首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the spatiotemporal activation pattern, produced by one visual stimulus, across cerebral cortical regions in awake monkeys. Laminar profiles of postsynaptic potentials and action potentials were indexed with current source density (CSD) and multiunit activity profiles respectively. Locally, we found contrasting activation profiles in dorsal and ventral stream areas. The former, like V1 and V2, exhibit a 'feedforward' profile, with excitation beginning at the depth of Lamina 4, followed by activation of the extragranular laminae. The latter often displayed a multilaminar/columnar profile, with initial responses distributed across the laminae and reflecting modulation rather than excitation; CSD components were accompanied by either no changes or by suppression of action potentials. System-wide, response latencies indicated a large dorsal/ventral stream latency advantage, which generalizes across a wide range of methods. This predicts a specific temporal ordering of dorsal and ventral stream components of visual analysis, as well as specific patterns of dorsal- ventral stream interaction. Our findings support a hierarchical model of cortical organization that combines serial and parallel elements. Critical in such a model is the recognition that processing within a location typically entails multiple temporal components or 'waves' of activity, driven by input conveyed over heterogeneous pathways from the retina.   相似文献   

2.
Of all areas studied in the accompanying study, attention effects were most consistent and well resolved in V4. In this study, to define some of the anatomical circuits and neural processes underlying the influence of attention, we examined the laminar distribution and physiology of attention effects in V4 and in two lower areas, V1 and V2. Laminar event-related potential (ERP), current source density (CSD) and multiunit activity (MUA) profiles allowed identification of processes occurring in the local ensembles, as well as their sequence and laminar distribution. These methods also permitted us to analyze the brain processes reflected in attention-sensitive components of the surface ERP. As outlined in the previous study, the first robust modulation by attention occurred in V4 during the 100-300 ms poststimulus interval. This is the time frame of the net refractoriness which follows the net local excitatory response to luminance increment. Over this interval, attention reduced CSD amplitudes and increased action potential firing rates, findings consistent with disinhibition as a mechanism for attention in V4. Similar effects were observed during the 100-300 ms time frame in V2. In V4, attention had no effect on the initial excitatory response at the depth of lamina 4, but it did produce large modulations in supragranular and deep laminae, origins of both feedforward and feedback projections. Attentional modulation in V2 was later than in V4 and concentrated in extragranular laminae, with no modulation of the initial layer 4 response. Attentional modulation in V1 was smaller and still later than that in V2 and was focused in the supragranular laminae. In this paradigm, attention did not modulate either the response in lateral geniculate nucleus (LGN) or the initial excitation in lamina 4C of V1. The timing of effects across areas and the laminar distribution of effects within areas indicate that attention effects are mediated by feedback projections. Moreover, our findings suggest that attention may increase the perceptual salience of stimuli by reducing stimulus-evoked refractoriness and/or inhibition in cortical ensembles. Finally, attentional modulation of transmembrane current flow in V4 produced a sustained negative deflection in the laminar ERP profile, that was manifested in the ERP over the occipital surface. This posits a mechanism for the 'selection negativity', a scalp ERP effect noted under similar experimental conditions in human subjects.  相似文献   

3.
We used positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) in human subjects to investigate whether the ventral and dorsal visual stream cooperate when active judgements about color have to be made. Color was used as the attribute, because it is processed primarily in the ventral stream. The centrally positioned stimuli were equiluminant shades of brown. The successive color discrimination task was contrasted to a dimming detection task, in which retinal input was identical but with double the number of motor responses. The stimulus presentation rate was parametrically varied and a constant performance level was obtained for all conditions. The visual activation sites were identified by retinotopic mapping and cortical flattening. In addition, one psychophysical and two fMRI experiments were performed to control for differences in visuospatial attention and motor output. Successive color discrimination involved early visual areas, including V1 and VP and the ventral color-responsive region, as well as anterior and middle dorsal intraparietal sulcus, dorsal premotor cortex and pre-SMA. Cortical regions involved in dimming detection and motor output included area V3A, hMT/V5+, lateral occipital sulcus, posterior dorsal intraparietal sulcus, primary motor cortex and SMA. These experiments demonstrated that even with color as the attribute, successive discrimination, in which a decision process has to link visual signals to motor responses, involves both ventral and dorsal visual stream areas.  相似文献   

