首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The effects of cyclopiazonic acid (CPA), a selective inhibitor of sarcoplasmic reticulum (SR) Ca2+-ATPase, on twitch contraction and on the resting state of tension and intracellular Ca2+ level ([Ca2+]i) of the oesophageal striated muscle of stroke-prone spontaneously hypertensive rats (SHRSP) and normotensive Wistar Kyoto rats (WKY) were compared. 2. CPA (10 micronM) augmented the twitch contraction of oesophageal striated muscle preparations from both SHRSP and WKY, reducing the rate of relaxation (-dT/dt), and thus resulting in the prolongation of the time to 80% relaxation. The effect was significantly smaller in the SHRSP preparations. 3. In the resting state, CPA caused a sustained elevation of [Ca2+]i. The elevation was greater in the WKY preparations. Tension development accompanied by the elevation was observed in WKY preparations, but not in SHRSP preparations. 4. The sustained elevation of [Ca2+]i induced by CPA was eliminated by the removal of extracellular Ca2+. Both the elevated [Ca2+]i and tension in the preparations from WKY were reduced by flufenamic acid (100 micronM), mefenamic acid (100 micronM), lanthanum (La3+, 100 micronM), gadolinium (Gd3+, 100 micronM) and SK&F 96365 (100 micronM) but not by verapamil (10 micronM). 5. Thapsigargin (3 micronM), another SR Ca2+-ATPase inhibitor, produced similar effects on basal tension to those of CPA, although it reduced the amplitude of twitch contraction. 6. These results suggest that in the rat oesophageal striated muscle, (1) CPA extends the sequestrating time of Ca2+ into the SR, (2) CPA induces a Ca2+ influx mediated through verapamil-insensitive pathways, possibly nonselective cation channels, and (3) the mechanism of [Ca2+](i) modulation due to CPA-sensitive SR Ca2+-ATPase is deteriorated in the oesophageal striated muscle from SHRSP as compared with WKY preparations.  相似文献   

2.
Differences in the acetylcholine (ACh)-induced endothelium-dependent relaxation and hyperpolarization of the mesenteric arteries of Wistar Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP) were studied. Relaxation was impaired in preparations from SHRSP and tendency to reverse the relaxation was observed at high concentrations of ACh in these preparations. Relaxation was partly blocked by NG-nitro-L-arginine (L-NOARG, 100 microM) and, in the presence of L-NOARG, tendency to reverse the relaxation was observed in response to higher concentrations of ACh, even in preparations from WKY. The relaxation remaining in the presence of L-NOARG was also smaller in preparations from SHRSP. The tendency to reverse the relaxation observed at higher concentrations of ACh in preparations from SHRSP or WKY in the presence of L-NOARG were abolished by indomethacin (10 microM). Elevating the K+ concentration of the incubation medium decreased relaxation in the presence of both indomethacin and L-NOARG. Relaxation in the presence of L-NOARG and indomethacin was reduced by the application of both apamin (5 microM) and charybdotoxin (0.1 microM). This suggests that the relaxation induced by ACh is brought about by both endothelium-derived relaxing factor (EDRF, nitric oxide (NO)) and hyperpolarizing factor (EDHF), which activates Ca2+-sensitive K+ channels. Electrophysiological measurement revealed that ACh induced endothelium-dependent hyperpolarization of the smooth muscle of both preparations in the presence of L-NOARG and indomethacin; the hyperpolarization being smaller in the preparation from SHRSP than that from WKY. These results suggest that the release of both NO and EDHF is reduced in preparations from SHRSP. In addition, indomethacin-sensitive endothelium-derived contracting factor (EDCF) is released from both preparations; the release being increased in preparations from SHRSP.  相似文献   

