首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Washin and washout of a volatile anesthetic given through the oxygenator during hypothermic (23.4 +/- 2.1 degrees C) cardiopulmonary bypass were studied in nine patients. The authors administered isoflurane and measured its partial pressure in arterial (Pa) and venous (Pv) blood and the gas exhausted from the oxygenator (PE) at 1, 2, 4, 8, 16, 32, and 48 min during washin. These measurements were repeated during washout, which coincided with rewarming. During washin, PE, Pa, and Pv progressively rose toward inlet gas partial pressure (PI). Equilibration of Pa with PI was 41% after 16 min, 51% after 32 min, and 57% after 48 min of washin. During washout, Pa declined to 24% of its peak after 16 min and to 13% after 32 min. Washin and washout were considerably slower in mixed venous blood. Washin of isoflurane appeared to occur more slowly during cardiopulmonary bypass than during administration via the lungs in normothermic patients, presumably because hypothermia increases tissue capacity, compensating for the effect of hemodilution that otherwise would decrease the blood/gas partition coefficient. During rewarming, washout appeared to occur as rapidly as from the lungs of normothermic patients. This may have resulted from the declining blood/gas partition coefficient (due to rewarming) and relatively limited tissue stores of isoflurane. The relationship between exhaust and arterial partial pressures was reasonably consistent; for clinical purposes, measurement of PE can be used to estimate Pa.  相似文献   

2.
BACKGROUND: Volatile anesthetics are frequently used during cardiopulmonary bypass (CPB) to maintain anesthesia. Uptake and elimination of the volatile agent are dependent on the composition of the oxygenator. This study was designed to evaluate whether the in vivo uptake and elimination of isoflurane differs between microporous membrane oxygenators containing a conventional polypropylene (PPL) membrane and oxygenators with a new poly-(4-methyl-1-pentene) (PMP) membrane measuring isoflurane concentrations in blood. METHODS: Twenty-four patients undergoing elective coronary bypass surgery with the aid of CPB were randomly allocated to one of four groups, using either one of two different PPL-membrane oxygenators for CPB or one of two different PMP-membrane oxygenators. During hypothermic CPB, 1% isoflurane in an oxygen-air mixture was added to the oxygenator gas inflow line (gas flow, 3 l/min) for 15 min. Isoflurane concentration was measured in blood and in exhaust gas at the outflow port of the oxygenator. Between-group comparisons were performed for the area under the curve (AUC) during uptake and elimination of the isoflurane blood concentrations, the maximum isoflurane blood concentration (C(max)), and the exhausted isoflurane concentration (F(E)). RESULTS: The uptake of isoflurane, expressed as AUC of isoflurane blood concentration and a function of F(E), was significantly reduced in PMP oxygenators compared to PPL oxygenators (P < 0.01). C(max) was between 8.5 and 13 times lower in the PMP-membrane oxygenator groups compared to the conventional PPL-membrane oxygenator groups (P < 0.01). CONCLUSIONS: The uptake of isoflurane into blood via PMP oxygenators during CPB is severely limited. This should be taken into consideration in cases using such devices.  相似文献   

3.
During cardiopulmonary bypass, the rates of cooling and rewarming and the maximum temperatures attained are implicated in patient morbidity. Thus, accurate oxygenator arterial outlet temperature measurements are needed. The purpose of this study was to determine the accuracy of the arterial outlet temperature probe on the "Affinity NT" membrane oxygenator in measuring perfusate temperatures. An in vitro circuit was used. Crystalloid solution was recirculated through an Affinity NT membrane oxygenator and, to simulate the patient, a second oxygenator. Water was recirculated through the heat exchanger of the second oxygenator via a reservoir. A myocardial temperature probe was inserted in-line 4 cm distal to the Affinity NT oxygenator arterial outlet temperature probe and was considered to measure the actual temperature of the perfusate. Temperatures were simultaneously recorded from the in-line probe, arterial outlet probe, and reservoir every second. Twenty-seven trials were run using random combinations of three Affinity NT oxygenators and three in-line probes. Each trial entailed cooling an initially normothermic reservoir to 28 degrees C and then rewarming it to normothermia again. The arterial outlet temperature probe on the Affinity NT membrane oxygenator underestimated the perfusate temperatures during early rewarming (bias of 0.72 degrees C; precision of +/-1.15 degrees C) and late rewarming (bias of 0.52 degrees C; precision of +/-0.97 degrees C). An overestimation of the perfusate temperatures occurred during early cooling (bias of -0.57 degrees C; precision of +/-1.37 degrees C). Only during the late cooling phase was the arterial outlet temperature probe accurate (bias of -0.02 degrees C; precision of +/-0.3 degrees C). The perfusionist should be aware of the temperature probe monitoring characteristics of the oxygenator to safely perfuse the patient.  相似文献   

