首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Brain blood volume changes in the rat in response to 5-HT(1A) agonist and antagonist administration were measured using susceptibility contrast enhanced magnetic resonance imaging (MRI). Administration of the 5-HT(1A) agonist 8-OH-DPAT resulted in decreases in fractional brain blood volumes. Administration of the 5-HT(1A) antagonist WAY-100635 following a dose of 8-OH-DPAT resulted in increases in fractional blood volumes greatest in hippocampus and cortex and smallest in thalamus and caudate-putamen. The magnitude of the regional increases in blood volumes paralleled the distribution of 5-HT(1A) receptors in the rat brain. Administration of WAY-100635 alone resulted in decreases in cortical blood volume and increases in cerebellar blood volume.  相似文献   

2.
The present study demonstrates the involvement of serotonin (5-HT) receptors of the 5-HT1A type in immunoinhibitory effect of 5-HTergic system of the brain. A selective agonist of 5-HT1A receptors 8-OH-DPAT (1 mg/kg) induces the immunosuppression, whereas 5-HT1A blockade with WAY-100635 (1 mg/kg) resulted in immunostimulation. It is also shown that immunomodulating effects of the drugs were dependent on psychoemotional status of animals acquired aggressive or submissive behavior under social conflict conditions. Activation of 5-HT1A receptors produced a decrease of the immunity in aggressive mice, whereas 5-HT1A receptor blockade caused immunostimulation in submissive animals.  相似文献   

3.
The distribution of 5-HT1A receptors was examined in the post-mortem human brain using whole hemisphere autoradiography and the selective 5-HT1A receptor antagonist [3H]WAY-100635 ([O-methyl-3H]-N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride). The autoradiograms showed very dense binding to hippocampus, raphe nuclei and neocortex. The labeling in neocortex was slightly lower than in the hippocampus and was mainly at superficial layers, although a faintly labeled band could be seen in deeper neocortical layers. Other regions, such as the amygdala, septum and claustrum, showed low densities of [3H]WAY-100635 binding, reflecting low densities of 5-HT1A receptors. The labeling was very low in basal ganglia, such as nucleus caudatus and putamen, in cerebellum or in structures of the brain stem except in the raphe nuclei. The labeling of human 5-HT1A receptors with [3H]WAY-100635 was antagonized by the addition of the 5-HT1A receptor ligands, 5-HT, buspirone, pindolol or 8-OH-DPAT (10 μM), leaving a very low background of non-specific binding. Saturation analysis of semiquantitative data from several human regions indicated that [3H]WAY-100635 has a Kd of approximately 2.5 nM. The selective labeling of 5-HT1A receptors with [3H]WAY-100635 clearly show that this compound is useful for further studies of the human 5-HT1A receptor subtype in vitro. [11C]WAY-100635 is used for the characterization of 5-HT1A receptors with positron emission tomography (PET). WAY-100635 was also radiolabeled with the short-lived positron-emitting radionuclide carbon-11 (t1/2=20 min) and used for in vitro autoradiography on human whole hemisphere cryosections. [11C]WAY-100635 gave images qualitatively similar to those of [3H]WAY-100635, although with a lower resolution. Thus, the hippocampal formation was densely labeled, with lower density in the neocortex. Buspirone, pindolol or 8-OH-DPAT (10 μM), blocked all binding of [11C]WAY-100635. The in vitro autoradiography of the distribution of 5-HT1A receptors obtained with radiolabeled WAY-100635 provide detailed qualitative and quantitative information on the distribution of 5-HT1A-receptors in the human brain. Moreover, the studies give reference information for the interpretation of previous initial results at much lower resolution in humans with PET and [11C]WAY-100635. These data provide a strong basis for expecting [11C]WAY-100635 to behave as a highly selective radioligand in vivo.  相似文献   

4.
Summary. To further evaluate whether selective serotonin reuptake inhibitors (SSRIs) have pro- or anticonvulsant properties and whether these properties will be modified by stress, we studied the effect of zimelidine on the convulsions produced by picrotoxin, a GABAA receptor antagonist, in unstressed and swim stressed mice. Zimelidine potentiated the ability of swim stress to enhance the threshold doses of intravenously administered picrotoxin producing convulsant signs and death, without having an effect in unstressed mice. The anticonvulsant effect of zimelidine was counteracted with mianserin, the antagonist of 5-HT2A/2C, and diminished with WAY-100635, a selective antagonist of 5-HT1A receptors. In stressed mice, WAY-100635 prevented the anticonvulsant effect of 8-OH-DPAT, a 5-HT1A receptor agonist. SB-269970 and ketanserin, the antagonists of 5-HT7 and 5-HT2A receptors, respectively, failed to reduce the effect of zimelidine. The results suggest the involvement of 5-HT2C and 5-HT1A receptors in the anticonvulsant effects of zimelidine and possibly other SSRIs in stress.  相似文献   