3.
1. There are known differences in the sensitivity to caffeine between skeletal muscle (soleus) of normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). The present study was performed in order to examine differences in the effects of caffeine on twitch contraction between visceral striated muscle using the outer layer of the oesophagus from WKY rats and stroke-prone SHR (SHRSP). 2. Caffeine, at concentrations ranging from 0.3 to 10 mmol/L, exhibited potentiating effects on twitch contraction in preparations from both WKY rats and SHRSP. The potentiating effect of caffeine was markedly less prominent in preparations from SHRSP compared with preparations from WKY rats. 3. The rate of contraction and relaxation, the time to peak tension and 80% relaxation time were not significantly altered by caffeine at concentrations lower than 3 mmol/L in preparations from either strain. 4. With 10 mmol/L caffeine, the rate of relaxation was markedly reduced and the 80% relaxation time was prolonged, with no significant changes in the rate of contraction, in preparations from WKY rats. These changes were significantly smaller in preparations from SHRSP. 5. The duration of the action potential was greater in preparations from SHRSP than in preparations from WKY rats, although the membrane potential and the amplitude of the action potential were not significantly different between preparations from WKY rats and SHRSP. 6. Caffeine, at 10 mmol/L, prolonged the duration of the action potential in preparations from both strains. The effect of caffeine was not different between preparations from WKY rats and SHRSP. 7. The results of the present study suggest that caffeine augments release of Ca2+ from the sarcoplasmic reticulum (SR) at low concentrations and attenuates Ca2+ re-uptake at 10 mmol/L. Decreased reactivity of SR to caffeine may be a cause of the lesser potentiation of twitch contraction by caffeine in preparations from SHRSP.  相似文献   

4.
1. The effects of cyclopiazonic acid (CPA) and thapsigargin (TG), both of which are known to inhibit sarcoplasmic reticular Ca(2+)-ATPase, on the mechanical activities, intracellular Ca2+ level and electrical activities of smooth muscle of the carotid artery of stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar Kyoto rats (WKY) were compared. 2. Both CPA and TG induced elevation of tension of the smooth muscle, which was composed of a phasic and a tonic component. The level of tension attained, especially the tonic component, was greater in the preparation from SHRSP. 3. The elevation of tension was associated with an increased intracellular Ca2+ level. Both the elevation of tension and the increase in intracellular Ca2+ were diminished by the removal of extracellular Ca2+ or by the application of verapamil. 4. The resting membrane potential of the preparations from SHRSP were depolarized to a greater extent than those from WKY.CPA depolarized the smooth muscle from both SHRSP and WKY, and the final level was also more depolarized in the preparation from SHRSP. 5. These results indicate that the elevation of tension induced by these drugs is mainly due to increased Ca2+ influx through voltage-dependent Ca2+ channels, and the difference in the action between the preparation from SHRSP and that from WKY can be explained mainly by the changes in the channels. 6. Thus, differences in the action of these drugs on the tension of smooth muscle between preparations from WKY and SHRSP can mainly be explained by the difference in the membrane potential which is related to the difference in voltage-dependent Ca2+ influx.  相似文献   

5.
To elucidate whether properties of the sarcoplasmic reticulum are altered, not only in vascular smooth muscle, but also in visceral striated muscle of spontaneously hypertensive rats (SHR), caffeine-induced contractures in oesophageal striated muscle of Wistar Kyoto rats (WKY) and stroke-prone SHR (SHRSP) were compared. In both preparations, 30 mM caffeine induced a contracture with two components. The second component, which was diminished by extracellular Ca(2+) removal or Ni(2+) but not by verapamil, was much smaller in SHRSP. Both components and differences between WKY and SHRSP coincided with changes in intracellular Ca(2+). Although membrane potential was identical between these preparations, caffeine induced slight depolarization only in WKY preparations. Similar depolarization was observed with 10 mM K(+), which induced no contraction. It is suggested that the first and the second components of caffeine-induced contracture were induced by Ca(2+) released from sarcoplasmic reticulum and by Ca(2+) that entered through channels activated by sarcoplasmic reticulum Ca(2+) depletion, respectively. In SHRSP preparations, Ca(2+) from the latter pathway was clearly decreased, although this change is thought not to be related to the initiation of hypertension. These results suggest that Ca(2+) handling properties of cell membrane and sarcoplasmic reticulum are generally altered in muscles of SHRSP.  相似文献   

6.
The effects of ryanodine on twitch contraction and basal tension of oesophageal striated muscle were compared between preparations from stroke-prone spontaneously hypertensive rats (SHRSP) and normotensive Wistar Kyoto rats (WKY). Ryanodine (3 x 10(-7) M) augmented the twitch contraction in WKY preparations, butt attenuated it in SHRSP preparations. Rates of contraction and relaxation of twitch contraction, normalized to developed tension, were slightly decreased by ryanodine in both preparations. The effect of ryanodine was not different between WKY and SHRSP preparations. Ryanodine elevated the basal tension in WKY preparations but not in SHRSP preparations. Ryanodine elevated the intracellular Ca(2+) level in both preparations, but the response was significantly less in SHRSP preparations. Resting and action potentials were not significantly different between WKY and SHRSP preparations, while the duration of the action potential was significantly longer in SHRSP preparations. Ryanodine did not alter the resting and action potentials of either preparation. These results suggest that the Ca(2+) handling properties, including the ryanodine receptor, of the sarcoplasmic reticulum are genetically altered in oesophageal striated muscle of SHRSP.  相似文献   

