首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cell-surface carbohydrate chains are known to contribute to cell migration, interactions, and proliferation, but their roles in skin wound healing have not been evaluated. We examined the biological roles of beta4-galactosylated carbohydrate chains in skin wound healing using mutant mice that lack beta-1,4-galactosyltransferase-I (beta4GalT-I), which is responsible for the biosynthesis of the type 2 chain in N-glycans and the core 2 branch in O-glycans. beta4GalT-I-deficient mice showed significantly delayed wound healing with reduced re-epithelialization, collagen synthesis, and angiogenesis, compared with control mice. Neutrophil and macrophage recruitment at wound sites was also impaired in these mice probably because of selectin-ligand deficiency. In accordance with the reduced leukocyte infiltration, the expression levels of macrophage-derived chemokines, transforming growth factor-beta1, and vascular endothelial growth factor were all reduced in beta4GalT-I(-/-) mice. These results demonstrate that beta4-galactosylated carbohydrate chains play a critical role in skin wound healing by mediating leukocyte infiltration and epidermal cell growth, which affects the production of chemokines and growth factors. This study introduces a suitable mouse model for investigating the molecular mechanisms of skin wound healing and is the first report showing that carbohydrate chains have a strong influence on skin wound healing.  相似文献   

2.
Contact dermatitis is the second most reported occupational injury associated with workers compensation. Inflammatory cytokines are closely involved with the development of dermatitis, and their modulation could exacerbate skin damage, thus contributing to increased irritancy. IL-6 is a pro-inflammatory cytokine paradoxically associated with both skin healing and inflammation. To determine what role this pleiotropic cytokine plays in chemically-induced irritant dermatitis, IL-6 deficient (KO), IL-6 over-expressing transgenic (TgIL6), and corresponding wild-type (WT) mice were exposed to acetone or the irritants JP-8 jet fuel or benzalkonium chloride (BKC) daily for 7 days. Histological analysis of exposed skin was performed, as was tissue mRNA and protein expression patterns of inflammatory cytokines via QPCR and multiplex ELISA. The results indicated that, following JP-8 exposure, IL-6KO mice had greatly increased skin IL-1β, TNFα, CCL2, CCL3, and CXCL1 mRNA and corresponding product protein expression when compared to that of samples from WT counterparts and acetone-exposed control mice. BKC treatment induced the expression of all cytokines examined as compared to acetone, with CCL2 significantly higher in skin from IL-6KO mice. Histological analysis showed that IL-6KO mice displayed significantly more inflammatory cell infiltration as compared to WT and TgIL6 mice in response to jet fuel. Analysis of mRNA for the M2 macrophage marker CD206 indicated a 4-fold decrease in skin of IL-6KO mice treated with either irritant as compared to WT. Taken together, these observations suggest that IL-6 acts in an anti-inflammatory manner during irritant dermatitis, and these effects are dependent on the chemical nature of the irritant.  相似文献   

3.
Obesity increases severity of acute pancreatitis and risk of pancreatic cancer. Pancreatitis and obesity are associated with elevated IL-6, a cytokine involved in inflammation and tumorigenesis. We studied the role of IL-6 in the response of lean and obese mice to pancreatitis induced by IL-12 + IL-18. Lean and diet-induced obese (DIO) WT and IL-6 KO mice and ob/ob mice pretreated with anti-IL-6 antibodies were evaluated at Days 1, 7, and 15 after induction of pancreatitis. Prolonged elevation of IL-6 in serum and visceral adipose tissue was observed in DIO versus lean WT mice, whereas circulating sIL-6R declined in DIO but not lean mice with pancreatitis. The severe inflammation and lethality of DIO mice were also observed in IL-6 KO mice. However, the delayed resolution of neutrophil infiltration; sustained production of CXCL1, CXCL2, and CCL2; prolonged activation of STAT-3; and induction of MMP-7 in the pancreas, as well as heightened induction of serum amylase A of DIO mice, were blunted significantly in DIO IL-6 KO mice. In DIO mice, production of OPN and TIMP-1 was increased for a prolonged period, and this was mediated by IL-6 in the liver but not the pancreas. Results obtained in IL-6 KO mice were confirmed in ob/ob mice pretreated with anti-IL-6 antibodies. In conclusion, IL-6 does not contribute to the increased severity of pancreatitis of obese mice but participates in delayed recovery from acute inflammation and may favor development of a protumorigenic environment through prolonged activation of STAT-3, induction of MMP-7, and sustained production of chemokines.  相似文献   

