首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND & AIMS: Host genetic factors are likely to contribute to the variable course of hepatic fibrosis in response to chronic liver injury. Similarly, the fibrotic response differs among inbred mouse strains after challenge with CCl(4). Our aim was to identify unknown susceptibility loci for hepatic fibrosis in a cross between fibrosis-susceptible and -resistant inbred mice. METHODS: Seven inbred mouse strains were treated with CCl(4), and hepatic fibrosis was phenotypically characterized by histology, hepatic hydroxyproline levels, and serum surrogate markers. F(1) hybrids of susceptible BALB/cJ and resistant A/J inbred strains were intercrossed to obtain 358 F(2) progeny. Quantitative trait loci (QTL) that determine hepatic fibrosis were identified by genome-wide interval mapping and haplotype analysis. RESULTS: In this model, marked strain differences in fibrosis susceptibility exist, with BALB/c inbred mice being most susceptible. The hydroxyproline levels of F(1) mice resemble the resistant parental strains, indicating that fibrosis susceptibility is a recessive trait. QTL analysis identifies a susceptibility locus on chromosome 15 that significantly affects the stage of fibrosis and hydroxyproline levels. According to standard nomenclature, this locus is called Hfib1 (hepatic fibrogenic gene 1). Hfib1 is defined by genetic markers D15Mit26 and D15Mit122. A suggestive QTL on chromosome 2 colocalizes with the complement factor 5 gene, known to be mutated in the resistant strain A. CONCLUSIONS: The set of inbred strains provides a framework for systematic analysis of fibrogenic genes. QTL mapping is useful to identify genetic susceptibility loci for hepatic fibrosis that might harbor new molecular targets for antifibrotic drug design.  相似文献   

2.
3.
Polymorphisms of genes linked to iron metabolism may account for individual variability in hemochromatosis and iron status connected with liver and cardiovascular diseases, cancers, toxicity, and infection. Mouse strains exhibit marked differences in levels of non-heme iron, with C57BL/6J and SWR showing low and high levels, respectively. The genetic basis for this variability was examined using quantitative trait loci (QTL) analysis together with expression profiling and chromosomal positions of known iron-related genes. Non-heme iron levels in liver and spleen of C57BL/6J x SWR F2 mice were poorly correlated, indicating independent regulation. Highly significant (P < .01) polymorphic loci were found on chromosomes 2 and 16 for liver and on chromosomes 8 and 9 for spleen. With sex as a covariate, additional significant or suggestive (P < 0.1) QTL were detected on chromosomes 7, 8, 11, and 19 for liver and on chromosome 2 for spleen. A gene array showed no clear association between most loci and differential iron-related gene expression. The gene for transferrin and a transferrin-like gene map close to the QTL on chromosome 9. Transferrin saturation was significantly lower in C57BL/6J mice than in SWR mice, but there was no significant difference in the serum level of transferrin, hepatic expression, or functional change in cDNA sequence. beta2-Microglobulin, which, unlike other loci, was associated with C57BL/6J alleles, is a candidate for the chromosome 2 QTL for higher iron. In conclusion, the findings show the location of polymorphic genes that determine basal iron status in wild-type mice. Human equivalents may be pertinent in predisposition to hepatic and other disorders.  相似文献   

4.
Identifying genes that influence susceptibility to asthmarelated and atopy-related phenotypes has been challenging, owing to clinical heterogeneity and a complex underlying genetic architecture that includes both gene-gene and gene-environment interactions. In this article, we report the results of genome-wide linkage and association studies of eight asthma-associated quantitative traits in the Hutterites, a founder population of European descent. Our study revealed significant sex-specific genetic architecture for at least five of these traits, and identified 13 genome-wide significant quantitative trait loci (QTL) by linkage or association that are present in only one of the sexes (nine in males, four in females).  相似文献   