7.
1. Simultaneous recordings of tension and [Ca2+]i during NANC-mediated relaxation were made in the rat anococcygeus muscle under various conditions. 2. In muscles precontracted with guanethidine, nitrergic stimulations at 2 Hz produced a rapid decrease in both the tension and [Ca2+]i. 3. The nitric oxide synthase inhibitor, NG-nitro-L-Arginine (NOLA, 100 μmol/L) completely abolished the decreases in the [Ca2+]i and force response of the NANC-mediated relaxation. 4. Noradrenergic-mediated contractions elicited by electrical field stimulation were potentiated by the addition of NOLA. In the absence of NOLA, the motor responses were larger in magnitude at 10 Hz stimulation than at 2 Hz. After NOLA, both the force response and the associated rise in [Ca2+]i were substantially increased in comparison to the control stimulations. Proportionately the potentiation of the 2 Hz response was of a far greater magnitude than that of the 10 Hz response. 5. The guanylate cyclase inhibitor methylene blue (10 μmol/ L), partially inhibited the force and [Ca2+]i response of the NANC relaxation. 6. Following exposure of the muscles to the sarcoplasmic reticulum Ca2+-ATPase inhibitor, cyclopiazonic acid, (10 μmol/ L) the responses to NANC stimulation were inhibited. The attenuated relaxation response displayed a bi-phasic timecourse and the Ca2+ change in comparison to that of the control was markedly smaller. In some cases, a relaxation was observed with no detectable change in the [Ca2+]i. 7. The results suggest that part of the relaxation response observed with NANC-mediated relaxation in the rat anococcygeus is dependent on Ca2+ sequestration into the sarcoplasmic reticulum. However, other Ca2+ lowering mechanisms and possible Ca2+ independent mechanisms may also contribute to the NANC relaxation response.  相似文献   

8.
1. NG-nitro-L-arginine (NO2Arg) is a guanidine nitro arginine derivative and an inhibitor of endothelium-dependent vascular relaxation. Significant rise of the systolic blood pressure was observed after 1 week administration of NO2Arg in food (0.023% in weight, about 2.8 mg of NO2Arg/rat per day) in female rats of stroke-prone spontaneously hypertensive rats (SHRSP) and normotensive Wistar-Kyoto rats (WKY). The rises were not different between SHRSP (21 mmHg) and WKY (23 mmHg). 2. In ring preparations of the thoracic aorta of NO2Arg-administered rats of both strains, relaxation by acetylcholine decreased markedly compared with those of the control rats (to 43-44%). On the contrary, glyceryltrinitrate-induced relaxation was slightly but significantly increased in the aorta of WKY after NO2Arg administration and the same tendency was observed in SHRSP. 3. The rise of blood pressure and the decrease of acetylcholine-induced relaxation suggested that NO2Arg inhibited the endothelium-dependent relaxation not only in WKY but also in SHRSP. The relaxation of the thoracic aorta preparation of SHRSP by acetylcholine was much less (ca 38%) than that of WKY; however, that of SHRSP by glyceryltrinitrate was slightly less (ca 74%), indicating that endothelium-dependent relaxation declined in vascular preparation of SHRSP. 4. The present results suggest that endothelium-dependent relaxation has some contribution on blood pressure regulation in the hypertensive state, although a decline of endothelium-dependent relaxation is evident in vascular preparation of SHRSP compared with WKY.  相似文献   

9.
1. Contractions of isolated vascular and cardiac preparations taken from rabbits with perinephritis (one kidney, one wrapped) hypertension were compared with those of preparations from control operated animals. 2. Significantly increased sensitivity to noradrenaline, which acts on alpha 1-adrenoceptors, was found in mesenteric arterial rings but not in aortic rings. The degree of hypersensitivity was the same in the presence and absence of cocaine, suggesting that there is no increase in uptake of noradrenaline into adrenergic nerves in this model of hypertension. In contrast to these agonist-induced contractions, no increased sensitivity was found to potassium chloride, suggesting that hypersensitivity is specific for receptor mediated rather than membrane potential mediated effects. 3. No hypersensitivity to noradrenaline was found in the isolated left or right atria, which suggests that the hypertension is associated with changes in excitation-contraction coupling in blood vessels but not in cardiac muscle. 4. Hypertension increased basal 45Ca uptake in the mesenteric artery but not in the aorta. However, there was no significant difference between preparations from normotensive and hypertensive rabbits in 45Ca uptake or efflux stimulated by noradrenaline or KCl. 5. Increased basal 45Ca uptake could contribute to the increased sensitivity to noradrenaline found in the mesenteric artery in rabbit perinephritis hypertension.  相似文献   