5.
Status epilepticus (SE) is a life-threatening neurological emergency associated with a high mortality rate. The serotonin 1A (5-HT1A) receptor is a possible target for the treatment of SE, but its role in animal models and the precise area of brain involved remain controversial. The hippocampus is a candidate site due to its key role in the development of SE and the existence of a high density of 5-HT1A receptors. Therefore, we investigated the effects of subcutaneous and intrahippocampal activation of 5-HT1A receptors in lithium-pilocarpine-induced SE, and tested whether the hippocampus is a true effector site. We developed SE in male Sprague-Dawley rats by giving lithium chloride (LiCl; 3 meq/kg, i.p.) 22–24 h prior to pilocarpine (25 mg/kg, i.p.), and found that 8-OH-DPAT, a 5-HT1A receptor agonist administered subcutaneously (s.c.) at 0.5 or 1.0 mg/kg 1 h before pilocarpine injection increased the latency to the first epileptiform spikes, the electrographic SE, and the behavioral generalized seizures (GS), while reducing the total EEG seizure time (P <0.01). The duration of GS was shortened only by 1.0 mg/kg 8-OH-DPAT s.c. (P <0.05). All these effects were inhibited by combined administration of WAY-100635 (1.0 mg/kg, s.c.) (P <0.05), an antagonist of the 5-HT1A receptor, but WAY-100635 alone and low doses of 8-OHDPAT (0.01 and 0.1 mg/kg) did not alter seizure activity. Furthermore, intrahippocampal 8-OH-DPAT only shortened the GS duration (P <0.05). These findings imply that the 5-HT1A receptor is a promising therapeutic target against the generation and propagation of SE, and hippocampal receptors are involved in reducing the seizure severity.  相似文献   

6.
An electrophysiological study was performed using chloral hydrate-anesthetized rats to determine whether tandospirone, a 5-HT1A agonist, affects neuronal activities of the medial vestibular nucleus (MVN), since serotonergic innervation and 5-HT1A receptors are present in this nucleus. Tandospirone applied microiontophoretically at a current of 20–60 nA caused an inhibition of tilt-induced firing of α-type neurons, which showed increased and decreased firing with lateral tilt ipsilateral and contralateral to the recording site, respectively, along with that of β-type neurons which exhibited the reverse responses to ipsilateral and contralateral tilt stimulation. The inhibition was antagonized during simultaneous, iontophoretic application of WAY-100635 (20–60 nA), a 5-HT1A receptor antagonist, although WAY-100635 alone rarely affected spontaneous or tilt-induced firing in either type of neurons. These results suggest that tandospirone acts on a 5-HT1A receptor to inhibit transmission of otolith information to α- and β-type MVN neurons.  相似文献   

7.
(±)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI, 1.25, 2.5 and 5 mg/kg), a serotonin (5-HT)2A/2C agonist, produced an inverted U-shaped increase in DA release in rat medial prefrontal cortex (mPFC) with a significant effect only at 2.5 mg/kg. This effect was completely abolished by M100907 (0.1 mg/kg), a 5-HT2A antagonist, and WAY100635 (0.2 mg/kg), a 5-HT1A antagonist, neither of which when given alone affected dopamine release. DOI (2.5 mg/kg), but not the 5-HT2C agonist Ro 60-0175 (3 mg/kg), attenuated clozapine (20 mg/kg)-induced mPFC dopamine release. These results suggest that 5-HT2A receptor stimulation increases basal cortical dopamine release via 5-HT1A receptor stimulation, and inhibits clozapine-induced cortical dopamine release by diminishing 5-HT2A receptor blockade.  相似文献   