4.
An in vivo study was undertaken during hypothermic (28 degrees C) cardiopulmonary bypass to compare oxygenator exhaust capnography as a means of estimating arterial carbon dioxide tension (PaCO2) with bench blood gas analysis. A total of 123 pairs of measurements were made in 40 patients. Oxygenator exhaust capnographic measurements systematically underestimated PaCO2 measured by a bench blood gas analyzer. During the cooling and stable hypothermic phases of cardiopulmonary bypass, the relationship was reasonably accurate, but became far more variable during rewarming. Oxygenator exhaust capnography could be used as an inexpensive means of continuously monitoring PaCO2 during the cooling and stable hypothermic phases of cardiopulmonary bypass but should not be used during rewarming.  相似文献   

5.
Background: Volatile anesthetics are frequently used during cardiopulmonary bypass (CPB) to maintain anesthesia. Uptake and elimination of the volatile agent are dependent on the composition of the oxygenator. This study was designed to evaluate whether the in vivo uptake and elimination of isoflurane differs between microporous membrane oxygenators containing a conventional polypropylene (PPL) membrane and oxygenators with a new poly-(4-methyl-1-pentene) (PMP) membrane measuring isoflurane concentrations in blood.

Methods: Twenty-four patients undergoing elective coronary bypass surgery with the aid of CPB were randomly allocated to one of four groups, using either one of two different PPL-membrane oxygenators for CPB or one of two different PMP-membrane oxygenators. During hypothermic CPB, 1% isoflurane in an oxygen-air mixture was added to the oxygenator gas inflow line (gas flow, 3 l/min) for 15 min. Isoflurane concentration was measured in blood and in exhaust gas at the outflow port of the oxygenator. Between-group comparisons were performed for the area under the curve (AUC) during uptake and elimination of the isoflurane blood concentrations, the maximum isoflurane blood concentration (Cmax), and the exhausted isoflurane concentration (FE).

Results: The uptake of isoflurane, expressed as AUC of isoflurane blood concentration and a function of FE, was significantly reduced in PMP oxygenators compared to PPL oxygenators (P < 0.01). Cmax was between 8.5 and 13 times lower in the PMP-membrane oxygenator groups compared to the conventional PPL-membrane oxygenator groups (P < 0.01).  相似文献   


6.
Liu M  Hu X  Liu J 《Anesthesiology》2001,94(3):429-432
BACKGROUND: Hypothermia has been shown to decrease the requirement for inhaled anesthetics in animals, but information in humans is limited. METHODS: Thirty-three unpremedicated children with congenital left-to-right shunt heart diseases undergoing open heart surgeries were assigned to one of three groups, with nasopharyngeal temperatures at the time of skin incision of 37, 34, or 31 degrees C. Anesthesia was induced and maintained with isoflurane in oxygen. End-tidal isoflurane concentration and nasopharyngeal temperature were kept at stable levels for at least 15 min before the skin incision. Isoflurane minimum alveolar concentration was determined by using the Dixon up-and-down approach. RESULTS: Isoflurane minimum alveolar concentration values were 1.69 +/- 0.14%, 1.47 +/- 0.10%, and 1.22 +/- 0.15% (mean +/- SD) at 37, 34, and 31 degrees C, respectively. CONCLUSIONS: Hypothermia decreases the isoflurane requirement in children by 5.1 degrees C.  相似文献   