5.
OBJECTIVE: We documented susceptibility in Dahl S rats to coronary atherosclerosis upon the transgenic expression of human cholesteryl ester transfer protein (hCETP) producing severe combined hyperlipidemia, as detected in Tg[hCETP]53 (Tg53) Dahl S rats. In other genetic backgrounds (i.e. Dahl R, spontaneously hypertensive rat strains) transgene expression does not lead to severe combined hyperlipidemia. This study aimed to identify genetic loci that modify the effect of hCETP on hypercholesterolemia observed in different genetic contexts. METHODS: To identify quantitative trait loci (QTL) that affect hCETP-mediated hyperlipidemia in Tg53 Dahl S rats in contrast to Tg53 Dahl R rats we performed a genome-wide scan for QTL affecting plasma total cholesterol in an F2[Tg (R x S)]-intercross male population (n = 159) that are transgenic for the Tg[hCETP]53 transgene. Hybrids were genotyped with 121 informative polymorphic markers. RESULTS: We detected three novel hCETP-dependent QTL for hypercholesterolemia: one on chromosome 3 with suggestive linkage [logarithm of odds score derived from likelihood ratio statistic using a factor of 4.6 (LOD) 2.26]; one on chromosome 9 with significant linkage (LOD 4.15), and one on chromosome 11 with significant linkage (LOD 3.48) that have not been detected in other rat intercrosses. CONCLUSION: Three cholesteryl ester transfer protein (CETP)-interacting loci were identified in a Tg53 Dahl S rat intercross study affecting cholesterol metabolism. These results could partly explain the controversy regarding the atherogenic role of CETP in humans, suggesting the hypothesis that putative CETP interacting genes confound or play an important role in CETP-mediated pro-atherogenic susceptibility in humans. Overall, these observations reiterate the key role of epistasis in complex, multifactorial traits.  相似文献   

6.
This paper reports the results of a genome-wide search for quantitative trait loci (QTL) influencing immunological responses to infection with the gastro-intestinal nematode parasite Heligmosomoides polygyrus in an F2 population created by crossing the resistant SWR and the susceptible CBA inbred mouse strains. Following infections, intestinal granuloma score at post mortem, mucosal mast cell protease 1, and IgE and IgG1 titres were recorded. The susceptible CBA mice had significantly higher IgG1, but significantly lower IgE, mucosal mast cell protease 1 and granuloma scores than SWR mice. Significant QTL were mapped to chromosomes 4, 11, 13 and 17 for granuloma score; chromosomes 12 and 17 for IgE; chromosome 10, 17 and 18 for IgG1 and chromosomes 1, 9, 10, 11, 17 and 18 for mucosal mast cell protease 1. Chromosomes 10, 11, 17 and 18 had QTL affecting more than one trait, and these are most likely to represent single QTL with multiple effects rather than multiple QTL. Some of these QTL map to regions known to harbour genes responsible for the induction of immunological responses to intestinal worms.  相似文献   

7.
Several clinical and animal studies indicate that essential hypertension is inherited as a multifactorial trait with a significant genetic and environmental component. In the stroke-prone spontaneously hypertensive rat model, investigators have found evidence for linkage to blood pressure regulatory genes (quantitative trait loci) on rat chromosomes 2, 10, and X. In 1 human study of French and UK sib pairs, evidence for linkage has been reported to human chromosome 17q, the syntenic region of the rat chromosome 10 quantitative trait loci (QTL). Our study confirms this linkage (P=0.0005) and refines the location of the blood pressure QTL.  相似文献   

8.
Dystrophic cardiac calcinosis, an age-related cardiomyopathy that occurs among certain inbred strains of mice, involves myocardial injury, necrosis, and calcification. Using a complete linkage map approach and quantitative trait locus analysis, we sought to identify genetic loci determining dystrophic cardiac calcinosis in an F2 intercross of resistant C57BL/6J and susceptible C3H/HeJ inbred strains. We identified a single major locus, designated Dyscalc, located on proximal chromosome 7 in a region syntenic with human chromosomes 19q13 and 11p15. The statistical significance of Dyscalc (logarithm of odds score 14.6) was tested by analysis of permuted trait data. Analysis of BxH recombinant inbred strains confirmed the mapping position. The inheritance pattern indicated that this locus influences susceptibility of cells both to enter necrosis and to subsequently undergo calcification.  相似文献   

9.
In vertebrates, including humans, individuals harbor gut microbial communities whose species composition and relative proportions of dominant microbial groups are tremendously varied. Although external and stochastic factors clearly contribute to the individuality of the microbiota, the fundamental principles dictating how environmental factors and host genetic factors combine to shape this complex ecosystem are largely unknown and require systematic study. Here we examined factors that affect microbiota composition in a large (n = 645) mouse advanced intercross line originating from a cross between C57BL/6J and an ICR-derived outbred line (HR). Quantitative pyrosequencing of the microbiota defined a core measurable microbiota (CMM) of 64 conserved taxonomic groups that varied quantitatively across most animals in the population. Although some of this variation can be explained by litter and cohort effects, individual host genotype had a measurable contribution. Testing of the CMM abundances for cosegregation with 530 fully informative SNP markers identified 18 host quantitative trait loci (QTL) that show significant or suggestive genome-wide linkage with relative abundances of specific microbial taxa. These QTL affect microbiota composition in three ways; some loci control individual microbial species, some control groups of related taxa, and some have putative pleiotropic effects on groups of distantly related organisms. These data provide clear evidence for the importance of host genetic control in shaping individual microbiome diversity in mammals, a key step toward understanding the factors that govern the assemblages of gut microbiota associated with complex diseases.  相似文献   