8.
Serotonin (5-HT)1A receptor agonism may be of interest in regard to both the antipsychotic action and extrapyramidal symptoms (EPS) of antipsychotic drugs (APD) based, in part, on the effect of 5-HT1A receptor stimulation on the release of dopamine (DA) in the nucleus accumbens (NAC) and striatum (STR), respectively. We investigated the effect of R(+)-8-hydroxy-2-(di-n-propylamino)-tetralin (R(+)-8-OH-DPAT) and n-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-n-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY100635), a selective 5-HT1A receptor agonist and antagonist, respectively, on basal and APD-induced DA release. In both STR and NAC, R(+)-8-OH-DPAT (0.2 mg/kg) decreased basal DA release; R(+)-8-OH-DPAT (0.05 mg/kg) inhibited DA release produced by the 5-HT2A/D2 receptor antagonists clozapine (20 mg/kg), low dose risperidone (0.01 and 0.03 mg/kg) and amperozide (10 mg/kg), but not that produced by high dose risperidone (0.1 and 1.0 mg/kg) or haloperidol (0.01–1.0 mg/kg), potent D2 receptor antagonists. This R(+)-8-OH-DPAT-induced inhibition of the effects of clozapine, risperidone and amperozide was antagonized by WAY100635 (0.05 mg/kg). WAY100635 (0.1–0.5 mg/kg) alone increased DA release in the STR but not NAC. The selective 5-HT2A receptor antagonist M100907 (1 mg/kg) did not alter the effect of R(+)-8-OH-DPAT or WAY100635 alone on basal DA release in either region. These results suggest that 5-HT1A receptor stimulation inhibits basal and some APD-induced DA release in the STR and NAC, and that this effect is unlikely to be mediated by an interaction with 5-HT2A receptors. The significance of these results for EPS and antipsychotic action is discussed.  相似文献   

9.
Serotonin (5-HT) has been shown to phase shift circadian rhythms in mammals and to affect responses of the circadian system to light, but it is not clear which receptors are involved in these actions. We found that drugs which act as 5-HT1A receptor agonists suppressed photic responses of hamster SCN cells, but these drugs also exhibit high affinity for the recently cloned 5-HT7 receptor. We therefore studied the effects of 5-HT agonists and antagonists with differential affinities for 5-HT7 and 5-HT1A receptors on responses of hamster SCN cells to retinal illumination. We confirmed that the 5-HT receptor agonists 5-HT, 8-OH-DPAT and 5-CT, dose-dependently reduced photic activation of SCN cells. These effects could be blocked by co-application of antagonists with high affinities for 5-HT7 receptors: ritanserin or clozapine. The 5-HT1A/B/D antagonist, cyanopindolol, which is inactive at 5-HT7 receptors, did not antagonize the actions of 8-OH-DPAT. Selective 5-HT1A antagonists, WAY100635 and p-MPPI, had weak or no antagonist effects on the responses to 8-OH-DPAT in the SCN, but they effectively antagonized the actions of 8-OH-DPAT in the hippocampus. In the cerebellar cortex where few 5-HT7 receptors are present, ritanserin failed to antagonize the effects of 8-OH-DPAT. Our results indicate that the 5-HT7 receptor subtype plays a major role in mediating the effects of 5-HT on photic responses of SCN cells in the hamster.  相似文献   

10.
Previous studies have revealed that 5-HT1A agonists ameliorate antipsychotic-induced extrapyramidal symptoms (EPS) through postsynaptic 5-HT1A receptors. Here, we conducted an intracerebral microinjection study of (±)-8-hydroxy-2-(di-n-propylamino)-tetralin ((±)8-OH-DPAT) to determine the action site of the 5-HT1A agonist in alleviating EPS. Bilateral microinjection of(±)8-OH-DPAT (5 µg/1 µL per side) either into the primary motor cortex (MC) or the dorsolateral striatum (dlST) significantly attenuated haloperidol-induced catalepsy in rats. The anticataleptic action of (±)8-OH-DPAT was more prominent with the MC injection than with the dlST injection. WAY-100135 (a selective 5-HT1A antagonist) completely antagonized the reversal of haloperidol-induced catalepsy both by intracortical and intrastriatal (±)8-OH-DPAT. Furthermore, lesioning of dopamine neurons with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (30 mg/kg/day, i.p., for 4 days) did not alter the anti-EPS actions of (±)8-OH-DPAT in a mouse pole test. The present results strongly suggest that 5-HT1A agonist alleviates antipsychotic-induced EPS by activating postsynaptic 5-HT1A receptors in the MC and dlST, probably through non-dopaminergic mechanisms.  相似文献   