7.
Washin and washout of isoflurane during cardiopulmonary bypass   总被引:2,自引:0,他引:2  
To help decide when an inhalational agent should be discontinued during cardiopulmonary bypass (CPB), its rate of washin and washout must be known. Isoflurane one per cent was administered to 14 patients undergoing CPB and isoflurane blood concentrations were measured to determine the time course of washin and washout of this agent. Bubble oxygenators were used for seven patients and membrane oxygenators for the remaining seven. During the administration of isoflurane, isoflurane blood concentrations rose slowly and did not reach a steady state during the time available for washin. Isoflurane blood concentrations decreased by at least 50 per cent within two minutes of turning off the vaporizer, and by 15 minutes the concentration had dropped by 75 per cent. There was a tendency for more rapid elimination of isoflurane in patients undergoing rewarming during this period. There did not appear to be an important difference between bubble and membrane oxygenators in the rate of washin and washout of isoflurane. Within 15 minutes of turning off the vaporizer only 25 per cent of the original blood concentration of isoflurane will remain. The anaesthetist must decide what concentration of isoflurane is acceptable during separation from CPB. Knowledge of the time course of isoflurane washout will allow more accurate determination of when to discontinue its administration in order to reach an acceptable concentration by the time separation from CPB occurs.  相似文献   

8.
PURPOSE: To examine the effects of temperature on auditory brainstem responses (ABRs) in infants during hypothermic cardiopulmonary bypass for total circulatory arrest (TCA). The relationship between ABRs (as a surrogate measure of core-brain temperature) and body temperature as measured at several temperature monitoring sites was determined. METHODS: In a prospective, observational study, ABRs were recorded non-invasively at normothermia and at every 1 or 2 degrees C change in ear-canal temperature during cooling and rewarming in 15 infants (ages: 2 days to 14 months) that required TCA. The ABR latencies and amplitudes and the lowest temperatures at which an ABR was identified (the threshold) were measured during both cooling and rewarming. Temperatures from four standard temperature monitoring sites were simultaneously recorded. RESULTS: The latencies of ABRs increased and amplitudes decreased with cooling (P < 0.01), but rewarming reversed these effects. The ABR threshold temperature as related to each monitoring site (ear-canal, nasopharynx, esophagus and bladder) was respectively determined as 23 +/- 2.2 degrees C, 20.8 +/- 1.7 degrees C, 14.6 +/- 3.4 degrees C, and 21.5 +/- 3.8 degrees C during cooling and 21.8 +/- 1.6 degrees C, 22.4 +/- 2.0 degrees C, 27.6 +/- 3.6 degrees C, and 23.0 +/- 2.4 degrees C during rewarming. The rewarming latencies were shorter and Q10 latencies smaller than the corresponding cooling values (P < 0.01). Esophageal and bladder sites were more susceptible to temperature variations as compared with the ear-canal and nasopharynx. CONCLUSION: No temperature site reliably predicted an electrophysiological threshold. A faster latency recovery during rewarming suggests that body temperature monitoring underestimates the effects of rewarming in the core-brain. ABRs may be helpful to monitor the effects of cooling and rewarming on the core-brain during pediatric cardiopulmonary bypass.  相似文献   

9.
OBJECTIVE: To describe the washin and washout of desflurane when first administered during cardiopulmonary bypass (CPB) for cardiac surgery. DESIGN: A single-arm prospective study. SETTING: University-affiliated hospital operating room. PARTICIPANTS: Ten adult patients presenting for cardiac surgery. INTERVENTIONS: Consenting patients presenting for cardiac surgery received anesthesia with midazolam and fentanyl. Patients were cooled to 32 degrees C on CPB, then desflurane 6% was administered and blood samples drawn repeatedly from the arterial and venous bypass cannulae as well as from the membrane oxygenator inlet and exhaust from 2 to 32 minutes of desflurane administration. Just before rewarming, final (maximum) washin samples were taken. On rewarming, desflurane was discontinued, and blood and gas samples were taken 2 to 24 minutes thereafter. MEASUREMENTS AND MAIN RESULTS: CPB time was 116 +/- 10 minutes, and ischemic time was 81 +/- 6 minutes. Mean pump flow was 4.49 +/- 0.03 L/min, and mean arterial pressure was 70.1 +/- 1 mmHg during the study period. Arterial washin of desflurane was initially rapid; arterial concentrations reached 50% of administered concentrations within 4 minutes, but then slowed, reaching 68% of inspired concentrations at 32 minutes (desflurane concentration 4.0% +/- 0.3%). Arterial washout of desflurane was more rapid; arterial concentrations fell to 18% of the maximum concentration reached within 4 minutes, and only 8% of the maximum arterial concentration was present in blood 20 minutes later. CONCLUSION: Desflurane showed rapid initial washin and washout on CPB when administration was started at 32 degrees C and stopped at time of rewarming.  相似文献   

