首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mycobacterium tuberculosis is associated with the activation of cytokine circuits both at sites of active tuberculosis in vivo and in cultures of mononuclear cells stimulated by M. tuberculosis or its components in vitro. Interactive stimulatory and/or inhibitory pathways are established between cytokines, which may result in potentiation or attenuation of the effects of each molecule on T-cell responses. Here we examined the interaction of transforming growth factor beta1 (TGF-beta1) and interleukin-10 (IL-10) in purified protein derivative (PPD)-stimulated human mononuclear cell cultures in vitro. TGF-beta1 induced monocyte IL-10 (but not tumor necrosis factor alpha) production (by 70-fold, P < 0.02) and mRNA expression in the absence but not in the presence of PPD. Both exogenous recombinant (r) IL-10 and rTGF-beta1 independently suppressed the production of PPD-induced gamma interferon (IFN-gamma) in mononuclear cells from PPD skin test-positive individuals. Synergistic suppression of IFN-gamma in cultures containing both rTGF-beta1 and rIL-10 was only seen when the responder cell population were peripheral blood mononuclear cells (PBMC) and not monocyte-depleted mononuclear cells and when PBMC were pretreated with rTGF-beta1 but not with rIL-10. Suppression of PPD-induced IFN-gamma in PBMC containing both rTGF-beta1 (1 ng/ml) and rIL-10 (100 pg/ml) was 1.5-fold higher (P < 0.05) than cultures containing TGF-beta1 alone and 5.7-fold higher (P < 0.004) than cultures containing IL-10 alone. Also, neutralization of endogenous TGF-beta1 and IL-10 together enhanced PPD-induced IFN-gamma in PBMC in a synergistic manner. Thus, TGF-beta1 and IL-10 together potentiate the downmodulatory effect on M. tuberculosis-induced T-cell production of IFN-gamma, and TGF-beta1 alone enhances IL-10 production. At sites of active M. tuberculosis infection, these interactions may be conducive to the suppression of mononuclear cell functions.  相似文献   

2.
Candida albicans is an opportunistic fungal pathogen and a major cause of morbidity and mortality in patients with compromised immune function. The cytokine response to tissue invasion by C. albicans can influence the differentiation and function of lymphocytes and other mononuclear cells that are critical components of the host response. While the production of transforming growth factor beta (TGF-beta) has been documented in mice infected with C. albicans and is known to suppress phagocyte function, the cellular source and role of this cytokine in the pathogenesis of systemic candidiasis are not well understood. We have investigated the source of production of TGF-beta by immunohistochemical studies in tissue samples from patients with an uncommon complication of lymphoreticular malignancy, chronic disseminated candidiasis (CDC), and from a neutropenic-rabbit model of CDC. Liver biopsy specimens from patients with documented CDC demonstrated intense staining for extracellular matrix-associated TGF-beta1 within inflammatory granulomas, as well as staining for TGF-beta1 and TGF-beta3 within adjacent hepatocytes. These results correlate with the immunolocalization of TGF-beta observed in livers of infected neutropenic rabbits, using a neutralizing antibody that recognizes the mature TGF-beta protein. Human peripheral blood monocytes incubated with C. albicans in vitro release large amounts of biologically active TGF-beta1. The data demonstrate that local production of active TGF-betas by hepatocytes and by infected mononuclear cells is a component of the response to C. albicans infection that most probably contributes to disease progression in the immunocompromised host.  相似文献   

3.
The effect of exogenous transforming growth factor β (TGF-β) on Mycobacterium bovis BCG-induced tumor necrosis factor alpha (TNF-α) production by human mononuclear cells was studied. It was found that TNF-α production by human cells stimulated with BCG was significantly inhibited by TGF-β. The specificity of the observed inhibition was demonstrated, since the addition of an anti-TGF-β neutralizing monoclonal antibody completely reversed the inhibitory effect. Furthermore, the suppressive effect of TGF-β on TNF-α secretion in this system was not due to a direct cytotoxic effect, since cell viability was comparable in the presence or absence of TGF-β. Interestingly, our results demonstrated comparative suppressive effects of TGF-β and interleukin-10 on BCG-induced TNF-α secretion. Together, the data demonstrate, for the first time, that TGF-β inhibits BCG-induced TNF-α secretion by human cells.  相似文献   