4.
We used IL-6 knock-out (KO) mice to evaluate a possible role for IL-6 in the pathogenesis of splanchnic artery occlusion shock (SAO). SAO shock was induced by clamping both the superior mesenteric artery and the celiac trunk, followed by release of the clamp. There was a marked increase in the peroxynitrite formation in the plasma of the SAO-shocked IL-6 wild-type (WT) mice after reperfusion. Immunohistochemical examination demonstrated a marked increase in the immunoreactivity to nitrotyrosine in the necrotic ileum in shocked IL-6 WT mice. SAO-shocked WT mice developed a significant increase of tissue myeloperoxidase (MPO) and malondialdehyde (MDA) activity and marked histological injury to the distal ileum. SAO shock was also associated with a significant mortality (0% survival). Reperfused ileum tissue sections from SAO-shocked WT mice showed positive staining for P-selectin. Little specific staining was observed in sham-WT mice. Staining of ileum tissue obtained from sham-operated WT mice with anti-ICAM-1 antibody showed weak but diffuse staining, demonstrating that ICAM-1 is constitutively expressed. However, after SAO shock the staining intensity increased substantially in the ileum section from WT mice. Intensity and degree of P-selectin and ICAM-1 were markedly reduced in tissue section from SAO-shocked IL-6 KO mice. SAO-shocked IL-6 KO mice also show significant reduction of neutrophil infiltration into the reperfused intestine, as evidenced by reduced MPO activity, improved histological status of the reperfused tissues, reduced peroxynitrite formation, reduced MDA levels, and improved survival. In vivo treatment with anti-IL-6 significantly prevents the inflammatory process. Our results clearly demonstrate that IL-6 plays an important role in ischemia and reperfusion injury and allows the hypothesis that inhibition of IL-6 may represent a novel and possible strategy. Part of this effect may be due to inhibition of the expression of adhesion molecules and subsequent reduction of neutrophil-mediated cellular injury.  相似文献   

5.
Wound healing in MIP-1alpha(-/-) and MCP-1(-/-) mice   总被引:3,自引:0,他引:3       下载免费PDF全文
A salient feature of normal wound healing is the development and resolution of an acute inflammatory response. Although much is known about the function of inflammatory cells within wounds, little is known about the chemotactic and activation signals that influence this response. As the CC chemokines macrophage inflammatory protein-1alpha (MIP-1alpha) and monocyte chemotactic protein-1 (MCP-1) are abundant in acute wounds, wound repair was examined in MIP-1alpha(-/-) and MCP-1(-/-) mice. Surprisingly, wound re-epithelialization, angiogenesis, and collagen synthesis in MIP-1alpha(-/-) mice was nearly identical to wild-type controls. In contrast, MCP-1(-/-) mice displayed significantly delayed wound re-epithelialization, with the greatest delay at day 3 after injury (28 +/- 5% versus 79 +/- 14% re-epithelialization, P < 0.005). Wound angiogenesis was also delayed in MCP-1(-/-) mice, with a 48% reduction in capillary density at day 5 after injury. Collagen synthesis was impeded as well, with the wounds of MCP-1(-/-) mice containing significantly less hydroxyproline than those of control mice (25 +/- 3 versus 50 +/- 8 microg/wound at day 5, P < 0.0001). No change in the number of wound macrophages was observed in MCP-1(-/-) mice, suggesting that monocyte recruitment into wounds is independent of this chemokine. The data suggest that MCP-1 plays a critical role in healing wounds, most likely by influencing the effector state of macrophages and other cell types.  相似文献   

