首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bake S  Sohrabji F 《Endocrinology》2004,145(12):5471-5475
Because both brain and its vasculature are potent targets of estrogen, age-related decline in estrogen levels or alterations in estrogen receptors may disrupt the integrity of the blood-brain barrier, leading to increased influx of toxic products. The present study tested the hypothesis that the blood-brain barrier is more permeable in reproductive senescent animals and will respond differently to estrogen replacement as compared with young adult females. Young adult and reproductive senescent rats were ovariectomized and replaced with an estrogen or control pellet. We found a 2- to 4-fold increase in extravasation of dye in the olfactory bulb and hippocampus of reproductive senescent females compared with young adults. Furthermore, estrogen significantly reduced dye extravasation in both olfactory bulb and hippocampus in young adults compared with age-matched counterparts that received a control pellet. However, estrogen replacement increased dye extravasation in the hippocampus of reproductive senescent females compared with age-matched control-pellet replaced animals, whereas dye extravasation was unchanged by estrogen in the olfactory bulb of senescent females. There were no age- and estrogen-related differences in dye accumulation in the pituitary gland, which is a circumventricular organ. These results support the hypothesis that the hormonal decline that marks reproductive senescence leads to increased permeability of the blood-brain barrier, which is further exacerbated by estrogen treatment in specific regions.  相似文献   

2.
Age and estrogen levels alter blood-brain barrier (BBB) tight junction (TJ) regulation, impacting brain homeostasis and pathological outcomes. This examination evaluated BBB TJ and estrogen receptor (ER) protein expression changes in young (8-10 week) and middle-aged (10-12 month) ovariectomized female Fisher-344 rats with chronic 17β-estradiol or placebo treatment. Middle-aged rats showed decreased protein expression of occludin with 17β-estradiol (55 kDa band) or placebo (45, 55, 60 kDa bands) treatment compared to respective young. In young animals, 17β-estradiol treatment increased expression of the occludin 55 kDa band over placebo; however, this effect was lost in the middle-aged animals. In both young and middle-aged animals, expression of claudin-5 (23, 32 kDa bands) and ERα (66 kDa) increased with 17β-estradiol treatment, while junctional adhesion molecule-A showed no change across all groups. However, ERα expression (66 kDa) was significantly reduced in the middle-aged animals compared to young placebo treated animals. Measurement of BBB TJ permeability via in situ perfusion of 14 C-sucrose showed no change with age or treatment. Our results show that increasing age and 17β-estradiol treatment alters the expression of ERα and distinct BBB TJ protein isoforms without altering functional paracellular permeability.  相似文献   

3.
Beard RS  Reynolds JJ  Bearden SE 《Blood》2011,118(7):2007-2014
Hyperhomocysteinemia (HHcy) increases permeability of the blood-brain barrier, but the mechanisms are undetermined. Homocysteine (Hcy) is an agonist of the neuronal N-methyl-D-aspartate receptor (NMDAr). We tested the hypothesis that HHcy disrupts the blood-brain barrier by an NMDAr-dependent mechanism in endothelium. In brain microvascular endothelial cells, there was no change in expression of the adherens junction protein VE-cadherin with Hcy treatment, but there was a significant decrease in the amount of β-catenin at the membrane. Moreover, Hcy caused nuclear translocation of β-catenin and attachment to the promoter for the tight junction protein claudin-5, with concomitant reduction in claudin-5 expression. Using a murine model of HHcy (cbs(+/-)), treatment for 2 weeks with an NMDAr antagonist (memantine) rescued cerebrovascular expression of claudin-5 and blood-brain barrier permeability to both exogenous sodium fluorescein and endogenous IgG. Memantine had no effect on these parameters in wild-type littermates. The same results were obtained using an in vitro model with brain microvascular endothelial cells. These data provide the first evidence that the NMDAr is required for Hcy-mediated increases in blood-brain barrier permeability. Modulating cerebral microvascular NMDAr activity may present a novel therapeutic target in diseases associated with opening of the blood-brain barrier in HHcy, such as stroke and dementia.  相似文献   

4.
Barrier properties of testis microvessels.   总被引:2,自引:0,他引:2       下载免费PDF全文
The blood-testis barrier is believed to be constituted by tight junctions between Sertoli cells in seminiferous tubules and possibly by myoid cells that encircle these tubules. We now show that testis microvessels are endowed with several markers of barrier properties of brain microvessels, such as the glucose transporter, P-glycoprotein, and gamma-glutamyl transpeptidase. Quantitative EM studies show that the endothelium in testis, as in brain, is continuous and has long junctional profiles and few vesicles. However, a small proportion of testis capillaries have expansions in their junctional clefts suggestive of patent paracellular channels, which may explain their higher permeability. Because barrier features are thought to be induced and/or maintained in brain microvessels by astrocytes, we assessed whether astrocyte-like cells exist in the testis. We found that the intertubular Leydig cells, adjacent to microvessels, express the astrocyte markers: glial fibrillary acidic protein, glutamine synthetase, and S-100 protein. We suggest that the testis endothelium contributes to the blood-testis barrier and that these endothelial barrier features are influenced by Leydig cells. We believe that the endothelial and the epithelial (Sertoli) components of the blood-testis barrier are "in series" and complement each other in achieving a stable milieu for spermatogenesis.  相似文献   