10.
The C57BL/6, DBA/2, and recombinant inbred (RI) strains derived from them (B × D RIs) are the most frequently studied mouse strains with regard to genetic regulation of voluntary ethanol consumption (VEC). We have studied VEC in an alternate genetic model provided by the LS × SS RIs. These RI strains exhibit phenotypic extremes in VEC comparable to the C57BL/6 and DBA/2 mice and genotype-dependent sex differences in drinking behavior. A correlational analysis between various ethanol-related behaviors suggests genetic independence of VEC from high-dose neurosensitivity (sleep time), acute ethanol tolerance, hypothermia, and low-dose locomotor activity. A search for quantitative trait loci identified a number of putative quantitative trait loci (QTL), three of which are identical to those previously reported for 10% ethanol drinking in the B × D RIs. We also find a significant correlation between low-affinity neurotensin receptor densities (NTRJ in the frontal cortex and VEC, and more common QTL between these two phenotypes than expected by chance. This suggests a role for frontal cortex NTRL in regulating voluntary ethanol intake  相似文献   

11.
Tail tendon break time (TTBT), a measure of collagen cross-linking, shown to increase with age differs significantly among inbred strains of mice, indicating underlying genetic influences. This study was aimed to identify quantitative trait loci (QTLs) associated with tail tendon break time at three ages (200, 500, and 800 days of age) for 23 BxD recombinant inbred strains of mice and B6D2F(2) mice derived from C57BL/6J and DBA/2J strains. Heritability estimates were calculated, and QTL analyses were conducted using interval-mapping methods. Mean tail tendon break time values were higher in males and increased nonlinearly with age. Eight total QTLs were nominated in the B6D2F(2) mice at the three measured ages, with the QTL at 800 days confirmed in the recombinant inbred strains. Allelic effect modeling for the identified QTLs suggests differences in gene action between sexes. Candidate genes in the QTL regions include collagen genes and an advanced glycation end-product receptor. The QTLs identified demonstrate influence at some but not all ages.  相似文献   

12.
OBJECTIVE: Proteoglycan-induced arthritis (PGIA) is a murine model of rheumatoid arthritis (RA), both in terms of its pathology and its genetics. PGIA can only be induced in susceptible murine strains and their F2 progeny. As with RA, the genetics are complex, containing both major histocompatibility complex (MHC)-related and non-MHC-related components. Our goal was to identify the underlying non-MHC-related loci that confer PGIA susceptibility. METHODS: We used 106 polymorphic markers to perform simple sequence-length polymorphism analysis on F2 hybrids of susceptible (BALB/c) and nonsusceptible (DBA/2) strains of mice. Because both strains of mice share the H2d haplotype, this cross permits identification and analysis of non-MHC-related genes. RESULTS: We identified a total of 12 separate quantitative trait loci (QTL) associated with PGIA, which we have named Pgia1 through Pgia12. QTLs associated with the inflammatory symptoms of PGIA were linked to chromosomes 7, 9, 15 (2 separate loci), 16, and 19. QTLs associated with autoantibody production were identified on chromosomes 1, 2, 7, 8, 10, 11, 16, and 18. QTLs on chromosomes 7 and 16 showed linkage to both inflammation and autoantibody production, suggesting a shared regulatory component in arthritis induction. The first inflammation QTL on chromosome 15 and the autoantibody QTL on chromosome 7 originate from the DBA/2 background, which indicates that as in RA, susceptibility genes can originate from heterogeneous backgrounds. CONCLUSION: These data demonstrate the complexity of PGIA, where QTLs may be involved in multiple traits or even originate from a genetic background previously determined to be resistant.  相似文献   

13.
Therapy-related acute myelogenous leukemia (t-AML) is an important late adverse effect of alkylator chemotherapy. Susceptibility to t-AML has a genetic component, yet specific genetic variants that influence susceptibility are poorly understood. We analyzed an F(2) intercross (n = 282 mice) between mouse strains resistant or susceptible to t-AML induced by the alkylator ethyl-N-nitrosourea (ENU) to identify genes that regulate t-AML susceptibility. Each mouse carried the hCG-PML/RARA transgene, a well-characterized initiator of myeloid leukemia. In the absence of ENU treatment, transgenic F(2) mice developed leukemia with higher incidence (79.4% vs 12.5%) and at earlier time points (108 days vs 234 days) than mice in the resistant background. ENU treatment of F(2) mice further increased incidence (90.4%) and shortened median survival (171 vs 254 days). We genotyped F(2) mice at 384 informative single nucleotide polymorphisms across the genome and performed quantitative trait locus (QTL) analysis. Thirteen QTLs significantly associated with leukemia-free survival, spleen weight, or white blood cell count were identified on 8 chromosomes. These results suggest that susceptibility to ENU-induced leukemia in mice is a complex trait governed by genes at multiple loci. Improved understanding of genetic risk factors should lead to tailored treatment regimens that reduce risk for patients predisposed to t-AML.  相似文献   

