首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
目的:以PPE-GFP转基因小鼠为研究工具,观察绿色荧光蛋白(GFP)阳性的脑啡肽(ENK)能神经元与1型囊泡膜谷氨酸转运体(VGLUT1)在脊髓的分布及共存情况。方法:利用免疫组织化学和原位杂交双标染色的方法。结果:GFP标记的ENK能神经元主要位于脊髓背角,在I-ⅡI层最为密集,背角深层内侧部及中央管周围呈中等密度分布,散在分布于前角。VGLUT1 mRNA阳性细胞广泛分布在脊髓各层。GFP/VGLUT1双标细胞主要分布在脊髓背角,I-ⅡI层双标细胞占GFP阳性细胞的22.95±1.10%,占VGLUT1阳性细胞的27.91±2.42%;IV-VI层中21.49±4.99%GFP阳性细胞表达VGLUT1,10.35±2.81%VGLUT1阳性细胞表达GFP;前角双标细胞占VGLUT1阳性细胞的1.07±0.37%,占GFP阳性细胞的32.08±13.15%。结论:双标结果表明脊髓内部分ENK能神经元表达1型囊泡膜谷氨酸转运体,推测ENK能神经元可能通过调控谷氨酸的释放发挥感觉信息调控作用。  相似文献   

3.
本文用免疫细胞化学ABC法,研究了新西兰白兔18、22、25、26、28和30d胎龄视网膜内P物质免疫反应(SPIR)神经元的发生。在胎龄18和22d兔视网膜未见SPIR细胞体和纤维。在胎龄25d视网膜的节细胞层最先出现SPIR神经元,胞体浅染呈卵圆形,突起不明显,在神经纤维层偶见串珠状SPIR纤维,其平均细胞密度为104.6个细胞/mm ̄2。到胎龄26和28d时,在节细胞层的SPIR神经元的胞体渐深染,可见个别SPIR神经元发出粗而短的突起伸向内网层,平均细胞密度分别为387和779.5个细胞/mm2。到胎龄30d时SPIR神经元开始出现于内核层的内排细胞,但数量很少,胞体呈卵圆形,发出细突起伸入内同层,在节细胞层的SPIR神经元的突起分支增加。此时SPIR神经元平均细胞密度为357.4个细胞/mm ̄2。  相似文献   

4.
We investigated patterns of cell death in the turtle retina that could potentially be associated with the innervation of the optic tectum, and looked for mechanisms of retinal development that might be common to reptilian and homeotherm vertebrates. We used retinas of turtle embryos between the 23rd day of incubation (E23) (before the first optic fibres reach the optic tectum) and hatching (when all the optic fibres have established synaptic connections). Dying retinal neurons were identified in paraffin sections by the TUNEL technique, which specifically labels fragmented DNA. Apoptotic cells were found in the ganglion cell layer (GCL), the inner nuclear layer (INL), and the outer nuclear layer (ONL). Cell death in the GCL was intense between E29 and E47, and had disappeared by the day of hatching. In the INL, dead and dying cells were most abundant between E31 and E34, and progressively disappeared. The temporal pattern in the ONL was similar to the INL although the density was very low. In all the nuclear layers cell death spread from the dorso-temporal area of the central retina to the periphery. Additional dorsal to ventral and temporal to nasal gradients were distinguishable in a quantitative TUNEL analysis. The patterns of cell death observed in the developing turtle retina were thus similar to those found in birds and mammals. This process could be under the control of differentiation gradients in all the vertebrate classes.  相似文献   

5.
兔视网膜中P物质样免疫反应神经元的发育   总被引:2,自引:0,他引:2  
本实验用免疫细胞化学ABC法,研究了成年、新生和生后兔视网膜中P物质(SP)样免疫反应神经元的定位和发育。结果表明,成年兔视网膜SP样免疫反应细胞胞体位于内核层和节细胞层,胞突分布在内网层的第1、3、5亚层,偶见于视神经纤维层。细胞密度以视纹最高,从视纹向背腹视网膜边缘区密度渐变小。在新生兔视网膜已有SP阳性胞体和胞突出现,胞体主要位于节细胞层,突起在内网层第5亚层,但未形成连续网层,在第1亚层很少,第3亚层未见SP阳性突起。SP阳性细胞密度从新生到生后第4天增加,生后第6天到第12天细胞密度渐下降。生后第12天SP阳性胞体主要位于内核层。生后第20天,SP阳性细胞的形态、密度与分布已接近成年水平。上述结果提示,在兔视网膜中SP样免疫反应胞体和突起在生前已出现,生后继续发育,到生后20天后其形态发育已接近成熟。  相似文献   