5.
The intestinal epithelium serves as a major protective barrier between the mammalian host and the external environment. Here we show that the transmembrane serine protease matriptase plays a pivotol role in the formation and integrity of the intestinal epithelial barrier. St14 hypomorphic mice, which have a 100-fold reduction in intestinal matriptase mRNA levels, display a 35% reduction in intestinal transepithelial electrical resistance (TEER). Matriptase is expressed during intestinal epithelial differentiation and colocalizes with E-cadherin to apical junctional complexes (AJC) in differentiated polarized Caco-2 monolayers. Inhibition of matriptase activity using a specific peptide inhibitor or by knockdown of matriptase by siRNA disrupts the development of TEER in barrier-forming Caco-2 monolayers and increases paracellular permeability to macromolecular FITC-dextran. Loss of matriptase was associated with enhanced expression and incorporation of the permeability-associated, “leaky” tight junction protein claudin-2 at intercellular junctions. Knockdown of claudin-2 enhanced the development of TEER in matriptase-silenced Caco-2 monolayers, suggesting that the reduced barrier integrity was caused, at least in part, by an inability to regulate claudin-2 expression and incorporation into junctions. We find that matriptase enhances the rate of claudin-2 protein turnover, and that this is mediated indirectly through an atypical PKCζ-dependent signaling pathway. These results support a key role for matriptase in regulating intestinal epithelial barrier competence, and suggest an intriguing link between pericellular serine protease activity and tight junction assembly in polarized epithelia.  相似文献   

6.
This study aimed to investigate the expression of miRNA-21 during intestinal barrier dysfunction induced by intestinal ischemia reperfusion. Forty SPF SD rats were divided into 5 groups randomly. Intestinal ischemia-reperfusion injury (IRI) was induced by mesenteric artery occlusion for 1 h and reperfusion for 1 h, and the rats were sacrificed at 1, 3, 6 and 12 h after reperfusion. Fresh intestine tissues were immediately isolated for the measurement of transepithelial electrical resistance (TER). The levels of cytokines, ICAM-1, DAO, iFABP and MPO in serum were determined by ELISA. Intestinal tight junction proteins occludin and claudin-1 were detected by immunofluorescence analysis and Western blot analysis. miR-21 expression in intestinal tissues was measured by RT-PCR. Compared with sham group, the levels of pro-inflammatory cytokines TNF-α and IL-6 and ICAM-1, DAO, iFABP and MPO increased while IL-10 level decreased in intestinal ischemia-reperfusion group. In addition, the levels of intestinal tight junction proteins occludin and claudin-1 decreased while miR-21 level increased in intestinal ischemia-reperfusion group, compared with sham group. In conclusion, miR-21 expression is upregulated during intestinal barrier dysfunction induced by IRI. miR-21 may play an important role in the regulation of intestinal barrier function.  相似文献   

7.
Claudin-5 levels are reduced in human end-stage cardiomyopathy   总被引:1,自引:0,他引:1  
Claudin-5 is a transmembrane cell junction protein that is a component of tight junctions in endothelial cell layers. We have previously shown that claudin-5 also localizes to lateral membranes of murine cardiomyocytes at their junction with the extracellular matrix. Claudin-5 levels are specifically reduced in myocytes from a mouse model of muscular dystrophy with cardiomyopathy. To establish whether claudin-5 is similarly specifically reduced in human cardiomyopathy, we compared the levels of claudin-5 with other cell junction proteins in 62 cardiomyopathic end-stage explant samples. We show that claudin-5 levels are reduced in at least 60% of patient samples compared with non-failing controls. Importantly, claudin-5 reductions can be independent of connexin-43, a gap junction protein previously reported to be reduced in failing heart samples. Other cell junction proteins including α-catenin, β-catenin, γ-catenin, desmoplakin, and N-cadherin are reduced in only a small number of failing samples and only in combination with reduced claudin-5 or connexin-43 levels. We also show that reduced claudin-5 levels can be present independently from dystrophin alterations, which are known to be capable of causing and resulting from cardiomyopathy. These data are the first to show alterations of a tight junction protein in human cardiomyopathy samples and suggest that claudin-5 may participate in novel mechanisms in the pathway to end-stage heart failure.  相似文献   