14.
Mohan S  Masinde G  Li X  Baylink DJ 《Endocrinology》2003,144(8):3491-3496
Recent studies using twins and inbred strains of mice reveal evidence for genetic mechanisms contributing to variation in circulating levels of IGF-I, IGF-II, and IGF binding protein (IGFBP)-3. To examine the hypothesis that serum IGFBP-5 levels have a strong heritable component, we intercrossed two inbred strains of mice, MRL/MpJ and SJL, which exhibit 79% difference in serum IGFBP-5 levels (554 +/- 68 vs. 309 +/- 51 ng/ml respectively, P < 0.001). A genome-wide scan was carried out using 137 polymorphic markers in 633 F2 female mice. Serum IGFBP-5 levels in the F2 progeny showed a normal distribution with an estimated heritability of 74%. Whole genome-wide scans for cosegregation of genetic marker data with high or low serum IGFBP-5 levels revealed six different quantitative trait loci (QTL) in chromosomes 1, 9 (two), 10, and 11 (two), which together explained 24% of F2 variance. Chromosome 11 QTL exhibited the highest LOD score (7.5). Based on the past findings that IGFBP-5 is an important bone formation stimulator, we predicted IGFBP-5 to contribute to bone mineral density variation in F2 mice. Accordingly, we found two of the six IGFBP-5 QTLs (Chrs 1 and 11) identified for serum IGFBP-5 phenotype also showed significant association with total body bone mineral density phenotype (measured by dual energy x-ray absorptiometry) in the F2 mice.  相似文献   

15.
Atrial septal defect (ASD) is a common congenital heart disease (CHD) occurring in 5 to 7 per 10,000 live births. Mutations in 5 human genes (NKX2.5, TBX5, GATA4, MYHC, ACTC) are known to cause dominant ASD, but these account for a minority of cases. Human and mouse data suggest that ASD exists in an anatomical continuum with milder septal variants patent foramen ovale (PFO) and atrial septal aneurysm, strongly associated with ischemic stroke and migraine. We have previously shown in inbred mice that the incidence of PFO strongly correlates with length of the interatrial septum primum, defining a quantitative trait underlying PFO risk. To better understand genetic causation of atrial septal abnormalities, we mapped quantitative trait loci (QTL) influencing septal morphology using mouse strains (QSi5 and 129T2/SvEms) maximally informative for PFO incidence and 3 quantitative septal anatomical traits including septum primum length. [QSi5x129T2/SvEms]F2 intercross animals (n=1437) were phenotyped and a whole genome scan performed at an average 17-cM interval. Statistical methodology scoring PFO as a binary phenotype was developed as a confirmatory mapping technique. We mapped 7 significant and 6 suggestive QTL modifying quantitative phenotypes, with 4 supported by binary analysis. Quantitative traits, although strongly associated with PFO (P<0.001), correlated poorly with each other and in all but 1 case QTL for different traits were nonoverlapping. Thus, multiple anatomical processes under separate genetic control contribute to risk of PFO. Our findings demonstrate the feasibility of modeling the genetic basis of common CHD using animal genetic and genomic technologies.  相似文献   

16.
Continuous phenotypic variation in life span results from segregating genetic variation at multiple loci, the environmental sensitivity of expression of these loci, and the history of environmental variation experienced by the organism throughout its life. We have mapped quantitative trait loci (QTL) that produce variation in the life span of mated Drosophila melanogaster using a panel of recombinant inbred lines (RIL) that were backcrossed to the parental strains from which they were derived. Five QTL were identified that influence mated life span, three were male-specific, one was female-specific, and one affected life span in both sexes. The additive allelic effects and dominance of QTL were highly sex-specific. One pair of QTL also exhibited significant epistatic effects on life span. We summarize all of the QTL mapping data for Drosophila life span, and outline future prospects for disentangling the genetic and environmental influences on this trait.  相似文献   