10.
We have determined the effects of thiopental or isoflurane upon cerebral blood flow (CBF) and the cerebral metabolic rate for oxygen (CMRO2) when these agents are used in sufficient dose to attain a deep burst suppression pattern on the electroencephalogram (EEG) during hypothermic and normothermic cardiopulmonary bypass (CPB). Thirty-one patients undergoing coronary artery bypass graft surgery were anesthetized with fentanyl 0.1 mg X kg-1, and were randomly allocated to one of three groups: control (no further anesthetics during bypass and continuous EEG activity), thiopental treatment (EEG suppression), or isoflurane treatment (EEG suppression). Hypothermia (25-29 degrees C) was routinely induced at onset of nonpulsatile cardiopulmonary bypass. In the treatment groups, thiopental or isoflurane were used during bypass to achieve a deep burst suppression pattern. Cerebral blood flow and cerebral metabolic rate for oxygen were determined during hypothermia and upon rewarming to normothermia (37 degrees C). Pharmacologic EEG suppression with either isoflurane or thiopental was associated with lower cerebral metabolic rate than control values during both hypothermic and normothermic bypass. However, only thiopental-induced EEG suppression was associated with lower cerebral blood flow than control. Cerebral blood flow during isoflurane-induced EEG suppression was similar to control values in spite of the reduced cerebral metabolic rate.  相似文献   

11.
Positive pressure ventilation can affect hemodynamic stability by neuroreflex-mediated activity. Inhalational anesthesia is known to attenuate the arterial baroreflex function; however, little information is known about the effect of volatile anesthetics on the lung inflation reflex. The influence of isoflurane on static lung inflation reflex-induced changes in venous capacitance and systemic resistance was investigated in dogs. After controlling carotid sinus pressure at 50 mmHg and initiating total cardiopulmonary bypass, the lungs were inflated to tracheal pressures of 10 and 20 mmHg. The systemic vascular resistance index (SVRI) decreased by 0.04 +/- 0.03 and 0.13 +/- 0.03 mmHg.kg.min.ml-1 during tracheal inflation pressures of 10 and 20 mmHg, respectively. There as an accompanying change in systemic vascular capacitance index (SVCI) by 1.0 +/- 0.65 and 3.3 +/- 0.82 ml.kg-1 during tracheal inflation pressures of 10 and 20 mmHg. The addition of isoflurane decreased the reflex vascular response to lung inflation in a dose-dependent manner. A concentration of 1 MAC isoflurane administered via the cardiopulmonary bypass machine attenuated the change in SVRI to tracheal inflation pressures of 10 and 20 mmHg by 75% and 67%, respectively. Isoflurane at 1 MAC also reduced the reflex capacitance response to tracheal pressures of 10 and 20 mmHg by 36% each. Lung inflation-induced changes in SVRI and SVCI were abolished at isoflurane concentrations of 2 MAC. We conclude that under the conditions of this study, 1 MAC isoflurane was shown to attenuate lung reflex-induced changes in SVRI and SVCI and that at higher isoflurane concentrations (2 MAC) these reflex-induced changes were not seen.  相似文献   