11.
Summary The intrathecal (i.th., T 8–10) administration in conscious rats of the 5-hydroxytryptamine (5-HT)1A agonist 8-OH-DPAT (10 nmol), and to a lesser extent the 5-HT1B agonist CGS 12066B (6 nmol), resulted in a blood pressure reduction and a bradycardia. These responses were prevented by the i.th. pretreatment with substance P (SP) (6.5 nmol) and enhanced following pretreatment with the non-peptide SP antagonist CP-96,345 (10 nmol). The partial 5-HT1A agonist 8-MeO-CLEPAT (10 nmol) had by itself small cardiovascular effects. Following the pretreatment with SP, 8-MeO-CLEPAT caused a pressor response and a tachycardia whereas the opposite effects were observed following pretreatment with the SP antagonist. These results support the notion of a functional interaction between serotonergic and SP mechanisms at the level of the preganglionic sympathetic nerves in the spinal cord.  相似文献   

12.
The effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) on the epileptiform activity has been investigated in adult WAG/RIJ rats. Either intraperitoneal (0.1–0.5 mg/kg) or intracerebroventricular (2–20 μg/rat) administration of 8-OH-DPAT caused marked, dose-dependent increases in the number and mean cumulative duration of spike-wave discharges. These effects were attenuated by NAN-190, a 5-HT1A receptor antagonist. These data indicate that serotonergic system regulates the epileptiform activity in this genetic model of human absence epilepsy.  相似文献   

13.
Sleep, waking, and EEG power spectra were investigated in rats after intrathecal (IT) administration of a 5-HT1A agonist and a 5-HT1A antagonist. Total slow wave sleep (TSWS) was increased and waking was decreased over the 8-h recording period after the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (38 nmol). Within TSWS, SWS1 was unchanged while SWS-2 tended to be increased. The 5-HT1A antagonist 1-[2-Methoxyphenyl)-4-(4-(2-phthalimido)-butyl]piperazine hydrobomide (NAN-190) did not change and sleep/waking stages. Combined treatment with 8-OH-DPAT and NAN-190 increased variance. Following the combination, sleep and waking were not significantly different from control. SWS-2 tended to be reduced compared to the effect of 8-OH-DPAT alone. There were no systematic changes in neither waking nor TSWS fronto-frontal or fronto-parietal EEG power spectrum after any of the treatments, indicating that sleep quality was not changed. The results confirm earlier data suggesting that in the spinal cord, stimulation of 5-HT1A receptors have a dampening effect on transmission of sensory information, leading to deactivation and thereby increased sleep tendency. The reason why the 8-OH-DPAT effect was not clearly antagonized by the putative 5-HT1A antagonist NAN-190, may be due to the generally weak antagonistic and also partial agonistic effect of NAN-190 as reported in the literature.  相似文献   

14.
The reproducibility of serotonin (5-HT) and (+)8-OH-DPAT-mediated inhibition of adenylyl cyclase activity was assessed in membranes, stimulated by forskolin, of rat frontal cortex postmortem as well as of human fronto-cortical, hippocampal and dorsal raphe tissues obtained from autopsy brains. The results revealed that differences between basal and forskolin-stimulated enzyme activities were still significant after 48 h postmortem in rat cortex and in all human brain regions up to 46 h after death. However, a decrease of about 17 and 26% in forskolin-stimulated adenylyl cyclase activity was observed at 24 and 48 h, respectively, in rat cortex. 5-HT and the 5-HT1A receptor agonist, (+)8-hydroxy-2(di-N-propylamino)tetraline (8-OH-DPAT), were able to inhibit forskolin-stimulated adenylyl cyclase activity in a dose-dependent manner for 48 h after death in rat and human brain. In rat cortex, both 5-HT and (+)8-OH-DPAT potencies (EC50, nM) and efficacies (percent of maximum inhibition capacity, %) varied significantly with postmortem delay. Conversely, in human tissues, postmortem delay and subject age did not modify agonist potencies and efficacies. Furthermore, a regionality of 5-HT potency and efficacy was revealed in the human brain. 5-HT was equally potent in cortex and raphe nuclei, while being more potent but less effective in hippocampus. (+)8-OH-DPAT was more active in hippocampus and raphe nuclei than in cortex. (+)8-OH-DPAT behaved as an agonist in all areas, as its efficacy was similar or greater than those obtained with 5-HT. The (+)8-OH-DPAT dose–response curve was completely reversed by 5-HT1A receptor antagonists in rat cortex and all human brain areas. In conclusion, we suggest here that differences between rat and human brain might exist at the level of postmortem degradation of 5-HT-sensitive adenylyl cyclase activity. In human brain, 5-HT1A receptor-mediated inhibition of adenylyl cyclase seems to be reproducible, suggesting that reliable experiments can be carried out on postmortem specimens from patients with neuropsychiatric disorders.  相似文献   