4.
Angiogenesis is a complex process, involving functional cooperativity between cytokines and endothelial cell (EC) surface integrins. In this study, we investigated the mechanisms through which the alpha(1)beta(1) and alpha(2)beta(1) integrins support angiogenesis driven by vascular endothelial growth factor (VEGF). Dermal microvascular EC attachment through either alpha(1)beta(1) or alpha(2)beta(1) supported robust VEGF activation of the Erk1/Erk2 (p44/42) mitogen-activated protein kinase signal transduction pathway that drives EC proliferation. Haptotactic EC migration toward collagen I was dependent on alpha(1)beta(1) and alpha(2)beta(1) as was VEGF-stimulated chemotaxis of ECs in a uniform collagen matrix. Consistent with the functions of alpha(1)beta(1) and alpha(2)beta(1) in supporting signal transduction and EC migration, antibody antagonism of either integrin resulted in potent inhibition of VEGF-driven angiogenesis in mouse skin. Moreover, combined antagonism of alpha(1)beta(1) and alpha(2)beta(1) substantially reduced tumor growth and angiogenesis of human squamous cell carcinoma xenografts. Collectively, these studies identify critical collaborative functions for the alpha(1)beta(1) and alpha(2)beta(1) integrins in supporting VEGF signal transduction, EC migration, and tumor angiogenesis.  相似文献   

5.
Transforming growth factor-α (TGF-α) and TGF-β1 have been proposed as important regulators of processes critical to successful wound healing. Although various cells present in wounds represent potential sources of either TGF-α and/or TGF-β, including macrophages, neutrophils, keratinocytes, fibroblasts, and endothelial cells, we recently identified eosinophils as an additional potential source of these cytokines. We therefore used in situ hybridization and immunohistochemistry to determine whether eosinophils represent significant sources of TGF-α and/or TGF-β1 in skin wounds in the hamster. We found that these wounds developed a prominent infiltration of eosinophils, and that eosinophils were a cellular source of both TGF-α and TGF-β1, mRNAs. TGF-α and TGF-β1 proteins were detectable both within eosinophils and extracellularly. Moreover, there was a sequential pattern of TGF-α and TGF-β1 expression by infiltrating eosinophils, with the onset of eosinophil-associated TGF-α expression preceding that of TGF-β1. This sequential pattern of TGF expression suggests that eosinophils may help to regulate critical biological processes during wound healing.  相似文献   

6.
Transforming growth factor α (TGFα) and hepatocyte growth factor (HGF) are mitogens for hepatocytes in vitro and in vivo, produced by hepatocytes or nonparenchymal cells such as stellate cells in the liver. It is still uncertain whether TGFα and HGF are essential for liver regeneration. To assess the role of these growth factors in liver regeneration, their circulating and hepatic levels were studied in various rat models of liver regeneration. Hepatic and plasma HGF levels were increased with increased number of mitotic hepatocytes in rats after partial hepatectomy or carbon tetrachloride intoxication. However, hepatic HGF levels were decreased despite an increased number of mitotic hepatocytes and increased or unchanged plasma HGF levels in rats given phenobarbital and in rats after dimethylnitrosamine intoxication, which can induce hepatic necrosis after apoptosis of hepatic stellate cells. In contrast, hepatic and serum TGFα levels were increased in all of the models. In sham-operated rats with no increased number of mitotic hepatocytes, hepatic and circulating levels of HGF were increased, whereas those levels of TGFα were unchanged. The results indicate that TGFα levels in liver and blood more closely correlate with hepatocyte mitogenesis than HGF levels.  相似文献   

7.
8.
PROBLEM: Human seminal plasma is known to exhibit immunosuppressive activity in seminal plasma. PURPOSE: The purpose was to characterize immunosuppressive proteins in seminal plasma. METHOD: Gel filtration fractions of 100 to >440 kDa were identified that inhibited DNA synthesis and killing activity of interleukin-2 stimulated lymphocytes. RESULTS: The fractions exhibiting immunosuppression also inhibited DNA synthesis in a mink lung cell bioassay commonly used to measure the activity for transforming growth factor β (TGF-β). The negative growth activity was diminished by aTGF-β neutralizing monoclonal antibody. TGF-β was further detected in the active fractions by Western immunoblot. CONCLUSIONS: These results identified TGF-β as an immunosuppressive protein in human seminal plasma and may provide insight into the role of immunosuppression played by seminal plasma, such as in reproduction and neoplasia.  相似文献   