12.
We have studied the relationship between the partial pressure of carbon dioxide in oxygenator exhaust gas (PECO2) and arterial carbon dioxide tension (PaCO2) during hypothermic cardiopulmonary bypass with non- pulsatile flow and a membrane oxygenator. A total of 172 paired measurements were made in 32 patients, 5 min after starting cardiopulmonary bypass and then at 15-min intervals. Additional measurements were made at 34 degrees C during rewarming. The degree of agreement between paired measurements (PaCO2 and PECO2) at each time was calculated. Mean difference (d) was 0.9 kPa (SD 0.99 kPa). Results were analysed further during stable hypothermia (n = 30, d = 1.88, SD = 0.69), rewarming at 34 degrees C (n = 22, d = 0, SD = 0.84), rewarming at normothermia (n = 48, d = 0.15, SD = 0.69) and with (n = 78, d = 0.62, SD = 0.99) or without (n = 91, d = 1.07, SD = 0.9) carbon dioxide being added to the oxygenator gas. The difference between the two measurements varied in relation to nasopharyngeal temperature if PaCO2 was not corrected for temperature (r2 = 0.343, P = < 0.001). However, if PaCO2 was corrected for temperature, the difference between PaCO2 and PECO2 was not related to temperature, and there was no relationship with either pump blood flow or oxygenator gas flow. We found that measurement of carbon dioxide partial pressure in exhaust gases from a membrane oxygenator during cardiopulmonary bypass was not a useful method for estimating PaCO2.   相似文献   

13.
Sweating threshold during isoflurane anesthesia in humans   总被引:2,自引:0,他引:2  
Isoflurane anesthesia in humans markedly decreases the threshold temperature triggering peripheral thermoregulatory vasoconstriction (i.e., central temperature triggering vasoconstriction). However, it is not known whether the sweating threshold remains unchanged (e.g., near 37 degrees C), decreases along with the vasoconstriction threshold, or increases during anesthetic administration. Accordingly, the hypothesis that isoflurane anesthesia increases the thermoregulatory threshold for sweating was tested. Forehead sweating was evaluated in five healthy patients given isoflurane anesthesia. The sweating threshold was prospectively defined as the distal esophageal temperature at which significant sweating was first observed. Sweating was observed in each patient at a mean central temperature of 38.3 +/- 0.3 degrees C and an end-tidal isoflurane concentration of 1.1% +/- 0.2%. The interthreshold range (difference between vasoconstriction and sweating thresholds) without anesthesia is approximately 0.5 degrees C; isoflurane anesthesia increases this range to approximately 4 degrees C.  相似文献   

14.
OBJECTIVES: Recent studies suggest that myocardial reperfusion injury is exacerbated by free radicals when pure oxygen is used during cardiopulmonary bypass. Partial replacement of the oxygenator gas mixture with nitrogen, however, such as has already been adopted clinically in many centers, could increase the risk of gaseous nitrogen microembolus formation and therefore of brain damage because of the low solubility of nitrogen, particularly under conditions of hypothermia. METHODS: Ten 7- to 10-kg piglets were cooled for 30 minutes to 15 degrees C on cardiopulmonary bypass and then rewarmed for 40 minutes to 37 degrees C. In 5 piglets cardiopulmonary bypass was normoxic and in 5 it was hyperoxic. In each group 3 bubble oxygenators without arterial filters and 2 membrane oxygenators with filters were used. Cerebral microemboli were monitored continuously by carotid Doppler ultrasonography (8 MHz) and intermittently by fluorescence retinography. RESULTS: Embolus count was greater with lower rectal temperature (P <.001), use of a bubble oxygenator (P <.001), and lower oxygen concentration (P =.021) but was not affected by the temperature gradient between blood and body during cooling or rewarming. CONCLUSIONS: Gaseous microemboli are increased with normoxic perfusion, but this is only important if a bubble oxygenator without a filter is used.  相似文献   