6.
目的:以PPE-GFP转基因小鼠为研究工具,观察绿色荧光蛋白(GFP)阳性的脑啡肽(ENK)能神经元与钙结合蛋白D28K(CB)、钙视网膜蛋白(CR)和小白蛋白(PV)等钙结合蛋白(CaBPs)成员在视网膜的分布及共存情况。方法:利用免疫组织化学和免疫荧光双标染色的方法。结果:GFP阳性的ENK能细胞主要分布在视网膜内核层内缘,少量分布在节细胞层。所有的GFP阳性细胞均与神经元标志物NSE共存,但不与星形胶质细胞标志物GFAP共存。GFP与CB、CR和PV均有部分共存,其中GFP/CB共存神经元占GFP阳性细胞的8.65%,占CB阳性细胞的5.84%;GFP/CR共存神经元占GFP阳性细胞的18.18%,占CR阳性细胞的14.28%,且共存细胞仅见于内核层;GFP/PV共存细胞占GFP阳性细胞的68.75%,占PV阳性细胞的91.67%,共存细胞主要位于内核层,少量见于节细胞层。结论:ENK能神经元在视网膜内具有板层特异性的分布特点和与钙结合蛋白成员有不同的共存模式,上述结果为深入研究小鼠视网膜ENK能神经元的功能意义提供了形态学依据。  相似文献   

7.
GABAc受体ρ1亚单位mRNA在大鼠视网膜和移植视网膜的定位   总被引:3,自引:0,他引:3  
应用原位杂交组织化学技术及放射自显影技术 ,通过同位素 [35 S] -d ATP标记寡聚核苷酸探针 ,研究了 GABAc受体ρ1亚单位 m RNA在大鼠视网膜和移植视网膜的定位。实验结果发现 :ρ1亚单位 m RNA在大鼠视网膜和移植视网膜的分布相似 ,它们都分布在内核层中部和外侧部 (即近外网层侧 ) ,胞体呈椭圆形或卵圆形。正常大鼠视网膜 ρ1亚单位 m RNA杂交阳性细胞最先出现于生后第 12 d;移植视网膜出现于术后第 18d(即相当于正常视网膜生后第 10 d)。杂交阳性细胞的形态和位置提示 :表达 GABAc受体ρ1亚单位 m RNA的细胞可能是视网膜双极细胞。这为揭示视网膜信息调控提供了重要依据  相似文献   

8.
The superior colliculus (SC) is a layered structure in the midbrain and is particularly rich in gamma-aminobutyric acid (GABA). The present investigation aimed to determine whether the development of GABAergic neurons in the SC is common to that of the neocortex in which they are produced in a distinct area called the ganglionic eminence and are transported by tangential migration. A green fluorescent protein (GFP) knock-in mouse was used in which a GFP gene was introduced into the gene for glutamic acid decarboxylase (GAD) 67 and all GABAergic neurons were fluorescent. At embryonic day (E) 11-14, GFP-positive cells increased strikingly. They were spindle-shaped with processes at both poles and oriented radially between the ventricular and pial surface, together with other GFP-negative cells. After the cutting of the embryonic SC, GFP-positive cells accumulated on one side of the injury as expected from their radial but not tangential migration. In the living slice preparations GFP-positive cells migrated radially during the observation. These results indicate that tangential migration of GABAergic neurons as observed in the neocortex is not applicable and that radial migration from the underlying ventricular zone is predominant in the SC. At E12-13, bundles of commissural GFP-positive fibers which appeared to originate outside the SC were distributed at the superficial layer. These superficial fibers were no longer observed at the later stages.  相似文献   