9.
Recent evidence suggests that subsets of lung fibroblasts differentially contribute to fibrogenic progression. We have previously shown that a subset of rat lung fibroblasts with fibrogenic characteristics [Thy-1 (−) fibroblasts] responds to stimuli (bleomycin, interleukin-4, etc) with increased latent transforming growth factor (TGF)-β activation, whereas non-fibrogenic Thy-1-expressing [Thy-1 (+)] fibroblasts do not. Activation of latent TGF-β1 by interstitial lung fibroblasts is critical for fibrogenic responses. To better understand the susceptibility of fibrogenic fibroblasts to the stimulation of TGF-β activation, we examined the role of latent TGF-β-binding proteins (LTBPs), key regulators of TGF-β bioavailability and activation, in TGF-β1 activation by these fibroblasts. Treatment of fibroblasts with bleomycin up-regulated LTBP-4 mRNA, protein, and soluble LTBP-4-bound large latent TGF-β1 complexes in Thy-1 (−) fibroblasts to significantly higher levels than in Thy-1 (+) fibroblasts. Bleomycin-induced TGF-β1 activation required LTBP-4, since lung fibroblasts deficient in LTBP-4 did not activate TGF-β1. Expression of LTBP-4 restored TGF-β1 activation in response to bleomycin, but expression either of LTBP-4 lacking the TGF-β-binding site or only the TGF-β-binding domain did not. Bleomycin treatment of mice increased LTBP-4 expression in the lung. Thy-1 knockout mice had increased levels of both LTBP-4 expression and TGF-β activation, as well as enhanced Smad3 phosphorylation compared with wild-type mice. Together, these data identify a critical role for LTBP-4 in the regulation of latent TGF-β1 activation in bleomycin-induced lung fibrosis.  相似文献   

10.
Renal malformations are the commonest cause of chronic renal failure in children and they are often associated with urinary tract abnormalities that impair fetal urine flow. Up-regulation of transforming growth factor-beta1 (TGF-beta1) occurs after experimental postnatal urinary tract obstruction and we recently reported increased levels of TGF-beta1 in human renal malformations (Yang SP et al, Am J Pathol 2000, 157:1633-1647). These findings led us to propose that obstruction-induced stretch of developing renal epithelia causes up-regulation of TGF-beta1, which then perturbs renal development. In this study, therefore, we examined expression of components of the TGF-beta1 signaling axis in a previously characterized ovine model of fetal short-term urine flow impairment in which complete unilateral ureteric obstruction was induced at 90 days when a few layers of glomeruli had formed. Up-regulation of TGF-beta1 mRNA and protein was observed in obstructed kidneys, compared to sham-operated control organs, after only 10 days. Increased levels of TGF-beta1 receptors I (TGF-betaR1) and II (TGF-betaR2) were also detected on Western blot, and the cytokine and TGF-betaR1 co-localized in disrupted epithelia on immunohistochemistry. De novo expression of alpha-smooth muscle actin, a structural protein up-regulated during TGF-beta1-induced phenotypic switching between human renal dysplastic epithelial and mesenchymal lineages in vitro, was also observed in these aberrant epithelia. These findings implicate increased TGF-beta1 signaling in the early biological changes generated by fetal urinary tract obstruction.  相似文献   

11.
12.
Borrelia burgdorferi (sensu lato), the agent of Lyme disease, is able to cause chronic, multisystemic infections in human and animal hosts. Attachment of the spirochete to host cells is likely to be important for the colonization of diverse tissues. The platelet-specific integrin αIIbβ3 was previously identified as a receptor for all three species of Lyme disease spirochetes (B. burgdorferi sensu stricto, B. garinii, and B. afzelii). Here we show that B. burgdorferi also recognizes the widely expressed integrins αvβ3 and α5β1, known as the vitronectin and fibronectin receptors, respectively. Three representatives of each species of Lyme disease spirochete were tested for the ability to bind to purified αvβ3 and α5β1. All of the strains tested bound to at least one integrin. Binding to one integrin was not always predictive of binding to other integrins, and several different integrin preference profiles were identified. Attachment of the infectious B. burgdorferi strain N40 to purified αvβ3 and α5β1 was inhibited by RGD peptides and the appropriate receptor-specific antibodies. Binding to αvβ3 was also shown by using a transfected cell line that expresses this receptor but not αIIbβ3. Attachment of B. burgdorferi N40 to human erythroleukemia cells and to human saphenous vein endothelial cells was mediated by both α5β1 and αvβ3. Our results show that multiple integrins mediate attachment of Lyme disease spirochetes to host cells.  相似文献   