4.
This receptorarchitectonic study of the human visual cortex investigated interareal differences in mean receptor concentrations and laminar distribution patterns of 16 neurotransmitter receptors in the dorsal and ventral parts of areas V1, V2, V3 as well as in adjoining areas V4 (ventrally) and V3A (dorsally). Both the functional hierarchy of these areas and a distinction between dorsal and ventral visual cortices were reflected by significant receptorarchitectonic differences. The observation that dorso-ventral differences existed in all extrastriate areas (including V2) is particularly important for the discussion about the relationship between dorsal and ventral V3 as it indicates that a receptorarchitectonic distinction between the ventral and dorsal visual cortices is present in but not specific to V3. This molecular specificity is mirrored by previously reported differences in retinal microstructure and functional differences as revealed in behavioral experiments demonstrating differential advantages for stimulus processing in the upper and lower visual fields. We argue that these anatomical and functional differences may be regarded as the result of an evolutionary optimization adapting to the processing of the most relevant stimuli occurring in the upper and lower visual fields.  相似文献   

5.
Parallel visual pathways in the primate brain known as the dorsal and ventral streams receive retinal inputs mainly through the magnocellular (M) and parvocellular (P) layers of the lateral geniculate nucleus. Inputs from these layers terminate within distinct parts of layer 4C of V1 (visual area 1). Due to the complexity of M- and P-derived neural connectivity in V1 and higher visual areas, the contributions of M and P inputs to the dorsal and ventral streams remain unclear. Employing retrograde transsynaptic transport of rabies virus, we analyzed the architecture of bottom-up pathways toward ventral stream area V4 (visual area 4) and dorsal stream area MT (middle temporal area). We found that V4 receives both M and P inputs "trisynaptically" from layer 4C via layer 2/3 of V1, whereas MT receives M-dominant input "disynaptically" from layer 4C via layer 4B of V1. V4 also receives disynaptic input from the dorsal stream portion of V2 (visual area 2) (i.e., cytochrome oxidase-stained thick stripes). Moreover, both M and P inputs reach V4 trisynaptically and MT disynaptically through "short-cut" pathways that bypass layer 4C of V1. The differential patterns of multisynaptic geniculo-cortical pathways to V4 and MT imply distinct modes of information processing in the dorsal and ventral streams.  相似文献   

6.
Directing attention to a behaviorally relevant visual stimulus can overcome the distracting effects of other nearby stimuli. Correspondingly, physiological studies indicate that attention serves to filter distracting stimuli from receptive fields (RFs) in several extrastriate areas. Moreover, a recent study demonstrated that lesions of extrastriate areas V4 and TEO produce impairments in attentional filtering. A critical remaining question concerns why lesions of ventral stream areas cause attentional filtering impairments. To address this question, we tested the effects of restricted area V4 and TEO lesions on both behavioral performance and the responses of downstream neurons in area TE. The lesions impaired behavioral discrimination thresholds and altered neuronal selectivity for target stimuli in the presence of distracters. With attention to the target, but in the absence of V4 and/or TEO inputs, TE neurons responded as though attentional inputs could no longer be used to filter distracters from their RFs. This presumably occurred because top-down attentional signals were no longer able to filter distracters from the RFs of the cells that provide TE with major input. Consistent with this interpretation, increasing the spatial separation between targets and distracters, such that they no longer fell within a typical V4 RF dimension, restored both behavioral performance and neuronal selectivity in the portion of TE RFs affected by the V4 lesion.  相似文献   