6.
Skin wound healing is mediated by inflammatory cell infiltration that is highly regulated by various adhesion molecules. Mice lacking intercellular adhesion molecule-1 (ICAM-1) delayed skin wound healing and mice lacking both L-selectin and ICAM-1 (L-selectin/ICAM-1(-/-)) show more delayed wound healing. Deficiency of both endothelial selectins (E-selectin or P-selectin) also delays wound healing. However, the relative contribution and interaction of selectins and ICAM-1 to the wound healing remain unknown. To clarify them, repair of excisional wounds was examined in L-selectin/ICAM-1(-/-) mice, wild-type mice with both E- and P-selectin blockade, and L-selectin/ICAM-1(-/-) mice with both E- and P-selectin blockade. Wild-type mice with both E- and P-selectin blockade showed delayed wound healing that was comparable with that in L-selectin/ICAM-1(-/-) mice. Combined E- and P-selectin blockade in L-selectin/ICAM-1(-/-) mice resulted in more significant delay. Mice lacking or blocked for adhesion molecules also showed suppressed keratinocyte migration, angiogenesis, granulation tissue formation, leukocyte infiltration, and cytokine expression, including transforming growth factor-beta and interleukin-6. Application of basic fibroblast growth factor (bFGF) but not platelet-derived growth factor to the wounds significantly improved wound healing in L-selectin/ICAM-1(-/-) mice with both E- and P-selectin blockade. bFGF significantly increased the leukocyte infiltration and subsequent fibrogenic cytokine production, as well as keratinocyte migration, angiogenesis, and collagen synthesis despite the loss of four kinds of adhesion molecules. These results indicate that skin wound healing is regulated cooperatively by all selectins and ICAM-1 and may provide critical information for the therapy of skin wounds.  相似文献   

7.
Wound healing is a complex process involving the integrated actions of numerous cell types, soluble mediators, and ECM. Recently, a newly identified cell type, the fibrocyte, has been reported to contribute to wound healing and fibrotic conditions such as hypertrophic scarring. We previously established leukocyte-specific protein 1 (LSP1) as a marker for fibrocytes. LSP1 is an F-actin binding protein and substrate of p38 mitogen-activated protein kinase and protein kinase C, and has been reported to be important in leukocyte chemotaxis. We examine the biological roles of LSP1 in skin wound healing using Lsp1(-/-) null mice. These animals showed accelerated healing of full-thickness skin wounds, with increased re-epithelialization rates, collagen synthesis, and angiogenesis. Healing wounds in Lsp1(-/-) mice had higher densities of neutrophiles, macrophages, and fibrocytes. Along with increased leukocyte infiltration, levels of macrophage-derived chemokine expression, TGF-beta1, and VEGF were all up-regulated. These results demonstrate that the absence of LSP1 promotes healing of skin wounds. The primary mechanism seems to be an increase in leukocyte infiltration, leading to locally elevated synthesis and release of chemokines and growth factors. Further analysis of Lsp1(-/-) mice may suggest ways to improve wound healing and/or treat fibrotic conditions of skin and other tissue.  相似文献   