8.
Remodeling of adherens junction, gap junction, and desmosomal proteins at the intercalated discs of cardiomyocytes in heart characterizes several animal models of cardiomyopathy, especially dilated cardiac myopathy (DCM). In this study, we show that the tight junction protein, claudin-5, is present in cardiac muscle and localizes to the lateral membranes of cardiomyocytes in normal mice. We further examined claudin-5 in utrophin/dystrophin-deficient (double knockout, dko) mice, a mouse model of muscular dystrophy with cardiomyopathy, and found that claudin-5 mRNA and protein levels are decreased in dko hearts as compared with normal. Intercalated disc cell junction proteins, and another tight junction protein, zonula occludens-1 (ZO-1), are not altered in the dko mouse. Ultrastructural data from dko hearts also shows that the lateral membranes of cardiomyocytes exhibit an abnormal wavy appearance. These data demonstrate that claudin-5 is specifically altered in dko hearts, suggesting that alterations of the lateral membranes of cardiomyocytes, rather than intercalated discs, are associated with cardiomyopathy in the dko mouse.  相似文献   

9.
目的:探讨水通道蛋白3(aquaporin 3,AQP3)对肠黏膜上皮细胞间紧密连接(tight junction,TJ)的影响,并探讨其可能的作用机制.方法:应用Caco-2细胞系在体外构建肠黏膜上皮屏障,构建沉默AQP3的shRNA慢病毒载体,建立稳定转染细胞系.实验分为3组:空白对照组(BLANK)、阴性对照组(NC)、AQP3干扰组(AQP3 shRNA).Western blot验证TJ相关蛋白Occludin以及Claudin-1的表达情况;并且采用免疫细胞化学法观察TJ相关蛋白的分布和结构变化.结果:RT-PCR及Western blot结果显示在Caco-2细胞系中成功沉默AQP3的表达.干扰组与对照组相比下降约75%.Western blot结果显示AQP3干扰组TJ相关蛋白Occludin以及Claudin-1的表达明显降低.免疫细胞化学结果显示Caco-2细胞间Occludin以及Claudin-1主要表达在细胞膜和/或胞浆中,Occludin和Claudin-1细胞间棕褐色颗粒减少,结构变模糊.相邻Caco-2细胞间TJ结构遭到破坏.结论:靶向AQP3的shRNA技术可以引起TJ的结构变化和相关蛋白的表达分布的异常.  相似文献   

10.
Age-related changes in ischemic tolerance in male and female mouse hearts   总被引:5,自引:0,他引:5  
Aging is associated with reduced tolerance to ischemic insult, and genesis of this intolerant phenotype is poorly understood. We characterized effects of aging and gender on cardiovascular function and cell damage during 20 min ischemia and 60 min reperfusion in isolated hearts from young adult (2-4 months), mature adult (8 months), middle-aged (12 months), aged (18 months), and senescent (24-28 months) C57/Bl6 mice. Aging substantially impaired recovery of ventricular contractility, with this change primarily evident within 12 months of age. In males ventricular developed pressure recovered to 72 +/- 8 mmHg in young hearts vs. only 44 +/- 7, 30 +/- 3, 24 +/- 5, and 27 +/- 4 mmHg in mature, middle-aged, aged and senescent hearts, respectively. This pattern was largely due to worsened diastolic dysfunction. Coronary flow recovered to below pre-ischemic levels in all ages, correlating with contractile recovery. However, coronary dysfunction (impaired responses to 2-chloroadenosine and ADP) was unaltered by senescence. Lactate dehydrogenase (LDH) loss, a marker for oncosis, increased to middle-age (approximately twofold), then fell with further aging to a value no longer different from that in young adult hearts. Similar patterns of change were observed in female hearts, although LDH efflux was significantly lower in mature adult and middle-aged female vs. male hearts, with functional tolerance also tending to be greater at these ages (though not achieving significance). Overall, our data reveal age-related ischemic intolerance develops well before senescence, being primarily evident by "middle-age". Phenotypic changes appear selective for myocardial vs. vascular injury, and functional vs. oncotic injury. Similar changes occur in males and females, though there is evidence of a protected phenotype in mature to middle-aged female vs. male hearts.  相似文献   