15.
We have examined the dose-related effects of sevoflurane and isoflurane on systemic vascular resistance (SVR) during cardiopulmonary bypass (CPB) in patients undergoing elective coronary artery surgery. Fifty- two patients were allocated randomly to one of six groups to receive 1.0, 2.0 or 3.0 vol% (inspiratory) sevoflurane or 0.6, 1.2 or 1.8 vol% isoflurane, or to a control group. During hypothermic (32-33 degrees C) non-pulsatile CPB, systemic vascular resistance index (SVRI) was recorded before administration of volatile anaesthetics and every 5 min for 20 min. Sevoflurane and isoflurane concentrations were measured next to the gas inlet port and at the gas outlet port of the oxygenator. Wash-in of sevoflurane occurred more rapidly than that of isoflurane, reaching a relatively steady state for both agents from the 10th to the 20th min. There was no significant change in SVRI in patients receiving 1.0 and 2.0 vol% sevoflurane, and 0.6 and 1.2 vol% isoflurane, compared with baseline values. However, 3 vol% sevoflurane decreased SVRI at 10, 15 and 20 min, and 1.8 vol% isoflurane decreased SVRI significantly at 15 and 20 min, whereas SVRI increased at 15 and 20 min in the control group. Thus during CPB, sevoflurane had similar vasodilator effects on SVRI as isoflurane.   相似文献   

16.
OBJECTIVE: To test whether patients require less volatile anesthetic after cardiopulmonary bypass (CPB). DESIGN: Prospective, observational clinical study. SETTING: Cardiovascular operating rooms of a large teaching hospital. PARTICIPANTS: Twenty adult patients undergoing surgery with CPB. INTERVENTIONS: Subjects received a computer-controlled fentanyl infusion designed to maintain effect site concentrations of 3 ng/mL, combined with a variable amount of isoflurane. MEASUREMENTS AND MAIN RESULTS: The end-tidal isoflurane concentration associated with a target bispectral index of 55 was recorded during skin preparation, after sternotomy, during rewarming, and after separation from CPB. Adjusted, geometric mean (95% confidence intervals), end-tidal isoflurane concentrations associated with a bispectral index of 55 were 0.46% (0.38% to 0.58%) during skin preparation, 0.47% (0.39% to 0.58%) after sternotomy, 0.35% (0.29% to 0.42%) during rewarming, and 0.36% (0.31% to 0.43%) after separation from CPB. The last 2 concentrations (recorded near the end and after CPB) were significantly (p < 0.05) less than the first 2 concentrations (recorded before CPB). CONCLUSION: Because the level of surgical stimulation was relatively constant and minimal at the times of the measurements, these results are consistent with a reduced need for isoflurane after compared with before CPB.  相似文献   

17.
Background: Jugular venous hemoglobin desaturation during the rewarming phase of cardiopulmonary bypass is associated with adverse neuropsychologic outcome and may indicate a pathologic mismatch between cerebral blood flow (CBF) and cerebral metabolic rate for oxygen (CMRO2). In some studies, rapid rewarming from hypothermic cardiopulmonary bypass results in greater jugular venous hemoglobin desaturation. The authors wished to determine if rewarming rate influences the temperature dependence of CBF and CMRO2.

Methods: Anesthetized New Zealand white rabbits, cooled to 25 degrees Celsius on cardiopulmonary bypass, were randomized to one of two rewarming groups. In the fast group (n = 9), aortic blood temperature was made normothermic over 25 min. Cerebral blood flow (microspheres) and CMRO2 (Fick) were determined at baseline (25 degrees C), and at brain temperatures of 28 degrees, 31 degrees, 34 degrees, and 37 degrees Celsius during rewarming.

Results: Systemic physiologic variables appeared similar between groups. At a brain temperature of 28 degrees C, CMRO2 was 47% greater in the fast rewarming group than in the slow group (2.2 +/-0.5 vs. 1.5+/-0.2 ml O2 *symbol* 100 g sup -1 *symbol* min sup -1, respectively; P = 0.01), whereas CBF did not differ (48+/-18 vs. 49+/-8 ml *symbol* 100 g sup -1 *symbol* min sup -1, respectively; P = 0.47). Throughout rewarming, CBF increased as a function of brain temperature but was indistinguishable between groups. Cerebral metabolic rate for oxygen differences between groups decreased as brain temperatures increased.  相似文献   