9.
Summary The expression of the synapsin I gene was studied during postnatal development of the rat retina at the mRNA and protein levels. In situ hybridization histochemistry showed that synapsin I mRNA was expressed already in nerve cells in the ganglion cell layer of the neonatal retina, while it appeared in neurons of the inner nuclear layer from postnatal day 4 onward. Maximal expression of synapsin I mRNA was observed at P12 in ganglion cells and in neurons of the inner nuclear layer followed by moderate expression in the adult. At the protein level a shift of synapsin I appearance was observed from cytoplasmic to terminal localization during retinal development by immunohistochemistry. In early stages (P4 and P8), synapsin I was seen in neurons of the ganglion cell layer and in neurons of the developing inner nuclear layer as well as in the developing inner plexiform layer. In the developing outer plexiform layer synapsin I was localized only in horizontal cells and in their processes. Its early appearance at P4 indicated the early maturation of this cell type. A shift and strong increase of labelling to the plexiform layers at P12 indicated the localization of synapsin I in synaptic terminals. The inner plexiform layer exhibited a characteristic stratified pattern. Photoreceptor cells never exhibited synapsin I mRNA or synapsin I protein throughout development.Abbreviations GCL ganglion cell layer - INB inner neuroblast layer - INL inner nuclear layer - IPL inner plexiform layer - ONB outer neuroblast layer - ONL outer nuclear layer - OPL outer plexiform layer  相似文献   

10.
The doublecortin (DCX) protein is associated with microtubules, and is essential for neuronal migration, differentiation, and plasticity. In mammals, it is expressed in developing neurons and new immature neuroblasts in the adult brain, but not generally in mature neurons. In the retina, doublecortin is detectable as early as embryonic day 15 (E15), is highly expressed between E18 and E20, and is poorly expressed postnatally. In this study, we investigated immunohistochemically the expression and cellular localization of doublecortin in the adult rat retina. Doublecortin was expressed in the outer plexiform layer (OPL), and in cells in the outer border of the inner nuclear layer (INL). No other layers were labeled by anti-doublecortin antibodies. In double-labeling experiments, doublecortin expression co-localized with the expression of the marker for horizontal cells, calbindin D. By contrast, the marker for immature neuroblasts, polysialylated neural cell-adhesion molecule, was not expressed in horizontal cells. These results suggest that either horizontal cells have the capacity to continuously remodel their neurites or doublecortin has a different function in horizontal cells from the control of neuronal plasticity that it is known to modulate other neurites. In addition, doublecortin might be an alternative molecular marker for horizontal cells in the adult rat retina.  相似文献   

11.
Summary Cellular retinol-, retinaldehyde- and retinoic acid-binding proteins were localized in rat retina during pre- and postnatal development by indirect immunofluorescence. Cryostat tissue sections were prepared daily from embryonic day 11 until the day of birth (E11–22) and from postnatal days 1–32 (P1–32). Cellular retinaldehyde- and retinol-binding proteins were first detected in retinal pigment epithelium on E13 and E18, respectively, and in Müller cells at P1 and P15. Parallel studies showed that in adult retina cellular retinoic acid-binding protein is present in a subpopulation of GABAergic amacrine cells. During retinal differentiation, cellular retinoic acid-binding protein was first detected at E18 in cells sclerad to the developing inner plexiform layer, suggesting that this binding protein is expressed in amacrine cells very early during differentiation. During early ocular morphogenesis, cellular retinoic acid-binding protein was present in mesenchymal cells enveloping the eye (E12–15), in the neuroblastic layer of the retina (E13–15), in the nerve fibre layer (E14–15), and the developing optic nerve (E15). Our results suggest that retinoic acid, the natural ligand of cellular retinoic acid-binding protein, may be involved in neuronal differentiation in the inner retina. The studies further support a role for cellular retinoic acid-binding protein in mediating the effects of retinoic acid on developing neural crest cells and raise new questions about the role of cellular retinaldehyde-binding protein in the visual cycle and during development.  相似文献   

12.
We have generated a transgenic zebrafish line [Tg(Th:GFP)] that expresses green fluorescence proteins (GFP) driven by rat tyrosine hydroxylase (TH) promoter. In zebrafish, the transgene was expressed as early as 16 hr postfertilization (hpf). The first transgene expression was detected in the midbrain. Within a few hours of development, the expression spread to the forebrain and hindbrain. In the retina, the first transgene expression was detected at approximately 40 hpf, at which time a single GFP-positive cell was seen in the ventral-nasal patch of the retina. In late development, GFP spread across the inner retina. GFP was found in retinal cells that expressed TH or phenylethanolamine N-methyl-transferase (PNMT), the first and last enzymes for synthesis of catecholamine, respectively. This suggests that the transgene is expressed in catecholaminergic neurons. Of interest, GFP was also detected in some retinal cells that release gamma-aminobutyric acid. These latter data suggest that the transgene may also be expressed in noncatecholaminergic cells.  相似文献   