10.
1. Responses to endothelium-derived nitric oxide (EDNO), indomethacin-sensitive endothelium-derived contracting factor (EDCF) and hyperpolarization by endothelium-derived hyperpolarizing factor (EDHF) and the interaction among these factors in mesenteric arteries from 16-week-old Wistar Kyoto (WKY) rats and age-matched stroke-prone spontaneously hypertensive rats (SHRSP) were studied, observing the time-course of the response to 10-5 mol/L acetylcholine (ACh). 2. The effects of EDNO, EDCF and EDHF were blocked by Nomega-nitro-l-arginine (10-4 mol/L), indomethacin (10-5 mol/L) and a combination of apamin (5 x 10-6 mol/L) and charybdotoxin (10-7 mol/L), respectively. 3. The response to EDNO observed in the absence of EDCF and EDHF was not different between preparations from WKY rats and SHRSP. The response to EDCF observed in the absence of EDNO and EDHF was slightly greater in preparations from SHRSP. The response to EDHF in the absence of EDNO and EDCF was much greater in preparations from WKY rats. 4. Endothelium-derived contracting factor attenuated the relaxation in response to EDNO, the attenuation being greater in preparations from SHRSP. Relaxation in response to EDNO was blocked by EDHF in preparations from WKY rats, but not in preparations from SHRSP. 5. The response to EDCF was augmented by both EDNO and EDHF. The augmentation was greater in preparations from SHRSP. 6. The response to EDHF was attenuated by EDNO in preparations from WKY rats, but not in preparations from SHRSP. The response to EDHF was attenuated by EDCF in preparations from both WKY rats and SHRSP, the attenuation being greater in preparations from SHRSP. 7. These results suggest that there are interactions among these factors in terms of their release or the response to ACh in mesenteric arteries that differ between preparations from WKY rats and SHRSP. In addition, involvement of factors other than these three factors, which also differs between preparations from WKY rats and SHRSP, is suggested.  相似文献   

11.
Manganese(III)tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP), which has been known as a cell permeable superoxide dismutase mimetic, induced concentration-dependent contraction in rat carotid artery acting directly on smooth muscle. The contractile action was more prominent in the preparation from stroke-prone spontaneously hypertensive rats (SHRSP) compared with that from Wistar Kyoto rats (WKY). It was abolished by the removal of extracellular Ca(2+) or the application of verapamil. These results suggest that the MnTMPyP-induced contraction is brought about by Ca(2+) influx through voltage-dependent Ca(2+) channels (VDCC) and that the difference in VDCC is the cause of the difference in MnTMPyP action between preparations from WKY and SHRSP.  相似文献   

12.
The cardiovascular effects induced by labdane-302, a diterpene isolated from the stems of Xylopia langsdorffianna St. Hill and Tull, were evaluated in male Wistar rats. In normotensive, conscious animals, labdane-302 produced dose-dependent hypotension and tachycardia. These effects were significantly attenuated after pre-treatment with L-NAME (20 mg/kg, i.v.). In isolated mesenteric artery rings, labdane-302 (10(-10)-10(-4)M) elicited concentration-dependent relaxation of phenylephrine-induced contractions (IC50 = 5.4 +/- 1.4 microM). Endothelium removal, and pre-treatment with L-NAME (100 microM) or indomethacin (10 microM) caused significant reductions in sensitivity. Labdane-302 also caused concentration-dependent relaxation in arterial rings pre-contracted with high extracellular KCl (80 mM). In Ca2+-free depolarized preparations, labdane-302 inhibited contractions produced by cumulative increases in extracellular Ca2+ concentration. In GH3 cells, labdane-302 (100 microM) inhibited whole-cell L-type Ca2+ currents by approximately 50%. These results demonstrate that labdane-302 causes hypotension through peripheral vasodilation, mediated in part by NO and PGI2 and by blockade of Ca2+ entry through L-type Ca2+ channels.  相似文献   