7.
A central topic of controversy in the search for cortical mechanisms underlying perceptual awareness concerns the fundamental specialization of the visual system into a dorsal "vision-for-action/Where" stream and a ventral "vision-for-perception/What" stream. Specifically, it has been debated whether suppression of visual perception leads to differential reduction in brain activity in the 2 streams--with the dorsal stream remaining largely unaffected and the ventral stream showing a significant reduction in activity. Here, we examined this issue using the recently introduced method of continuous flash suppression (CFS), which offers a particularly sensitive measure of the link between perception and brain activity. Subjects had to detect, during CFS, images of manipulable man-made objects (tools). Our results show that despite their substantial difference in connectivity and neuroanatomical specialization, both ventral and dorsal stream areas revealed a similarly tight link to perceptual awareness, that is, strong functional magnetic resonance imaging-blood oxygenation level-dependent activity for visible tools but a significant reduction of activity in the invisible condition. Importantly, this result was found when the masks were kept identical in the visible and invisible conditions. Our data lend support to the notion that neuronal activity and perceptual awareness are tightly linked across human high-order visual cortex.  相似文献   

8.
Affectively arousing visual stimuli have been suggested to automatically attract attentional resources in order to optimize sensory processing. The present study crosses the factors of spatial selective attention and affective content, and examines the relationship between instructed (spatial) and automatic attention to affective stimuli. In addition to response times and error rate, electroencephalographic data from 129 electrodes were recorded during a covert spatial attention task. This task required silent counting of random-dot targets embedded in a 10 Hz flicker of colored pictures presented to both hemifields. Steady-state visual evoked potentials (ssVEPs) were obtained to determine amplitude and phase of electrocortical responses to pictures. An increase of ssVEP amplitude was observed as an additive function of spatial attention and emotional content. Statistical parametric mapping of this effect indicated occipito-temporal and parietal cortex activation contralateral to the attended visual hemifield in ssVEP amplitude modulation. This difference was most pronounced during selection of the left visual hemifield, at right temporal electrodes. In line with this finding, phase information revealed accelerated processing of aversive arousing, compared to affectively neutral pictures. The data suggest that affective stimulus properties modulate the spatiotemporal process along the ventral stream, encompassing amplitude amplification and timing changes of posterior and temporal cortex.  相似文献   

9.
We measured the timing, areal distribution, and laminar profile of fast, wavelength-insensitive and slower, wavelength-sensitive responses in V1 and extrastriate areas, using laminar current-source density analysis in awake macaque monkeys. There were 3 main findings. 1) We confirmed previously reported significant ventral-dorsal stream latency lags at the level of V4 (V4 mean = 38.7 ms vs. middle temporal mean = 26.9 ms) and inferotemporal cortex (IT mean = 43.4 ms vs. dorsal bank of the superior temporal sulcus mean = 33.9 ms). 2) We found that wavelength-sensitive inputs in areas V1, V4, and IT lagged the wavelength-insensitive responses by significant margins; this lag increased over successive levels of the system. 3) We found that laminar activation profiles in V4 and IT were inconsistent with "feedforward" input through the ascending ventral cortical pathway; the likely alternative input routes include both lateral inputs from the dorsal stream and direct inputs from nonspecific thalamic neurons. These findings support a "Framing" Model of ventral stream visual processing in which rapidly conducted inputs, mediated by one or more accessory pathways, modulate the processing of more slowly conducted feedforward inputs.  相似文献   

10.
Recordings of event-related potentials (ERPs) were combined with structural and functional magnetic resonance imaging (fMRI) to study the spatio-temporal patterns of cortical activity that underlie visual-spatial attention. Small checkerboard stimuli were flashed in random order to the four quadrants of the visual field at a rapid rate while subjects attended to stimuli in one quadrant at a time. Attended stimuli elicited enhanced ERP components in the latency range 80-200 ms that were co-localized with fMRI activations in multiple extrastriate cortical regions. The earliest ERP component (C1 at 50-90 ms) was unaffected by attention and was localized by dipole modeling to calcarine cortex. A longer latency deflection in the 150-225 ms range that was accounted for by this same calcarine source, however, did show consistent modulation with attention. This late attention effect, like the C1, inverted in polarity for upper versus lower field stimuli, consistent with a neural generator in primary visual cortex (area V1). These results provide support to current hypotheses that spatial attention in humans is associated with delayed feedback to area V1 from higher extrastriate areas that may have the function of improving the salience of stimuli at attended locations.  相似文献   