17.
Henckaerts E  Langer JC  Snoeck HW 《Blood》2004,104(2):374-379
The number of bone marrow hematopoietic stem and progenitor cells as defined by the lineage(-), Sca1(++), c-kit(+) (LSK) phenotype and their proliferative capacity in vitro are subject to quantitative genetic variation, and several quantitative trait loci (QTL) have been identified in young mice. Because some traits affecting hematopoiesis also change with age in a mouse strain-dependent fashion, we performed quantitative trait analysis in aged BXD recombinant inbred (RI) mice for the number and frequency of LSK cells, and for their proliferative capacity in vitro. Several novel QTL were identified. The number and frequency of LSK cells in old mice correlated inversely with lifespan. Furthermore, 4 of 7 lifespan QTL overlap with QTL contributing to the number, frequency, or proliferative capacity of LSK cells in young or old mice. Taken together, these data establish a close genetic, and perhaps functional, link between genetic variation in lifespan and characteristics of stem and progenitor cells.  相似文献   

18.
Postgonadectomy adrenocortical tumorigenesis is a strain-specific phenomenon in inbred mice, assumed to be caused by elevated LH secretion and subsequent ectopic LH receptor (LHR) overexpression in adrenal gland. However, the molecular mechanisms of this cascade of events remain unknown. In this study, we took advantage of the mouse strain dependency of the phenotype to unravel its genetic basis. Our results present the first genome-wide screening related to this pathology in two independent F2 and backcross populations generated between the neoplastic DBA/2J and the nonsusceptible C57BL/6J strains. Surprisingly, the postgonadectomy elevation of serum LH was followed by similar up-regulation of adrenal LHR expression in both parental strains and their crosses, irrespective of their tumor status, indicating that it is not the immediate cause of the tumorigenesis. Linkage analysis revealed one major significant locus for the tumorigenesis on chromosome 8, modulated by epistasis with another quantitative trait locus on chromosome 18. Weight gain, a secondary phenotype after gonadectomy, showed a significant but separate quantitative trait locus on chromosome 7. Altogether, postgonadectomy adrenocortical tumorigenesis in DBA/2J mice is a dominant trait that is not a direct consequence of adrenal LHR expression but is driven by a complex genetic architecture. Analysis of candidate genes in the tumorigenesis linkage region showed that Sfrp1 (secreted frizzled-related protein 1), a tumor suppressor gene, is differentially expressed in the neoplastic areas. These findings may have relevance to the human pathogenesis of macronodular adrenal hyperplasia and adrenocortical tumors in postmenopausal women and why some of them develop obesity.  相似文献   

19.
OBJECTIVE: To describe genetic loci that differentiate blood pressures in two genetically hypertensive strains, the Dahl salt-sensitive (S) rat and the Albino Surgery (AS) rat. METHODS: A genome scan was performed using 222 genetic markers on an F2 population derived from two hypertensive strains, S and AS. The F2 rats were fed 8% NaCl for 5 weeks before blood pressure measurements were taken. RESULTS: Three blood pressure quantitative trait loci (QTL) were detected, one on each of rat chromosomes (RNO) 2, 4 and 8. The QTL on RNO4, unlike those on RNO2 and RNO8, was not detected in any of the previous seven linkage analyses reported with the S rat as one of the parental strains. Interactions between genetic loci throughout the genome were sought and interactions involving RNO4 with RNO8 and RNO4 with RNO14 were found. Including the new RNO4 locus identified in the present study, 16 distinct regions of the S rat genome have been demonstrated, by linkage analyses, to harbour loci that control blood pressure in the S rat. CONCLUSIONS: Increased blood pressure in two hypertensive strains, S and AS, is differentially regulated by genetic factors present on RNOs 2, 4 and 8. Therefore, of the 16 distinct genomic regions known to harbour blood pressure QTL in S rats, 13 are likely to contain blood pressure alleles that function similarly in the S rat and the AS rat, whereas three regions differentiate the two strains.  相似文献   

20.
Inbred strains of laboratory mice exhibit marked differences in survival time following infection with Trypanosoma congolense, the principal cause of trypanosomiasis in African livestock. The difference in survival time between the relatively resistant C57BL/6 J and more susceptible BALB/c inbred strains has been attributed to three quantitative trait loci (QTLs), Tir1, Tir2 and Tir3. In order to determine whether there was a parent-of-origin effect on this trait, four backcross populations derived from the C57BL/6 J and BALB/c parental strains were bred and inoculated with T. congolense. The two populations with F1 fathers and BALB/c mothers had a significantly greater overall survival rate than the two populations with BALB/c fathers and F1 mothers. This pattern of inheritance suggested the involvement of imprinted genes. Genotyping with markers at the three QTLs controlling susceptibility revealed that the difference in survival time was consistent with genomic imprinting of the QTL of largest effect, Tir1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号