8.
9.
Migration inhibitory factor (MIF) responds to tissue damage and regulates inflammatory and immunological processes. To elucidate the function of MIF in cutaneous wound healing, we analyzed MIF knockout (KO) mice. After the excision of wounds from the dorsal skin of MIF KO and wild-type (WT) mice, healing was significantly delayed in MIF KO mice compared to WT mice. Lipopolysaccharide treatment significantly increased [(3)H]thymidine uptake in WT mouse fibroblasts compared to MIF KO mouse fibroblasts. Furthermore, there was a significant reduction in fibroblast and keratinocyte migration observed in MIF KO mice after 1-oleoyl-2-lysophosphatidic acid treatment. We subsequently examined whether MIF-impregnated gelatin slow-release microbeads could accelerate skin wound healing. Injection of more than 1.5 microg/500 microl of MIF-impregnated gelatin microbeads around a wound edge accelerated wound healing compared to a single MIF injection without the use of microbeads. MIF-impregnated gelatin microbeads also accelerated skin wound healing in C57BL/6 mice and diabetic db/db mice. Furthermore, incorporating MIF-impregnated gelatin microbeads into an artificial dermis implanted into MIF KO mice accelerated procollagen production and capillary formation. These findings suggest that MIF is crucial in accelerating cutaneous wound healing and that MIF-impregnated gelatin microbeads represent a promising treatment to facilitate skin wound healing.  相似文献   

10.
Impaired wound repair and delayed angiogenesis in aged mice   总被引:19,自引:0,他引:19  
Wound repair is a multistep process consisting of hemostasis, inflammatory cell infiltration, tissue regrowth, and remodeling. In aged individuals, this progression of events is altered, resulting in wounds that heal more slowly than wounds in the young. These studies were designed to examine the proliferative phase of repair in young and aged mice, with attention to the angiogenic process. Using a standardized excisional injury model, wound re-epithelialization, collagen accumulation, and angiogenesis were examined. Re-epithelialization and collagen synthesis were substantially delayed in aged mice as compared with young mice. Angiogenesis in wounds from aged mice was also delayed, with significantly more capillary growth in wounds from young mice than aged mice. In addition, wounds from aged mice contained significantly less of the angiogenic mediators fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF) than wounds from young animals (p < 0.05). Because macrophages are a rich source of angiogenic factors in wounds, macrophage production of VEGF was examined. Macrophages from aged mice produced significantly less VEGF than cells from young mice. To examine the in vivo endothelial cell responsiveness, a defined amount of rFGF-2 was suspended in Matrigel and placed subcutaneously in either young or aged mice. In response to FGF-2, capillary growth into Matrigel was significantly less in aged than young mice. The results suggest that a decline in angiogenic growth factor production, as well as a decline in endothelial responsiveness to specific factors, may account for the delayed wound angiogenesis in aged mice. These results also indicate that age-related alterations in macrophage function might partially account for the overall delay in the wound repair process.  相似文献   

11.
Skin wound healing is mediated by inflammatory cell infiltration of the wound site. Inducible costimulator (ICOS), expressed on activated T cells, and its ligand, ICOS ligand (ICOSL), expressed on antigen-presenting cells, have been considered a single receptor-ligand pair. Although the ICOS-ICOSL pathway participates in adaptive immunity, its roles in skin wound healing, which is mediated by innate immune responses, remain unknown. To clarify these roles, repair of excisional wounds was examined in ICOS(-/-) mice, ICOSL(-/-) mice, and ICOS(-/-)ICOSL(-/-) mice. Each mutant strain showed similar, dramatic delays in wound healing, especially at early times. Knockout mice showed suppressed keratinocyte migration, angiogenesis, and granulation tissue formation, and diminished T-cell, macrophage, and neutrophil infiltration. The loss of ICOS and/or ICOSL resulted in marked suppression of cytokine expression in wounds, especially the Th2 cytokines interleukin (IL)-4, IL-6, and IL-10. T-cell transfer experiments and T-cell depletion therapy further clarified the important roles of ICOS expressed on T cells and its interaction with ICOSL. Application of IL-6, but not IL-4, to the wounds significantly increased the onset of early wound healing in mutant mice. Thus, our results indicate that ICOS-ICOSL costimulatory signaling has critical roles during wound healing, most likely by inducing IL-6 production.  相似文献   