11.
The connections of the middle temporal area (MT) were investigated in the marmoset, one of the smallest primates. Reflecting the predictions of studies that modeled cortical allometric growth and development, we found that in adult marmosets MT is connected to a more extensive network of cortical areas than in larger primates, including consistent connections with retrosplenial, cingulate, and parahippocampal areas and more widespread connections with temporal, frontal, and parietal areas. Quantitative analyses reveal that MT receives the majority of its afferents from other motion-sensitive areas in the temporal lobe and from the occipitoparietal transition areas, each of these regions containing approximately 30% of the projecting cells. Projections from the primary visual area (V1) and the second visual area (V2) account for approximately 20% of projecting neurons, whereas "ventral stream" and higher-order association areas form quantitatively minor projections. A relationship exists between the percentage of supragranular layer neurons forming the projections from different areas and their putative hierarchical rank. However, this relationship is clearer for projections from ventral stream areas than it is for projections from dorsal stream or frontal areas. These results provide the first quantitative data on the connections of MT and extend current understanding of the relationship between cortical anatomy and function in evolution.  相似文献   

12.
We used positron emission tomography (PET) to investigate the neural correlates of selective attention in humans. We examined the effects of attending to one side of space versus another (spatial selection) and to one sensory modality versus another (intermodal selection) during bilateral, bimodal stimulation of vision and touch. Attention toward one side resulted in greater activity in several contralateral areas. In somatosensory cortex, these spatial attentional modulations were found only when touch was relevant. In the intraparietal sulcus, spatial attentional effects were multimodal, independent of the modality attended. In occipital areas, spatial modulations were also found during both visual and tactile attention, indicating that tactile attention can affect activity in visual cortex; but occipital areas also showed more activity overall during visual attention. This suggests that while spatial attention can exert multimodal influences on visual areas, these still maintain their specificity for the visual modality. Additionally, irrespective of the attended side, attending to vision activated posterior parietal and superior premotor cortices, while attending to touch activated the parietal operculi. We conclude that attentional selection operates at multiple levels, with attention to locations and attention to modalities showing distinct effects. These jointly contribute to boost processing of stimuli at the attended location in the relevant modality.  相似文献   

13.
Schizophrenia is associated with perceptual and cognitive dysfunction including impairments in visual attention. These impairments may be related to deficits in early stages of sensory/perceptual processing, particularly within the magnocellular/dorsal visual pathway. In the present study, subjects viewed high and low spatial frequency (SF) gratings designed to test functioning of the parvocellular/magnocellular pathways, respectively. Schizophrenia patients and healthy controls attended to either the low SF (magnocellularly biased) or high SF (parvocellularly biased) gratings. Functional magnetic resonance imaging (fMRI) and recordings of event-related potentials (ERPs) were carried out during task performance. Patients were impaired at detecting low-frequency targets. ERP amplitudes to low-frequency gratings were diminished, both for the early sensory-evoked components and for the attend minus unattend difference component (the selection negativity), which is regarded as a neural index of feature-selective attention. Similarly, fMRI revealed that activity in extrastriate visual cortex was reduced in patients during attention to low, but not high, SF. In contrast, activity in frontal and parietal areas, previously implicated in the control of attention, did not differ between patients and controls. These findings suggest that impaired sensory processing of magnocellularly biased stimuli lead to impairments in the effective processing of attended stimuli, even when the attention control systems themselves are intact.  相似文献   