13.
Sarthy V  Hoshi H  Mills S  Dudley VJ 《Neuroscience》2007,144(3):1087-1093
Sensory information in the retina is transferred from rod and cone photoreceptors to higher visual centers via numerous parallel circuits that sample the photoreceptor mosaic independently. Each circuit consists of a unique combination of ganglion cell, bipolar and amacrine cell types. The morphology and physiological responses of many amacrine cells have been characterized. However, the synaptic connections and retinal circuits in which they participate are only rarely understood. A major problem that has prevented fuller characterization of retinal circuitry is the need for specific cellular markers for the more than 50 inner retinal cell types. One potential strategy for labeling cells is to use transgenic expression of a reporter gene in a specific cell type. In a recent study of cluster of differentiation 44 (CD44)-enhanced green fluorescent protein (EGFP) transgenic mice, we observed that the green fluorescent protein (GFP) was expressed in a population of amacrine and ganglion cells in the inner nuclear layer (INL) and the GCL. To characterize the morphology of the GFP-labeled cells, whole mount preparations of the retina were used for targeted iontophoretic injections of Lucifer Yellow and Neurobiotin. Furthermore, immunocytochemistry was used to characterize the antigenic properties of the cells. We found that many GFP-expressing cells were GABAergic and also expressed calretinin. In addition to the somatic staining, there was a strong GFP(+)-band located about 50-60% depth in the inner plexiform layer (IPL). Double labeling with an antibody to choline acetyltransferase (ChAT) revealed that the GFP-band was located at strata 3 inner retina. The best-labeled GFP-expressing cell type in the INL was a wide-field amacrine cell that ramified in stratum 3. The GFP-expressing cells in the GCL resemble the type B1, or possibly A2 ganglion cells. The CD44-EGFP mice should provide a valuable resource for electrophysiological and connectivity studies of amacrine cells in the mouse retina.  相似文献   

14.
The dendritic morphology and retinal distribution of substance P(SP)-immunoreactive neurons was determined in two Australian lizard species Pogona vitticeps and Varanus gouldii, by using immunohistochemistry on retinal wholemounts and sectioned materials. In both species, two classes of SP-immunoreactive neurons were described in the inner nuclear layer (INL) and classified as amacrine cells (types A and B). Type A amacrine cells had large somata and wide-field, bistratified dendrites branching in sublaminas 1 and 5 of the inner plexiform layer (IPL). Their morphology and retinal distribution differed between the two species. Type B amacrine cells in both species had small somata and small-field dendritic branching. A population of SP-immunoreactive neurons with classical ganglion cell morphology were identified in the ganglion cell layer (GCL). Immunostained ganglion cells occurred in larger numbers of Varanus gouldii than in Pogona vitticeps. In both species type B SP cells were the most numerous and were estimated to be about 60,000-70,000. They were distributed non-uniformly with a high density band across the horizontal meridian of the retina, from where the density decreased towards the dorsal and ventral retinal margins. In both species type A amacrine cells occurred in small numbers distributed sparsely in the peripheral retina. The faint immunostaining of SP-immunoreactive neurons in the GCL, did not allow us to reliably determine their numbers and retinal distribution. The functional significance of SP-immunoreactive amacrine and ganglion cells in the lizard retina remains to be determined.  相似文献   

15.
16.
Stellate and basket cells in the molecular layer (ML) of the cerebellar cortex proliferate within the white matter (WH) during development. Developmental neuronal death has been documented on granule cells but has not been demonstrated on other GABAergic neurons. We investigated the migration and the cell death of stellate/basket cells further in glutamic acid decarboxylase 67/green fluorescent protein (GFP) knock-in mouse in which every GABAergic neuron was identified by its GFP fluorescence. Analyses were made in the first three postnatal weeks. In the WM, GFP-positive cells were abundant on postnatal day (P) 5-15 but scarce in P21. Stellate/basket cells increased in number in the ML until P15, corresponding to the growth of the ML. Administration of 5-bromo-2'deoxyuridine (BrdU) at P2-8 labeled many cells in the WM within 1h. After BrdU administration at P5, many BrdU-labeled GFP-positive cells were observed in the WM and the internal granular layer at P7, and in the ML at P9. These results support the proliferation of stellate/basket cells in the WM and their migration to the ML. Apoptosis of GABAergic interneurons was demonstrated in the ML and WM during the first two weeks. Their apoptotic loss will contribute to the adjustment of neuron number or elimination of any improper populations.  相似文献   