18.
Isoflurane decreases the cortisol response to cardiopulmonary bypass   总被引:1,自引:0,他引:1  
Eighteen patients with normal left ventricular function scheduled for elective myocardial revascularization were anesthetized with fentanyl (52-58 micrograms/kg). At the beginning of hypothermic cardiopulmonary bypass (CPB) they were assigned to a control (C) group (n = 6) that did not receive further anesthesia, or to a group given either 1% isoflurane (n = 6) or 2% isoflurane (n = 6). Blood samples for measurement of total plasma cortisol concentrations were obtained before, during, and after CPB. Hemodynamic measurements before and after CPB were not different among groups. Patients in group C required higher infusion rates of sodium nitroprusside (P less than or equal to 0.05) and patients given 2% isoflurane received more phenylephrine (P less than or equal to 0.05) to keep mean arterial pressure at 50 +/- 10 mm Hg during CPB. Isoflurane caused a dose-related decrease in total plasma cortisol concentrations during and after CPB. We conclude that increased depth of anesthesia attenuates the cortisol (stress) response to cardiopulmonary bypass.  相似文献   

19.
During cardiopulmonary bypass the partial pressure of carbon dioxide in oxygenator arterial blood (P(a)CO2) can be estimated from the partial pressure of gas exhausting from the oxygenator (P(E)CO2). Our hypothesis is that P(E)CO2 may be used to estimate P(a)CO2 with limits of agreement within 7 mmHg above and below the bias. (This is the reported relationship between arterial and end-tidal carbon dioxide during positive pressure ventilation in supine patients.) During hypothermic (28-32 degrees C) cardiopulmonary bypass using a Terumo Capiox SX membrane oxygenator, 80 oxygenator arterial blood samples were collected from 32 patients during cooling, stable hypothermia, and rewarming as per our usual clinical care. The P(a)CO2 of oxygenator arterial blood at actual patient blood temperature was estimated by temperature correction of the oxygenator arterial blood sample measured in the laboratory at 37 degrees C. P(E)CO2 was measured by connecting a capnograph end-to-side to the oxygenator exhaust outlet. We used an alpha-stat approach to cardiopulmonary bypass management. The mean difference between P(E)CO2 and P(a)CO2 was 0.6 mmHg, with limits of agreement (+/-2 SD) between -5 to +6 mmHg. P(E)CO2 tended to underestimate P(a)CO2 at low arterial temperatures, and overestimate at high arterial temperatures. We have demonstrated that P(E)CO2 can be used to estimate P(a)CO2 during hypothermic cardiopulmonary bypass using a Terumo Capiox SX oxygenator with a degree of accuracy similar to that associated with the use of end-tidal carbon dioxide measurement during positive pressure ventilation in anaesthetized, supine patients.  相似文献   

20.
BACKGROUND: Hypothermia in the perioperative period is associated with adverse effects, particularly bleeding. Before termination of cardiopulmonary bypass, rewarming times and perfusion temperatures are often increased to avoid post-cardiopulmonary bypass hypothermia and the presumed complications. This practice may, however, also have adverse effects, particularly cerebral hyperthermia. We present safety outcomes from a trial in which patients undergoing coronary artery surgery were randomly assigned to normothermia or hypothermia for the entire surgical procedure. METHODS: Consenting patients over the age of 60 years presenting for a first, elective coronary artery surgery with cardiopulmonary bypass were randomly assigned to having their nasopharyngeal temperature maintained at either 37 degrees C (group N; 73 patients) or 34 degrees C (group H; 71 patients) throughout the intraoperative period, with no rewarming before arrival in the intensive care unit. All received tranexamic acid. RESULTS: There was no clinically important difference in intraoperative blood product or inotrope use. Temperatures on arrival in the intensive care unit were 36.7 degrees C +/- 0.38 degrees C and 34.3 degrees C +/- 0.38 degrees C in groups N and H, respectively. Blood loss during the first 12 postoperative hours was 596 +/- 356 mL in group N and 666 +/- 405 mL in group H (mean difference +/- 95% confidence interval, 70 +/- 126 mL; P =.28). There was no significant difference in blood product utilization, intubation time, time in the hospital, myocardial infarction, or mortality. The mean time in the intensive care unit was 8.4 hours less in the hypothermic group (P =.02). CONCLUSIONS: Our data support the safety of perioperative mild hypothermia in patients undergoing elective nonreoperative coronary artery surgery with cardiopulmonary bypass. These findings suggest that complete rewarming after hypothermic cardiopulmonary bypass is not necessary in all cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号