12.
PI3Kγ is central in signaling diverse arrays of cellular functions and inflammation. Pulmonary fibrosis is associated with pulmonary inflammation, angiogenesis, and deposition of collagen and is modeled by instillation of bleomycin. The role of PI3Kγ in mediating bleomycin-induced pulmonary inflammation and fibrosis in mice and potential mechanisms involved was investigated here. WT or PI3Kγ KO mice were instilled with bleomycin and leukocyte subtype influx, cytokine and chemokine levels, and angiogenesis and tissue fibrosis evaluated. The activation of lung-derived leukocytes and fibroblasts was evaluated in vitro. The relevance of PI3Kγ for endothelial cell function was evaluated in HUVECs. PI3Kγ KO mice had greater survival and weight recovery and less fibrosis than WT mice after bleomycin instillation. This was associated with decreased production of TGF-β(1) and CCL2 and increased production of IFN-γ and IL-10. There was reduced expression of collagen, fibronectin, α-SMA, and von Willebrand factor and decreased numbers and activation of leukocytes and phosphorylation of AKT and IκB-α. PI3Kγ KO mice had a reduced number and area of blood vessels in the lungs. In vitro, treatment of human endothelial cells with the PI3Kγ inhibitor AS605240 decreased proliferation, migration, and formation of capillary-like structures. AS605240 also decreased production of collagen by murine lung-derived fibroblasts. PI3Kγ deficiency confers protection against bleomycin-induced pulmonary injury, angiogenesis, and fibrosis through the modulation of leukocyte, fibroblast, and endothelial cell functions. Inhibitors of PI3Kγ may be beneficial for the treatment of pulmonary fibrosis.  相似文献   

13.
Interleukin-6 (IL-6) is known to be involved in the pathogenesis of various inflammatory diseases, but its role in bleomycin (BLM)-induced lung injury and subsequent fibrotic changes remains to be determined. We evaluated the role of IL-6 in the lung inflammatory changes induced by BLM using wild-type (WT) and IL-6-deficient (IL-6(-/-)) mice. The mice were treated intratracheally with 1 mg/kg BLM and killed 2, 7, or 21 days later. Lung Inflammation in the acute phase (Days 2 and 7) was assessed by differential cell counts in bronchoalveolar lavage (BAL) fluid and cytokine levels in the lung. Lung fibrotic changes were evaluated on Day 21 by histopathology and collagen assay. On Day 2, BLM administration induced significant increases in the numbers of total cells, macrophages, and neutrophils in BAL fluid, which were attenuated in IL-6(-/-) mice (P < 0.05). Lung pathology also showed inflammatory cell accumulation, which was attenuated in the IL-6(-/-) mice compared with WT mice. In WT mice, elevated levels of TGF-beta(1) and CCL3 were observed 2 and 7 days after BLM challenge, respectively. On Day 7, BLM-induced inflammatory cell accumulation did not differ between the genotypes. Lung pathology 21 days after BLM challenge revealed significant fibrotic changes with increased collagen content, which was attenuated in IL-6(-/-) mice. Although the TGF-beta(1) level in the lung did not differ between the genotypes on Day 21, CCL3 was significantly lower in IL-6(-/-) mice. These results indicate that IL-6 may play an important role in the pathogenesis of BLM-induced lung injury and subsequent fibrotic changes.  相似文献   

