were enrolled for the analysis of large mtDNA deletions and mtDNA content through the use of nested PCR and qPCR techniques, respectively. In our samples, a 4977‐bp deletion was identified: 36 out of 309 UF tissues (11.56%) and 15 out of 28 (53.57%) paired adjacent myometrium were detected to harbor the 4977‐bp deletion. In addition, a novel 4838‐bp mtDNA deletion was identified in three UF tissues, and other different sizes of deleted fragments (4910, 4926, 5135‐bp) were also found in UFs for the first time. Furthermore, older age was significantly associated with an mtDNA large deletion in the paired adjacent myometrium. We also found that increased mtDNA content and higher expression of ND1 occurred in solitary fibroids compared to adjacent myometrium. In conclusion, we identified a lower frequency of mtDNA large deletions and some novel large deletion in UFs for the first time. Furthermore, there was a general increase of mtDNA copy number during solitary UF development. Although the definite mechanism by which mtDNA was altered is supposed to be further confirmed, it will be helpful for further studies on the pathological mechanism of UFs.  相似文献   

14.
Somatic mutations in mitochondrial DNA (mtDNA) have been identified in various tumors, including breast cancer. However, their clinicopathological impact on breast cancer still remains unclear. In this study, we re-sequenced the entire mtDNA from breast cancer samples together with paired non-tumorous breast tissues from 58 Taiwanese patients. We identified 19 somatic mutations in the mtDNA coding region of 16 breast cancers. Out of these mutations, 12 of the 19 mutations (63%) are missense or frame-shift mutations that have the potential to cause mitochondrial dysfunction. In combination with our previously study on the D-loop region of mtDNA, we found that 47% (27/58) of the breast cancers harbored somatic mtDNA mutations. Among a total of 40 somatic mutations, 53% (21/40) were located in the D-loop region of the mtDNA, 5% (2/40) were in the ribosomal RNA genes, 5% (2/40) were in the tRNA genes, and 38% (15/40) occurred in mRNA genes. The occurrence of these somatic mtDNA mutations is associated with an older onset age (≥ 50-year old, P = 0.039), a higher TNM stage (P = 0.027), and a higher histological grade (P = 0.012). Multiple logistic regression analysis revealed that an older onset age (P = 0.029) and a higher histological grade (P = 0.006) are significantly correlated with patients having somatic mutations in the mtDNA in their breast cancer sample. In conclusion, our results suggest that somatic mtDNA mutations may play a critical role in the progression of breast cancer.  相似文献   

15.
Mitochondrial DNA (mtDNA) mutations have been described in almost all types of cancer. However, their exact role and timing of occurrence during tumor development and progression are still a matter of debate. A Vogelstein-like model of progression is well established for endometrial carcinoma (EC), however, mtDNA has been scarcely investigated in these tumors despite the fact that mitochondrial biogenesis increase has been shown to be a hallmark of type I EC. Here, we screened a panel of 23 type I EC tissues and matched typical hyperplasia for mutations in mtDNA and in four oncosupressors/oncogenes, namely PTEN, KRAS, CTNNB1 and TP53. Overall, mtDNA mutations were identified in 69% of cases, while mutational events in nuclear genes occurred in 56% of the cases, indicating that mtDNA mutations may precede the genetic instability of these genes canonically involved in progression from hyperplasia to tumor. Protein expression analysis revealed an increase in mitochondrial biogenesis and activation of oxidative stress response mechanisms in tumor tissues, but not in hyperplasia, in correlation with the occurrence of pathogenic mtDNA mutations. Our results point out an involvement of mtDNA mutations in EC progression and explain the increase in mitochondrial biogenesis of type I EC. Last, since mtDNA mutations occur after hyperplasia, their potential role in contributing to genetic instability may be envisioned.  相似文献   

16.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive multisystem disorder associated with depletion, multiple deletions and site-specific point mutations of mitochondrial DNA (mtDNA). MNGIE is caused by loss-of-function mutations in the gene encoding thymidine phosphorylase (TP; endothelial cell growth factor 1). Deficiency of TP leads to dramatically elevated levels of circulating thymidine and deoxyuridine. The alterations of pyrimidine nucleoside metabolism are hypothesized to cause imbalances of mitochondrial nucleotide pools that, in turn, may cause somatic alterations of mtDNA. We have now identified five major forms of mtDNA deletions in the skeletal muscle of MNGIE patients. While direct repeats and imperfectly homologous sequences appear to mediate the formation of mtDNA deletions, the nicotinamide adenine dinucleotide dehydrogenase 5 gene is a hot-spot for these rearrangements. A novel aspect of the mtDNA deletions in MNGIE is the presence of microdeletions at the imperfectly homologous breakpoints.  相似文献   