14.
Area V4 in Cebus monkey: extent and visuotopic organization   总被引:2,自引:2,他引:0  
We used electrophysiological mapping and myeloarchitectural criteria in order to define the location, extent and visual topography of the fourth visual area (V4) in anesthetized and paralyzed Cebus monkey. Based on these criteria, the borders of V4 with surrounding areas were defined both on the dorsal and ventral cortical surfaces. In addition, to better visualize the visuotopic organization and to evaluate its regularity, we constructed bidimensional maps and projected the recording sites onto them. Area V4 has an almost complete representation of the binocular visual field with the lower visual field represented dorsally (V4d) and the upper field ventrally (V4v). We found this representation to be more extensive than those previously described. The representation of the central portion of the visual field is largely expanded in comparison with that of the periphery. This emphasis in central vision could be related with the involvement of V4 in the ventral stream of visual information processing. Receptive field size increases with increasing eccentricity, while cortical magnification factor decreases. The cortical magnification factor measured along isopolar lines is, on average, 1.5-2.0 times greater than that measured along the isoeccentric lines, suggesting the existence of a small anisotropy in central and peripheral V4.   相似文献   

15.
In primates, a split of the horizontal meridian (HM) representation at the V2 rostral border divides this area into dorsal (V2d) and ventral (V2v) halves (representing lower and upper visual quadrants, respectively), causing retinotopically neighboring loci across the HM to be distant within V2. How is perceptual continuity maintained across this discontinuous HM representation? Injections of neuroanatomical tracers in marmoset V2d demonstrated that cells near the V2d rostral border can maintain retinotopic continuity within their classical and extra-classical receptive field (RF), by making both local and long-range intra- and interareal connections with ventral cortex representing the upper visual quadrant. V2d neurons located <0.9-1.3 mm from the V2d rostral border, whose RFs presumably do not cross the HM, make nonretinotopic horizontal connections with V2v neurons in the supra- and infragranular layers. V2d neurons located <0.6-0.9 mm from the border, whose RFs presumably cross the HM, in addition make retinotopic local connections with V2v neurons in layer 4. V2d neurons also make interareal connections with upper visual field regions of extrastriate cortex, but not of MT or MTc outside the foveal representation. Labeled connections in ventral cortex appear to represent the "missing" portion of the connectional fields in V2d across the HM. We conclude that connections between dorsal and ventral cortex can create visual field continuity within a second-order discontinuous visual topography.  相似文献   

16.
Evidence is accumulating that patients with schizophrenia exhibit relatively severe deficits in early visual sensory processing within the dorsal stream, while processing within the ventral stream appears to be relatively more intact. Here, illusory contour (IC) processing was investigated in a cohort of schizophrenia patients and age-matched healthy controls using high-density visual evoked potentials (VEPs), spatiotemporal topographic analyses and the Local Auto-Regressive Average distributed linear inverse source estimation. IC processing was assessed because it is now known to be an excellent metric of early processing within regions of the ventral visual stream. Results in the present study show that IC processing (106-194 ms) is spared in patients with schizophrenia, providing strong evidence that early ventral stream processing is essentially normal. This is so despite equally strong evidence that early dorsal stream processing is severely impaired in this population, as indexed by a robust decrement in amplitude of the P1 component in patients and a large topographic difference between groups for this component (54-104 ms). Source analysis confirmed that the flow of activity into the dorsal stream was substantially decreased in patients. As such, these results suggest that some aspects of early ventral processing are not entirely reliant on intact inputs from the dorsal stream. Lastly, we show that later phases of visual processing (240-400 ms) also rely on the activity of different brain networks in controls and patients, with the latter recruiting strong frontal activity perhaps as compensation for impaired ventral stream processing during this period. We interpret the present findings in the context of a two-stage processing model. Under this model, it is suggested that the second stage of ventral stream processing is dependent on the fidelity of inputs from the dorsal visual stream and that impairment of this critical modulatory input may underlie the failure of 'higher-level' ventral stream processes in this population.  相似文献   