14.
15.
BACKGROUND: Airway inflammation and remodelling are characteristic features of chronic asthma. OBJECTIVE: To elucidate the role of interleukin (IL)-6 in airway responses to chronic antigen exposure. METHODS: We compared airway inflammation, subepithelial collagen deposition, cytokine mRNA expression, and airway responsiveness between IL-6-deficient and wild-type (WT) mice following sensitization and repeated exposure to ovalbumin (OVA) three times a week for 8 weeks. RESULTS: The repeated exposure to OVA induced infiltration of eosinophils, neutrophils, and lymphocytes into the airway, and caused thickening of the basement membrane and subepithelial fibrosis. IL-6-deficient mice exhibited more pronounced infiltration of these cells, a thinner basement membrane, and decreased subepithelial fibrosis, compared with WT mice. The repeated OVA exposure increased expression of IL-4, IL-13, eotaxin, monocyte chemoattractant protein-1 (MCP-1), and transforming growth factor-beta1 mRNA in WT mice. Among these factors, expression of IL-13 and MCP-1 mRNA was further enhanced in IL-6-deficient mice, compared with WT mice. However, both WT and IL-6-deficient mice exhibited similar levels of airway responsiveness to increasing doses of methacholine, even after repeated exposure to OVA. CONCLUSION: These results suggest that IL-6 has dual roles in the chronic phase of asthma: down-regulation of inflammatory cell infiltration and enhancement of airway remodelling.  相似文献   

16.
In vitro studies have suggested that targeting interleukin (IL)-1 and tumor necrosis factor (TNF) can be used to regulate intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and potentially treat kidney inflammation. We therefore evaluated ICAM-1 and VCAM-1 regulation in knockout (KO) mice deficient in both IL-1 receptor 1 (R1) and TNF-R1 during renal ischemia reperfusion injury. ICAM-1 and VCAM-1 mRNA expression was measured with specific murine probes and Northern blotting (n =4/group). Protein expression was measured using immunohistochemistry. Serum creatinine (SCr), tubular histology, and neutrophil infiltration into postischemic kidneys were also quantified. ICAM-1 and VCAM-1 mRNA expression increased in both wild-type (WT) and KO mice at 2, 6, and 24 h. Protein expression of ICAM-1 and VCAM-1 was also increased at 24 h postischemia. SCr levels and tubular necrosis scores were comparable in WT and KO mice at 24 and 48 h. Neutrophil migration in KO mice was decreased at 24 h but comparable to WT at 48 h. These data demonstrate that IL-1 and TNF are not essential for postischemic increases in ICAM-1 and VCAM-1.  相似文献   

17.
E-type prostaglandins have been reported to be proangiogenic in vivo. Thus, we examined prostaglandin receptor signaling relevant to wound-induced angiogenesis. Full-thickness skin wounds were created on the backs of mice, and angiogenesis in wound granulation tissues was estimated. Wound closure and re-epithelization in EP3 receptor knockout mice (EP3-/-) were significantly delayed compared with their wild-type (WT) mice, whereas those in EP1-/-, EP2-/-, and EP4-/- were not delayed. Wound-induced angiogenesis estimated with CD31 immunohistochemistry in EP3-/- mice was significantly inhibited compared with that in WT mice. Immunoreactive vascular endothelial growth factor (VEGF) in wound granulation tissues in EP3-/- mice was markedly less than that in WT mice. Wound closure in WT mice was delayed significantly by VEGF neutralizing antibody compared with control IgG. Wound-induced angiogenesis and wound closure were significantly suppressed in EP3-/- bone marrow transplantation mice compared with those in WT bone marrow transplantation mice. These were accompanied with the reductions in accumulation of VEGF-expressing cells in wound granulation tissues and in mobilization of VEGF receptor 1-expressing leukocytes in peripheral circulation. These results indicate that the recruitment of EP3-expressing cells to wound granulation tissues is critical for surgical wound healing and angiogenesis via up-regulation of VEGF.  相似文献   