13.
We investigated whether certain strains of lactic acid bacteria (LAB) could antagonize specific T-helper functions in vitro and thus have the potential to prevent inflammatory intestinal immunopathologies. All strains tested induced various levels of both interleukin-12 (IL-12) and IL-10 in murine splenocytes. In particular, Lactobacillus paracasei (strain NCC2461) induced the highest levels of these cytokines. Since IL-12 and IL-10 have the potential to induce and suppress Th1 functions, respectively, we addressed the impact of this bacterium on the outcome of CD4+ T-cell differentiation. For this purpose, bacteria were added to mixed lymphocyte cultures where CD4+ T-cells from naive BALB/c mice were stimulated weekly in the presence of irradiated allogeneic splenocytes. In these cultures, L. paracasei NCC2461 strongly inhibited the proliferative activity of CD4+ T cells in a dose-dependent fashion. This was accompanied by a marked decrease of both Th1 and Th2 effector cytokines, including gamma interferon, IL-4, and IL-5. In contrast, IL-10 was maintained and transforming growth factor β (TGF-β) was markedly induced in a dose-dependent manner. The bacteria were not cytotoxic, because cell viability was not affected after two rounds of stimulation. Thus, unidentified bacterial components from L. paracasei NCC2461 induced the development of a population of CD4+ T cells with low proliferative capacity that produced TGF-β and IL-10, reminiscent of previously described subsets of regulatory cells implicated in oral tolerance and gut homeostasis.  相似文献   

14.
15.
Multiple low-dose streptozotocin (MD-STZ) is widely used for the experimental induction of diabetes, but, as non-obese diabetic (NOD)-scid/scid mice have been found to display enhanced susceptibility to MD-STZ, whether or not the model is genuinely autoimmune and T cell-mediated has been unclear. Mice bearing a targeted mutation of the T cell receptor (TCR) α-chain were therefore used to assess whether TCR αβ+ cells are involved in the diabetogenic effects of MD-STZ injections. Young NOD mice lacking TCR αβ cells, when given five daily injections of 40 mg/kg STZ, developed diabetes at low frequency (2/12), despite the widespread destruction of pancreatic islet cells. By comparison, most normal control mice became hyperglycaemic (12/23). We conclude that whilst much of the tissue destruction observed in this model is due to the direct toxic effect of STZ, a significant amount is also due to the action of TCR αβ cells tipping the balance between tolerable and clinically damaging action on islet cells.  相似文献   

16.
17.
18.
Transforming growth factor (TGF)-β regulates wound repair and scarring in an isoform-specific fashion. TGF-β is produced in a latent form, and its activation is a critical regulatory step controlling the bioactivity of this growth factor. To date, it has been impossible to determine latent TGF-β activation in vivo due to a lack of quantitative assays. We describe here a semiquantitative modification of the plasminogen activator inhibitor-1/luciferase bioassay (PAI/L assay) for TGF-β, which we used to determine active and latent TGF-β isoforms in frozen sections of rat wound tissue. We found that significant amounts of latent TGF-β were rapidly activated upon wounding (38% of the total TGF-β at 1 hour after wounding). A second peak of active TGF-β (17% of total) occurred at 5 days after wounding. The predominant isoforms were TGF-β1 and -2 with only minor amounts of TGF-β3 present. This is the first TGF-β bioassay allowing semiquantitative determination of active and latent isoforms present in vivo, and our results document the significance and temporal regulation of latent TGF-β isoform activation in wound repair.  相似文献   

19.
20.
Mycobacterium tuberculosis readily activates both CD4+ and Vδ2+ γδ T cells. Despite similarity in function, these T-cell subsets differ in the antigens they recognize and the manners in which these antigens are presented by M. tuberculosis-infected monocytes. We investigated mechanisms of antigen processing of M. tuberculosis antigens to human CD4 and γδ T cells by monocytes. Initial uptake of M. tuberculosis bacilli and subsequent processing were required for efficient presentation not only to CD4 T cells but also to Vδ2+ γδ T cells. For γδ T cells, recognition of M. tuberculosis-infected monocytes was dependent on Vδ2+ T-cell-receptor expression. Recognition of M. tuberculosis antigens by CD4+ T cells was restricted by the class II major histocompatibility complex molecule HLA-DR. Processing of M. tuberculosis bacilli for Vδ2+ γδ T cells was inhibitable by Brefeldin A, whereas processing of soluble mycobacterial antigens for γδ T cells was not sensitive to Brefeldin A. Processing of M. tuberculosis bacilli for CD4+ T cells was unaffected by Brefeldin A. Lysosomotropic agents such as chloroquine and ammonium chloride did not affect the processing of M. tuberculosis bacilli for CD4+ and γδ T cells. In contrast, both inhibitors blocked processing of soluble mycobacterial antigens for CD4+ T cells. Chloroquine and ammonium chloride insensitivity of processing of M. tuberculosis bacilli was not dependent on the viability of the bacteria, since processing of both formaldehyde-fixed dead bacteria and mycobacterial antigens covalently coupled to latex beads was chloroquine insensitive. Thus, the manner in which mycobacterial antigens were taken up by monocytes (particulate versus soluble) influenced the antigen processing pathway for CD4+ and γδ T cells.

Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, is spread readily from person to person by inhalation of aerosolized mycobacteria (8). A hallmark of M. tuberculosis infection is the ability of most healthy individuals to control the infection by mounting an acquired immune response, in which antigen-specific T cells and mononuclear phagocytes arrest the growth of M. tuberculosis bacilli and maintain control over dormant bacilli within granulomas (reviewed in reference 25). This protective cellular immune response results in conversion of the tuberculin skin test from negative to positive and probably in increased resistance to reinfection with tubercle bacilli.CD4+ αβ-T-cell-receptor (αβ TCR)-bearing T cells (CD4+ T cells) are readily activated by mycobacterial antigens and have a dominant role in the protective immune response to M. tuberculosis in humans (2, 34). These CD4+ T cells not only secrete cytokines but also serve directly as cytotoxic effector cells against M. tuberculosis-infected macrophages (6). In addition to CD4+ T cells, M. tuberculosis antigens activate other human T-cell subsets such as γδ TCR+ T cells (γδ T cells) (15, 16, 18). Vδ2+ and Vγ9+ γδ T cells are particularly responsive to live M. tuberculosis (15). A role for both γδ and CD4+ T cells in protective immunity to acute M. tuberculosis infection has been demonstrated in murine models (20, 21, 26, 27). A recent study of humans suggests that Vγ9+ and Vδ2+ γδ T-cell numbers and function are reduced in tuberculosis patients (23).Functional comparisons of human CD4+ and γδ T-cell responses of healthy tuberculin-positive persons demonstrate that both T-cell subsets have similar cytotoxic effector functions for M. tuberculosis-infected monocytes and produce large amounts of gamma interferon (IFN-γ), with γδ T cells being slightly more efficient producers of IFN-γ than CD4+ T cells (37). Despite similarities in function, these two T-cell subsets differ in the mycobacterial antigens recognized by their TCRs and the manners in which antigens are presented to them by M. tuberculosis-infected mononuclear phagocytes. CD4+ T cells recognize a wide diversity of mycobacterial peptides in the context of class II major histocompatibility complex (MHC) molecules, which include secreted as well as somatic antigens (6, 13, 33, 37). In contrast, Vγ9+ and Vδ2+ γδ T cells, the dominant γδ TCR subsets activated by M. tuberculosis, recognize mycobacterial antigens in a non-MHC-restricted manner and the repertoire of antigens includes small phosphate-containing antigens such as TUBag’s (5, 9, 19, 22, 29, 36).Both blood monocytes and alveolar macrophages infected with M. tuberculosis are efficient antigen-presenting cells for mycobacterial antigen-specific CD4+ and γδ T cells (1, 5). However, little is known about how M. tuberculosis-infected mononuclear phagocytes process antigens for these two T-cell subsets. M. tuberculosis bacilli are taken up by mononuclear phagocytes through a variety of surface receptors, including complement receptor 4, mannose receptor, and complement receptor 3 (17, 31, 32). Within mononuclear phagocytes, the mycobacteria reside within phagosomes and modulate the phagosome by preventing fusion with acidic lysosomal compartments (7). Although the vacuolar membranes surrounding the phagosome acquire endosomal markers, the vesicular proton ATPase is actively excluded, resulting in an elevated pH of 6.3 to 6.5 compared to the normal lysosomal pH of 4.5 (7, 35). The elevated pH in the phagosome does not appear to inhibit the ability of mycobacterial antigens to be processed and presented to CD4+ and Vδ2+ γδ T cells. This study was undertaken to gain insight into the mechanisms used by monocytes infected with live M. tuberculosis bacilli to process mycobacterial antigens for presentation to both CD4+ and γδ T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号