13.
羟苯氨酮激活家兔血管平滑肌细胞钙敏感钾通道   总被引:1,自引:0,他引:1  
目的研究羟苯氨酮(oxyphenamone,Oxy)扩张血管作用机理。方法用全细胞膜片钳技术,监测家兔肠系膜阻力血管平滑肌细胞钙敏感钾通道电流变化以及Oxy对其的影响。结果0.1 μmol·L-1 Oxy明显增加钙敏感钾通道电流,冲洗后恢复至给药前水平;0.01~10 μmol·L-1 Oxy明显增加钙敏感钾通道电流,且呈现浓度依赖性。结论 Oxy呈浓度依赖性和可逆性的增大血管平滑肌细胞钙敏感钾通道电流。  相似文献   

14.
The effect of depleting intracellular Ca2+ stores on flow-induced vascular dilatation and the mechanism responsible for the vasodilatation were examined in rat isolated small mesenteric arteries. The arteries were pressurized to 50 mmHg and preconstricted with phenylephrine. Intraluminal flow reversed the effect of phenylephrine, resulting in vasodilatation. Flow dilatation consisted of an initial transient peak followed by a sustained plateau phase. The magnitude of dilatation was markedly reduced by removing Ca2+ from the intraluminal flow medium.Depletion of intracellular Ca2+ stores with either cyclopiazonic acid (CPA, 2 microM) or 1,4-dihydroxy-2,5-di-tert-butylbenzene (BHQ, 10 microM) significantly augmented the magnitude of flow dilatation. Flow-induced endothelial cell Ca2+ influx was also markedly enhanced in arteries pretreated with CPA or BHQ.Flow-induced dilatation was insensitive to Nw-nitro-L-arginine methyl ester (100 microM) plus indomethacin (3 microM) or to oxyhemoglobin (3 microM), but was markedly reduced by 30 mM extracellular K+ or 2 mM tetrabutylammonium (TBA), suggesting an involvement of EDHF. Catalase at 1200 U ml-1 abolished the flow-induced dilatation, while the application of exogenous H2O2 (90-220 microM) induced relaxation in phenylephrine-preconstricted arteries. Relaxation to exogenous H2O2 was blocked in the presence of 30 mM extracellular K+, and H2O2 (90 microM) hyperpolarized the smooth muscle cells, indicating that H2O2 can act as an EDHF. In conclusion, flow-induced dilatation in rat mesenteric arteries can be markedly enhanced by prior depletion of intracellular Ca2+ stores. Furthermore, these data are consistent with a role for H2O2 as the vasodilator involved.  相似文献   