17.
Attention increases the gain of visual neurons, which improves visual performance. How attention is controlled, however, remains unknown. Clear correlations between attention and saccade planning indicate that the control of attention is mediated through mechanisms housed in the oculomotor network. Here, we used event-related functional magnetic resonance imaging to compare overt and covert attention shifts. Subjects covertly or overtly shifted attention based on an endogenous cue and maintained attention throughout a long and variable delay. To insure continued attention, subjects counted when the attended target dimmed at near-threshold contrast levels. Overt and covert tasks used identical stimuli and required identical motor responses. Additionally, a staircase procedure that adjusted the target-dimming contrast separately for covert and overt trials equated the difficulty between conditions and across subjects. We found that the same regions along the precentral and intraparietal sulci were active during shifts of covert and overt attention. We also found sustained activation in the hemisphere contralateral to the attended visual field. We conclude that maps of prioritized locations are represented in areas classically associated with oculomotor control. The readout of these spatial maps by posterior visual areas directs spatial attention just as the readout by downstream saccade generators directs saccades.  相似文献   

18.
Large-scale visuomotor integration in the cerebral cortex   总被引:2,自引:0,他引:2  
Efficient visuomotor behavior depends on integrated processing by the visual and motor systems of the cerebral cortex. Yet, many previous cortical neurophysiology studies have examined the visual and motor modalities in isolation, largely ignoring questions of large-scale cross-modal integration. To address this issue, we analyzed event-related local field potentials simultaneously recorded from multiple visual, motor, and executive cortical sites in monkeys performing a visuomotor pattern discrimination task. The timing and cortical location of four aspects of event-related activities were examined: stimulus-evoked activation onset, stimulus-specific processing, stimulus category-specific processing, and response-specific processing. Activations appeared earliest in striate cortex and rapidly thereafter in other visual areas. Stimulus-specific processing began early in most visual cortical areas, some at activation onset. Early onset latencies were also observed in motor, premotor, and prefrontal areas, some as early as in striate cortex, but these early-activating frontal sites did not show early stimulus-specific processing. Response-specific processing began around 150 ms poststimulus in widespread cortical areas, suggesting that perceptual decision formation and response selection arose through concurrent processes of visual, motor, and executive areas. The occurrence of stimulus-specific and stimulus category-specific differences after the onset of response-specific processing suggests that sensory and motor stages of visuomotor processing overlapped in time.  相似文献   

19.
In flattened human visual cortex, we defined the topographic homologue of macaque dorsal V4 (the 'V4d topologue'), based on neighborhood relations among visual areas (i.e. anterior to V3A, posterior to MT+, and superior to ventral V4). Retinotopic functional magnetic resonance imaging (fMRI) data suggest that two visual areas ('LOC' and 'LOP') are included within this V4d topologue. Except for an overall bias for either central or peripheral stimuli (respectively), the retinotopy within LOC and LOP was crude or nonexistent. Thus the retinotopy in the human V4d topologue differed from previous reports in macaque V4d. Unlike some previous reports in macaque V4d, the human V4d topologue was not significantly color-selective. However, the V4d topologue did respond selectively to kinetic motion boundaries, consistent with previous human fMRI reports. Because striking differences were found between the retinotopy and functional properties of the human topologues of 'V4v' and 'V4d', it is unlikely that these two cortical regions are subdivisions of a singular human area 'V4'.  相似文献   

20.
Cortical connections of the macaque anterior intraparietal (AIP) area   总被引:1,自引:0,他引:1  
We traced the cortical connections of the anterior intraparietal (AIP) area, which is known to play a crucial role in visuomotor transformations for grasping. AIP displayed major connections with 1) areas of the inferior parietal lobule convexity, the rostral part of the lateral intraparietal area and the SII region; 2) ventral visual stream areas of the lower bank of the superior temporal sulcus and the middle temporal gyrus; and 3) the premotor area F5 and prefrontal areas 46 and 12. Additional connections were observed with the caudal intraparietal area and the ventral part of the frontal eye field. This study suggests that visuomotor transformations for object-oriented actions, processed in AIP, rely not only on dorsal visual stream information related to the object's physical properties but also on ventral visual stream information related to object identity. The identification of direct anatomical connections with the inferotemporal cortex suggests that AIP also has a unique role in linking the parietofrontal network of areas involved in sensorimotor transformations for grasping with areas involved in object recognition. Thus, AIP could represent a crucial node in a cortical circuit in which hand-related sensory and motor signals gain access to representations of object identity for tactile object recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号