17.
《Mutation Research/DNAging》1992,275(3-6):157-167
This paper reviews the current state of knowledge of the contribution of mitochondrial DNA (mtDNA) mutations to the phenotype of aging. Its major focus is on the discovery of deletions of mtDNA which previously were thought to occur only in individuals with neuromuscular disease. One particular deletion (mtDNA4977) accumulates with age primarily in non-dividing cells such as muscle and brain of normal individuals. The level of the deletion rises with age by more than 1000 fold in heart and brain and to a lesser extent in other tissues. In the brain, different regions have substantially different levels of the deletion. High levels of accumulation of the deletion in tissues are correlated with high oxygen consumption. We speculate that oxidative damage to mtDNA may be ‘catastrophic’; mutations affecting mitochondrially encoded polypeptides involved in electron transport could increase free radical generation leading to more mtDNA damage.  相似文献   

18.
Autosomal-inherited progressive external ophthalmoplegia (PEO) is an adult-onset disease characterized by the accumulation of multiple mitochondrial DNA (mtDNA) deletions in post-mitotic tissues. Mutations in six different genes have been described to cause the autosomal dominant form of the disease, but only mutations in the DNA polymerase gamma gene are known to cause autosomal recessive PEO (arPEO), leaving the genetic background of arPEO mostly unknown. Here we used whole-exome sequencing and identified compound heterozygous mutations, leading to two amino acid alterations R225W and a novel T230A in thymidine kinase 2 (TK2) in arPEO patients. TK2 is an enzyme of the mitochondrial nucleotide salvage pathway and its loss-of-function mutations have previously been shown to underlie the early-infantile myopathic form of mtDNA depletion syndrome (MDS). Our TK2 activity measurements of patient fibroblasts and mutant recombinant proteins show that the combination of the identified arPEO variants, R225W and T230A, leads to a significant reduction in TK2 activity, consistent with the late-onset phenotype, whereas homozygosity for R225W, previously associated with MDS, leads to near-total loss of activity. Our finding identifies a new genetic cause of arPEO with multiple mtDNA deletions. Furthermore, MDS and multiple mtDNA deletion disorders are manifestations of the same pathogenic pathways affecting mtDNA replication and repair, indicating that MDS-associated genes should be studied when searching for genetic background of PEO disorders.  相似文献   

19.
Previous studies have suggested that some patients with large-scale mitochondrial DNA (mtDNA) deletions also presented a heteroplasmic 260 bp tandem duplication in the mtDNA D-loop region. Such duplications were observed not only in patients with mitochondrial pathology but also in aged subjects. However, the percentage of duplicated mtDNA did not exceed a few per cent of the total mtDNA, except in one example where it reached 30%. We report here another type of 200 bp duplication in the mtDNA D-loop region that, instead of being associated with a large-scale deletion, is correlated to the presence of a point mutation in the cytochrome b gene. The 200 bp duplication concerned up to 95% of the total mtDNA of some muscle mitochondria and was absent from the patient lymphocyte DNA. The percentages of the 200 bp duplication and that of the cytochrome b mutation were relatively close in whole muscle as well as in single muscle fibres, suggesting a correlation between the mutation and the duplication. This duplication could also be detected by PCR in two other patients with mitochondrial disorders but without known deletion or mtDNA mutation. These data suggest that the accumulation of these small duplications in the mtDNA D-loop could be indicative of the presence of other defects of the mtDNA which would damage the respiratory chain function. These deficiencies would induce the generation of small duplications in the D-loop.   相似文献   

20.
It is known that respiratory function deteriorates with age. Endogenous damage to DNA is thought to contribute to the aging process. The mitochondrial oxidative phosphorylation system, a bio-engine, consists of five complexes, and 13 subunits of those complexes are biosynthesized from information encoded in mitochondrial DNA. Mitochondrial DNA is shown to have a much higher mutation rate than nuclear DNA. We examined the diaphragms obtained at autopsy from 34 humans, 23 men and 11 women, ranging in age from 25 to 85 yr, for mitochondrial DNA deletions using the polymerase chain reaction method. Multiple mitochondrial DNA deletions were detected particularly among the elderly; the number of deletions in those over age 70 was significantly higher than in those under age 40. The occurrence of a 3.4-kbp deletion of mitochondrial DNA increased with age, i.e., 0% of those under age 30, 20.0% of those in their forties, 25.0% of those in their fifties, 28.6% of those in their sixties, 72.7% of those in their seventies, and in all of those over age 80. The mutation was based on the directly repeated sequence, 5'-TCACCCC-3', which exists in both the CO3 gene and the ND5 gene. Replication impairment occurred at that directly repeated sequence, which caused the elimination of a genome between the CO3 gene and the ND5 gene, and information for biosynthesis of four subunits in complex I (ND3, ND4L, ND4, and ND5), one in complex IV (CO3), and five transfer RNA genes was missing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号