15.
1. The effects of a high calcium diet (2.5%) on blood pressure, electrolyte balance, plasma and tissue atrial natriuretic peptide (ANP), cytosolic free Ca2+ concentration ([Ca2+]i), and arterial smooth muscle responses were studied in one-kidney deoxycorticosterone (DOC)-NaCl hypertensive Wistar rats. 2. Calcium supplementation for 8 weeks markedly attenuated the development of DOC-NaCl hypertension and the associated cardiac hypertrophy, and prevented the DOC-NaCl-induced sodium-volume retention as judged by reduced plasma Na+, and decreased plasma and ventricular ANP concentrations in high calcium-fed DOC-NaCl rats. However, calcium supplementation did not affect the DOC-NaCl-induced rise in platelet [Ca2+]i. 3. Smooth muscle contractions of isolated mesenteric arterial rings in response to depolarization by K+ (20-30 mM) were enhanced in DOC-NaCl-treated rats, this enhancement being abolished by concurrent oral calcium loading. The Ca2+ entry blocker nifedipine (10 nM) inhibited the contractions induced by K+ (30-125 mM) more effectively in DOC-NaCl rats than in controls, while the inhibition in calcium-loaded DOC-NaCl rats was significantly greater than in controls only with 30 mM K+. 4. The contractions of mesenteric arterial rings induced by omission of K+ from the organ baths were used to evaluate cell membrane permeability to ions. In chemically denervated rings the onset of the gradual rise in contractile force in K(+)-free medium occurred earlier, and the rate of the contraction was faster in DOC-NaCl-treated rats than in controls and high calcium-fed DOC-NaCl rats. Smooth muscle relaxation induced by 0.5 mM K+ upon K(+)-free contractions was clearly slower in DOC-NaCl rats than in controls and calcium-supplemented DOC-NaCl rats. 5. The functions of arterial smooth muscle Na+, Ca2+ exchange and Ca(2+)-ATPase were evaluated by the aortic contractions elicited by low Na+ medium, and the subsequent relaxation responses induced by Ca(2+)-free solution (in the presence of 5 mM caffeine, 1 microM nifedipine and 10 microM phentolamine). The rate of aortic low Na+ contractions (evaluating Ca2+ influx via Na+, Ca2+ exchange), as well as that of subsequent relaxations was slower in DOC-NaCl-treated rats than in controls, whether the relaxation was induced in normal (144.0 mM) or low (1.2 mM) organ bath Na+ concentration (reflecting Ca2+ extrusion by both Ca(2+)-ATPase and Na+, Ca2+ exchange, and by Ca(2+)-ATPase alone, respectively). However, in calcium-supplemented DOC-NaCl rats the aortic responses did not differ from control.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
1. Azumolene sodium is a new water-soluble derivative of dantrolene sodium that also acts as a skeletal-muscle relaxant. 2. Azumolene (6 mumol/L) inhibited the hypercontractility induced separately by 3% halothane, 2 mmol/L caffeine and 80 mmol/L potassium chloride in isolated malignant hyperpyrexia (MH)-susceptible muscle. Azumolene was equipotent with dantrolene in inhibiting the abnormal responses. 3. Like dantrolene, azumolene (6 mumol/L) not only prevented but reversed the abnormal contractures induced by halothane and caffeine. Contracture responses to caffeine were also modified by azumolene in control preparations. 4. In the presence of maximal effective concentrations of dantrolene, azumolene failed to further relax caffeine-induced contractures, and the converse was also true. This was observed in both MH-susceptible and control preparations. 5. Sarcoplasmic reticulum Ca(2+)-dependent ATPase activity from MH-susceptible and control muscle was not affected by azumolene. 6. Like dantrolene, azumolene may inhibit Ca2+ release directly from the sarcoplasmic reticulum and be of therapeutic value for the treatment of MH.  相似文献   

17.
The time course of the response to prolonged application of acetylcholine in mesenteric arteries from stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar Kyoto rats (WKY) was compared. Only a relaxing response, which was blocked by N(omega)-nitro-L-arginine (L-NOARG), was observed after the prolonged application of a low concentration of acetylcholine (10(-8) M) in both preparations; the response was impaired in SHRSP preparations. Prolonged application of a high concentration of acetylcholine (10(-5) M) induced a second contractile response after a first relaxing response in SHRSP preparations under basal conditions and in WKY preparations in the presence of L-NOARG. This contractile response was attenuated by indomethacin. In the presence of a combination of apamin and charybdotoxin, the relaxing response to the high concentration of acetylcholine was reduced and a contractile response, which was abolished by indomethacin, appeared. In the presence of all of these blockers, a contractile response, which was blocked by cyclo(D-alpha-aspartyl-L-propyl-D-valyl-L-leucyl-D-tryptophyl) (BQ-123), was observed in preparations from WKY but not in preparations from SHRSP. Results indicate that prolonged application of acetylcholine in rat mesenteric arteries induces the release of endothelium-derived relaxing, contracting, hyperpolarizing factors and endothelin-1, and that the mode of action differs between preparations from WKY and SHRSP.  相似文献   

18.
BACKGROUND AND PURPOSE: The present study investigated whether calcium-activated K+ channels are involved in acetylcholine-evoked nitric oxide (NO) release and relaxation. EXPERIMENTAL APPROACH: Simultaneous measurements of NO concentration and relaxation were performed in rat superior mesenteric artery and endothelial cell membrane potential and intracellular calcium ([Ca2+]i) were measured. KEY RESULTS: A combination of apamin plus charybotoxin, which are, respectively, blockers of small-conductance and of intermediate- and large-conductance Ca2+ -activated K channels abolished acetylcholine (10 microM)-evoked hyperpolarization of endothelial cell membrane potential. Acetylcholine-evoked NO release was reduced by 68% in high K+ (80 mM) and by 85% in the presence of apamin plus charybdotoxin. In noradrenaline-contracted arteries, asymmetric dimethylarginine (ADMA), an inhibitor of NO synthase inhibited acetylcholine-evoked NO release and relaxation. However, only further addition of oxyhaemoglobin or apamin plus charybdotoxin eliminated the residual acetylcholine-evoked NO release and relaxation. Removal of extracellular calcium or an inhibitor of calcium influx channels, SKF96365, abolished acetylcholine-evoked increase in NO concentration and [Ca2+]i. Cyclopiazonic acid (CPA, 30 microM), an inhibitor of sarcoplasmic Ca2+ -ATPase, caused a sustained NO release in the presence, but only a transient increase in the absence, of extracellular calcium. Incubation with apamin and charybdotoxin did not change acetylcholine or CPA-induced increases in [Ca2+]i, but inhibited the sustained NO release induced by CPA. CONCLUSIONS AND IMPLICATIONS: Acetylcholine increases endothelial cell [Ca2+]i by release of stored calcium and calcium influx resulting in activation of apamin and charybdotoxin-sensitive K channels, hyperpolarization and release of NO in the rat superior mesenteric artery.  相似文献   