15.
Using intracellular recordings, we have studied the action of 5-hydroxytryptamine (5-HT) on slices of human temporal, occipital and frontal cortex maintained in vitro. The recordings were usually made 1.2 to 1.5 mm down from the pial surface, in or around layer III. The action of 5-HT (30–50 μM) was studied on 21 cells (from 12 individuals) which had electrophysiological characteristics of glutamatergic pyramidal neurones. 5-HT depolarised the majority (11) of these cells with a median response of 5 mV. It produced a hyperpolarising response in five neurones (median=−4 mV) and a combined hyperpolarising/depolarising response in two others. No response was detected in three cells. The depolarising response was probably mediated by reducing a resting potassium conductance. Ketanserin (0.1 and 1.0 μM) and spiperone (1 μM) reduced the response indicating that it was likely mediated by 5-HT2A receptors. The hyperpolarising response was associated with the opening of ion channels and was blocked by the selective 5-HT1A receptor antagonist WAY-100635 (100 nM). 5-HT inhibited spontaneous synaptic potentials. This effect was reduced by ketanserin (1 μM) but not by WAY-100635 (100 nM). It is concluded that human neocortical neurones in vitro can be depolarised via 5-HT2A receptors and hyperpolarised via 5-HT1A receptors.  相似文献   

16.
It has recently been shown that 5-HT1A receptor stimulation reduced the infarct volume after occlusion of the middle cerebral artery in rats. Since there is increasing evidence that apoptosis is involved in neurodegenerative diseases and stroke, we investigated whether the 5-HT1A agonist Bay x 3702 could protect neurons against apoptotic damage in a rat model of transient forebrain cerebral ischemia. Bay x 3702 (4 μg/kg i.v.) caused a 10% reduction of neuronal damage in the hippocampal CA1 subfield. Higher doses of Bay x 3702 (40 and 12 μg/kg i.v.) did not cause any neuroprotective effect, most likely because of the strong reduction of mean arterial blood pressure during the period of Bay x 3702 infusion. Bay x 3702 (4 μg/kg i.v.) diminished DNA laddering in the hippocampus and striatum 4 days after 10 min forebrain ischemia. These results were confirmed by TUNEL-staining. The anti-apoptotic effect was abolished by additional treatment with the 5-HT1A receptor antagonist WAY 100635 (1 mg/kg). Taken together, the results suggest that Bay x 3702 can rescue hippocampal as well as striatal neurons from apoptotic cell death in vivo via stimulation of 5-HT1A receptors.  相似文献   

17.
Summary In vivo microdialysis was used to determine the effects of chronic electroconvulsive shock (ECS), given daily for 10 days, on basal 5-HT levels in rat frontal cortex and hippocampus and on the effect of systemic administration of the 5-HT-la receptor agonist, 8-OH-DPAT (0.2 mg/kg), to reduce 5-HT levels in these areas by activation of somatodendritic autoreceptors. Neither basal 5-HT levels nor the effects of 8-OH-DPAT on 5-HT levels were altered after chronic ECS. The effect of systemic administration of the 5-HT1A and 5-HT1B antagonist, (±)-pindolol (10mg/kg), to increase 5-HT levels in hippocampus, was also not affected by chronic ECS.  相似文献   