18.
We assessed the role of plasminogen activator inhibitor-1 (PAI-1) and matrix metalloproteinase 9 (MMP9) in wound healing process and in the bone marrow mononuclear cells (BMMNC)-related effects on physiological and pathological wound healing. A full thickness excision wound was created by removal of the skin on the midback of irradiated and nonirradiated animals. Angiogenesis and re-epithelialization were markedly increased in PAI-1-/- mice compared to wild-type (WT) animals. We revealed high MMP activity in tissue of PAI-1-/- animals. Of interest, the wound healing process was reduced in PAI-1-/-:MMP9-/- animals compared to PAI-1-/- mice, suggesting a key role of MMP9 in beneficial effect of PAI-1 deficiency on wound closure. To unravel the role of PAI-1 in BMMNC relative effects, mice were treated with or without local injection of BMMNC isolated from WT, PAI-1-/-, and PAI-1-/-: MMP9-/- animals for 14 days (10(6) cells, n = 6 per group). In WT nonirradiated mice, transplantation of BMMNC isolated from PAI-1-/- animals enhanced wound formation when compared with WT BMMNC. BMMNC differentiation into cells with endothelial phenotype was enhanced by PAI-1 deficiency. These effects were abrogated in PAI-1-/-:MMP9-/- and MMP9-/- BMMNC. In addition, using chimeric mice, we demonstrated that PAI-1 deficiency environment increased the BMMNC-GFP recruitment to the wound site, whereas this effect was abrogated when using PAI-1-/-:MMP9-/- BMMNC. PAI-1 deficiency, at least through MMP9 upregulation, enhanced wound healing and BMMNC therapeutic potential in irradiated and nonirradiated animals.  相似文献   

19.
Tenascin-X (TNX) is an extracellular matrix glycoprotein whose absence in humans leads to a recessive form of Ehlers-Danlos Syndrome (EDS). TNX deficient patients have hypermobile joints and fragile skin, but unlike the classical type of EDS, no atrophic scars were observed. Anecdotal evidence suggested that wound healing in TNX deficient patients is abnormal, but no detailed study has been performed so far. To address the role of TNX in wound healing, we analyzed skin wound morphology and mechanical properties of scars in TNX knockout (KO) mice. Breaking strength of unwounded skin of KO mice is significantly lower (<50%) than that of wild-type (WT) mice. In the early stage of wound healing when TNX is hardly expressed in WT wounds (day 7), WT and KO skin are of similar strength. After 14 days, when TNX starts to be expressed at moderate levels in wounds of WT mice, the WT scars gain a further increase in breaking strength, whereas KO scars do not progress beyond the mechanical strength of uninjured KO skin. No obvious differences between KO and WT mice were noted in the rate of wound closure, or in expression of fibrillar collagens during wound healing. We conclude that TNX is unlikely to be involved in matrix deposition in the early phase of wound healing, but it is required in the later phase when remodeling and maturation of the matrix establishes and improves its biomechanical properties.  相似文献   

20.
Previous studies have suggested that interleukin-6 (IL-6) serves as both a marker and a mediator for the severity of sepsis. We tested whether interleukin 6 knockout (IL-6KO) mice were more susceptible to sepsis mortality induced by cecal ligation and puncture. IL-6KO and wild-type (WT) mice were subjected to increasing degrees of sepsis severity. Physiologic support was given with fluids and appropriate antibiotics. Plasma IL-6 levels were determined 6 h after the onset of sepsis, and a complete hematologic profile was performed on day 2. As expected, increasing sepsis severity resulted in greater and more rapid mortality. However, the mortality was nearly identical in the IL-6KO and WT mice. All WT septic mice had high plasma levels of IL-6 6 h after the onset of sepsis, while IL-6KO were near or below the lower limit of detection. Among the WT mice, mortality was significantly higher in mice with plasma IL-6 >3,000 pg/ml. Both IL-6KO and WT mice destined to die in the early stages of sepsis had substantial and nearly identical weight gain in the first 24 h. However, at later stages the WT mice had significantly greater weight loss than the KO mice. The KO mice failed to develop the characteristic hypothermia within the first 24 h of severe sepsis routinely observed in the WT mice. These data demonstrate that IL-6 serves as a marker of disease severity in sepsis and does modulate some physiologic responses, but complete lack of IL-6 does not does not alter mortality due to sepsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号