19.
BACKGROUND AND PURPOSE: Although azelnidipine is used clinically to treat hypertension its effects on its target cells, Ca2+ channels, in smooth muscle have not been elucidated. Therefore, its effects on spontaneous contractions and voltage-dependent L-type Ca2+ channels were investigated in guinea-pig portal vein. EXPERIMENTAL APPROACH: The inhibitory potency of azelnidipine on spontaneous contractions in guinea-pig portal vein was compared with those of other dihydropyridine (DHP)-derived Ca antagonists (amlodipine and nifedipine) by recording tension. Also its effects on voltage-dependent nifedipine-sensitive inward Ba2+ currents (IBa) in smooth muscle cells dispersed from guinea-pig portal vein were investigated by use of a conventional whole-cell patch-clamp technique. KEY RESULTS: Spontaneous contractions in guinea-pig portal vein were reduced by all of the Ca antagonists (azelnidipine, Ki = 153 nM; amlodipine, Ki = 16 nM; nifedipine, Ki = 7 nM). In the whole-cell experiments, azelnidipine inhibited the peak amplitude of IBa in a concentration- and voltage-dependent manner (-60 mV, Ki = 282 nM; -90 mV, Ki = 2 microM) and shifted the steady-state inactivation curve of IBa to the left at -90 mV by 16 mV. The inhibitory effects of azelnidipine on IBa persisted after 7 min washout at -60 mV. In contrast, IBa gradually recovered after being inhibited by amlodipine, but did not return to control levels. Both azelnidipine and amlodipine caused a resting block of IBa at -90 mV. Only nifedipine appeared to interact competitively with S(-)-Bay K 8644. CONCLUSIONS AND IMPLICATIONS: These results suggest that azelnidipine induces long-lasting vascular relaxation by inhibiting voltage-dependent L-type Ca2+ channels in vascular smooth muscle.  相似文献   

20.
Flunarizine relaxed isolated canine arteries precontracted with prostaglandin (PG) F2 alpha, epithio-methano-thromboxane A2 and K+; the relaxation was in the order of cerebral greater than renal greater than mesenteric = coronary arteries, when contracted with PGF2 alpha or the thromboxane A2 analogue. Flunarizine-induced relaxation was unaffected by treatment with atropine, propranolol, cimetidine, cimetidine, chlorpheniramine, aminophylline and indomethacin, and by removal of endothelium. Under normoxia, flunarizine attenuated contractions elicited by Ca2+ in the K+-stimulated cerebral and mesenteric arteries that had been previously exposed to Ca2+-free media to a greater extent than that in PGF 2 alpha-stimulated preparations. The Ca2+-induced contraction in cerebral arteries was more sensitive to flunarizine than that in mesenteric arteries. Contractions caused by PGF2 alpha in Ca2+-free media were not influenced by flunarizine. In cerebral and mesenteric arteries that had been previously exposed to Ca2+-free media and severe hypoxia and then stimulated by PGF2 alpha and Ca2+, reoxygenation produced a persistent contraction. Flunarizine suppressed the reoxygenation induced-contraction. It is concluded that flunarizine dilates cerebral arteries predominantly over the other arteries; the vasodilatation appears to derive from an interference with the transmembrane Ca2+ influx that occurs through a voltage-dependent process and, to a lesser extent, receptor-operated channels, but not with the Ca2+ release from stored sites. Contraction induced by reoxygenation is expected to be due mainly to the transmembrane influx of Ca2+, which is also suppressed by flunarizine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号