18.
The present studies have examined whether the neuropeptide galanin can modulate brain serotoninergic (5-HT) neurotransmission in vivo and, particularly, 5-HT1A receptor-mediated transmission. For that purpose, we studied the ability of galanin (given bilaterally into the lateral ventricle, i.c.v.) to modify the impairment of passive avoidance retention induced by the selective 5-HT1A agonist 8-hydroxy-2-(di-n-propyloamino)tetralin (8-OH-DPAT) when injected prior to training. This impairment appears to be mainly related to activation of 5-HT1A receptors in the CNS. Galanin dose-dependently (significant at 3.0 nmol/rat) attenuated the passive avoidance impairment (examined 24 h after training) induced by the 0.2 mg/kg dose of 8-OH-DPAT. This 8-OH-DPAT dose produced signs of the 5-HT syndrome indicating a postsynaptic 5-HT1A receptor activation. Furthermore, both the impairment of passive avoidance and the 5-HT syndrome were completely blocked by the 5-HT1A receptor antagonist WAY 100635 (0.1 mg/kg). Galanin (0.3 or 3.0 nmol) or WAY 100635 (0.1 mg/kg) failed by themselves to affect passive avoidance retention. 8-OH-DPAT given at a low dose 0.03 mg/kg, which presumably stimulates somatodendritic 5-HT1A autoreceptors in vivo, did not alter passive avoidance retention or induce any visually detectable signs of the 5-HT syndrome. Galanin (0.3 or 3.0 nmol) given i.c.v. in combination with the 0.03 mg/kg dose of 8-OH-DPAT, did not modify passive avoidance. The immunohistochemical study of the distribution of i.c.v. administered galanin (10 min after infusion) showed a strong diffuse labelling in the periventricular zone (100–200 μm) of the lateral ventricle. Furthermore, in the dorsal and ventral hippocampus galanin-immunoreactive nerve cells appeared both in the dentate gyrus and the CA1, CA2 and CA3 layers of the hippocampus. In the septum only endogenous fibres could be seen while in the caudal amygdala also galanin-immunoreactive nerve cells were visualized far away from the labelled periventricular zone. At the level of the dorsal raphe nucleus a thin periventricular zone of galanin immunoreactivity was seen but no labelling of cells. These results suggest that galanin can modulate postsynaptic 5-HT1A receptor transmission in vivo in discrete cell populations in forebrain regions such as the dorsal and ventral hippocampus and parts of the amygdala. The indication that galanin administered intracerebroventrically may be taken up in certain populations of nerve terminals in the periventricular zone for retrograde transport suggests that this peptide may also affect intracellular events.  相似文献   

19.
Summary Physiological studies have shown that serotonin and 5-HT1A agonists can influence muscarinic function in the rabbit iris-ciliary body (ICB). The purpose of this study was to examine whether a direct interaction exists between muscarinic and 5-HT1A receptors in the ICB. At high concentrations, the 5-HT1A agonist 8-OH-DPAT attenuated the carbachol-induced stimulation of inositol phosphates (InsPs) production, but this was not blocked by the presence of 5-HT1A antagonists. In contrast, serotonin failed to influence carbachol-induced InsPs formation. Moreover, 8-OH-DPAT but not serotonin displayed affinity for [3H]QNB binding sites in the ICB. The combined data suggest that activation of 5-HT1A receptors in the ICB does not cause a modulation of muscarinic receptor-stimulated phosphoinositide turnover. The data instead suggest that, at high concentrations, 8-OH-DPAT acts as an antagonist at muscarinic receptors and in this way influences muscarinic receptor function. The mechanism of 5-HT-induced modulation of muscarinic function in the ICB therefore remains to be elucidated.  相似文献   

20.
Several lines of evidence support the involvement of serotonergic (5-HT) neurons of the median raphe nucleus (MRN) in anxiety-like behaviour. In this context, it is known that blockade of 5-HT1A somatodendritic autoreceptors in the midbrain raphe nuclei increases the firing rate of these neurons, disinhibiting 5-HT release in postsynaptic target areas such as amygdala, hippocampus and periaqueductal grey matter (PAG). However, while activation of 5-HT1A or 5-HT2 receptors in forebrain targets such as the amygdala or hippocampus enhances anxiety-like behaviours in rodents, stimulation of both receptor subtypes in the midbrain PAG markedly reduces anxiety-like behaviour. In view of these findings, the present study investigated whether the anti-anxiety effects induced by pharmacological disinhibition of 5-HT neurons in the MRN are attenuated by the blockade of 5-HT2 receptors within the PAG. Mice received combined intra-PAG injection with ketanserin (10 nmol/0.1 μl), a 5-HT2 receptor antagonist, followed by intra-MRN injection of WAY-100635 (5.6 nmol/0.1 μl), a highly selective 5-HT1A receptor antagonist. They were then individually exposed to the elevated plus-maze (EPM), with the videotaped behavioural sessions subsequently scored for both conventional and ethological measures. The results confirmed that intra-MRN infusion of WAY100635 reduces behavioural indices of anxiety without significantly altering general activity measures, and further showed that this effect was completely blocked by intra-PAG pretreatment with an intrinsically-inactive dose of ketanserin. Together, these results suggest that 5HT2 receptor populations located within the midbrain PAG play a significant role in the reduction of anxiety observed following disinhibition of 5-HT neurons in the MRN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号