17.
Somatostatinergic neurones of the developing human and cat retinae   总被引:1,自引:0,他引:1  
We have examined somatostatin-immunoreactive (S-IR) neurones in developing retinae of the human and cat. At 14 and 16 weeks' gestation (G14 and G16) in the human, S-IR cells were only found close to the putative fovea centralis, but by 18 weeks' gestation (G18), they were located in all retinal regions. By adulthood, the majority of S-IR cells were restricted to inferior retina. In the developing cat retina, two classes of S-IR cells were recognized. S1-IR cells were similar in morphology and distribution to adult cells: they had small round somata which were only found in inferior retina and gave rise to beaded processes which traversed the inner plexiform layer (IPL) and nerve fibre layer (NFL). S2-IR cells had larger somata located in the ganglion cell layer (GCL) and the label was compartmentalized within their cytoplasm. Most S2-IR cells had lost immunoreactivity by P (postnatal day) 25 and may have been alpha-ganglion cells transiently expressing somatostatin in association with their retention of plasticity into postnatal life.  相似文献   

18.
Using in situ hybridization, we investigated the expression of ciliary neurotrophic factor receptor ((CNTFRalpha) mRNA in the rat retina rendered ischemic by elevation of the intraocular pressure (IOP). The IOP was increased to 120 mmHg and maintained for 60 min. The rats were sacrificed on the day of reperfusion (DRP) 1, 3, 7, 14, and 28. In the normal retina, the signal for CNTFRalpha mRNA was present in retinal cells in the inner nuclear layer (INL) and in the ganglion cell layer (GCL). On DRP 1, numerous cells in the INL and GCL showed a CNTFRalpha mRNA signal. From DRP 3 onwards, CNTFRalpha mRNA appeared in photoreceptor cells located in the outer part of the outer nuclear layer. The signal in these cells increased up to DRP 14 and then decreased at DRP 28. Our findings suggest that cells expressing CNTFRalpha mRNA may resist the degenerative processes induced by ischemic insult in the rat retina.  相似文献   

19.
We investigated the patterns of degenerative changes of indoleamine-accumulating cells (IACs) induced by 5,7-dihydroxytryptamine (5,7-DHT, 100 microg), and the glial reaction to the neurodegenerative changes of IACs in the cat retina by using light-and electron-microscopy. The neurons accumulating 5,7-DHT in the cat retina were a few ganglion cells and displaced amacrine cells located in the ganglion cell layer (GCL), and some amacrine cells in the inner nuclear layer (INL). The cell density (per unit area, 1 mm2) of the 5,7-DHT accumulating cells in the GCL and INL was 910 and 134 cells, respectively. Most 5,7-DHT accumulating cells showed dark degeneration characterized by widening of the cellular organelles at early stage, and by darkening of the cytoplasm at a late stage. In addition, amacrine cells, showing a typical filamentous degeneration, were observed in a few cases. The degenerated neurons were phagocytosed by microglial cells and astrocytes. The immunoreactivity for glial fibrillary acidic protein (GFAP) in Muller cells was increased at early stage, but thereafter abruptly decreased. In a few cases, severe degenerative changes were observed in Miller cells. These results indicate that 5,7-DHT induces severe dark degeneration of IACs, and most degenerated cells could be eliminated by microglial cells and astrocytes in the cat retina.  相似文献   

20.
Intravitreal injection of N-methyl-D-aspartate (NMDA) produced a substantial damage to the adult rat retina that was largely restricted to inner retinal layers, including the ganglion cell layer (GCL), inner nuclear layer (INL), inner, and outer plexiform layers. This retinal damage was significantly reduced by a systemic injection of a low dose of MK-801 (0.5 mg/kg), a potent NMDA-receptor antagonist. This neuroprotection was dose dependent and was most effective when the antagonist was given 1 h before NMDA insult. An intraperitoneal injection of 0.5 mg/kg MK-801 provided a virtually complete protection to the retina to the NMDA-induced toxicity, as indicated quantitatively by the number of DiI-filled retinal ganglion cells, the number of cells in the GCL and INL that undergo DNA fragmentation, and the edematous changes in retinal thickness. A post-lesion administration of MK-801 was still able to provide an effective neuroprotective effect to the retina, but this protection was lost when MK-801 was given 4 h after NMDA exposure. The current results indicate a therapeutic potential of systemic application of MK-801 in protecting the adult rat retina from neurologic disorders related to excessive activation of NMDA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号