11.
BACKGROUND & AIMS: Tight junctions are crucial determinants of barrier function in polarized intestinal epithelia and are regulated by Rho guanosine triphosphatase. Rho kinase (ROCK) is a downstream effector of Rho. METHODS: A specific inhibitor of ROCK, Y-27632, was used to examine the role of ROCK in the regulation of tight junctions in model intestinal (T84) cells by electrophysiologic, biochemical, morphologic, and molecular biologic approaches. RESULTS: ROCK inhibition induced reorganization of apical F-actin structures and enhanced paracellular permeability but did not alter the distribution or detergent solubility of tight junction proteins. Confocal microscopy showed colocalization of a subpool of ROCK with the tight junction protein zonula occludens 1. Inhibition of ROCK function by a dominant negative mutant of ROCK also produced reorganization of apical F-actin structures without disruption of tight junctions. ROCK inhibition in calcium switch assays showed that ROCK is necessary for the assembly of tight and adherens junctions. Upon calcium repletion, occludin, zonula occludens 1, and E-cadherin failed to redistribute to the intercellular junctions; assembly of the apical F-actin cytoskeleton was prevented; and barrier function failed to recover. CONCLUSIONS: We suggest that ROCK regulates intact tight junctions via its effects on the F-actin cytoskeleton. ROCK is also critical for assembly of the apical junctional proteins and the F-actin cytoskeleton organization during junctional formation.  相似文献   

12.
OBJECTIVE: Proinflammatory cytokines are known to affect the follicular epithelium in autoimmune thyroid disease. Here we investigated the effect of interferon-gamma (IFN-gamma) on the barrier function of primary cultured human thyrocytes. DESIGN: Graves' thyroid follicle segments were cultured as a tight and polarised monolayer on the filter of a bicameral chamber, thereby allowing the in vivo epithelial characteristics to be maintained. METHODS: Transepithelial electrical resistance was measured with a Millicell ERS ohmmeter. The tight junction proteins claudin-1 and occludin were analysed by immunofluorescence and Western blotting. Cell morphology was studied by transmission electron microscopy. RESULTS: Thyrotrophin (TSH; 1 mU/ml) promoted the development of a tight epithelium monitored as a persistent increase in the transepithelial resistance to about 800 omega x cm2. IFN-gamma (100 U/ml), on the other hand, decreased the resistance to 60-150 omega x cm2 after 48 h. In IFN-gamma-treated cells the expression of claudin-1, but not that of occludin, was decreased along with a diminished intracellular and cell surface immunostaining. In addition, claudin-1 was disrupted at cell-cell contacts. IFN-gamma also caused profound cell shape changes and a multilayered cellular organisation, without ultrastructural or biochemical (caspase-3 activity) signs of cytotoxicity. TSH was unable to counteract the effects of IFN-gamma. CONCLUSIONS: IFN-gamma destroys the barrier function of filter-cultured human thyroid epithelial cells. The loss of barrier involves down-regulation and an altered distribution of claudin-1. This novel effect of IFN-gamma on target cells in thyroid autoimmunity might be of pathophysiological relevance to the exposure of hidden autoantigens.  相似文献   

13.
Background and aims As integral membrane proteins, claudins form tight junctions together with occludin. Several claudins were shown to be up-regulated in various cancer types. We performed an expression analysis of genes encoding tight junction proteins to display differential gene expression on RNA and protein level and to identify and validate potential targets for colorectal cancer (CRC) therapy. Patients and methods Amplified and biotinylated cRNA from 30 microdissected CRC specimen and corresponding normal tissues was hybridized to Affymetrix U133set GeneChips. Quantification of differential protein expression of claudin-1, -8 and -12 between normal and corresponding tumour tissues was performed by Western blot analyses. Paraffin-embedded CRC tissue samples, colon cancer cell lines and normal tissue microarray were analysed for protein expression of claudin-1 by immunohistochemistry (IHC). Results Claudin-1 (CLDN1) and -12 (CLDN12) are frequently overexpressed in CRC, whereas claudin-8 (CLDN8) shows down-regulation in tumour tissue on RNA level. Quantification of proteins confirmed the overexpression of claudin-1 in tumour tissues, whereas changes of claudin-8 and -12 were not significantly detectable on protein level. IHC confirmed the markedly elevated expression level of claudin-1 in the majority of CRC, showing membranous and intracellular vesicular staining. Conclusions Differential expression of genes encoding claudins in CRC suggests that these tight junction proteins may be associated to and involved in tumorigenesis. CLDN1 is frequently up-regulated in large proportion of CRC and may represent potential target molecule for blocking studies in CRC.  相似文献   

14.
The chemokine monocyte chemoattractant protein (MCP-1) is recognized to mediate extravasation of mononuclear leukocytes into the brain during a variety of neuroinflammatory conditions. In large part produced by parenchymal neural cells during these disease states, it is unclear how this chemokine can stimulate the migration of circulating leukocytes that lie behind the highly impermeant blood-brain barrier (BBB). Based on the premise that disruption of tight junctions (TJs) could foster leukocyte extravasation, experiments were conducted to test the hypothesis that MCP-1 alters the expression and/or distribution of the TJ-associated proteins zonulae occludens-1 (ZO-1) and occludin in brain microvascular endothelial cells (BMEC) comprising the BBB. Exposure to MCP-1 caused a loss in immunostaining of ZO-1 at inter-endothelial junctional regions in both cultured BMEC and isolated brain microvessels, as well as a similar effect on occludin in cultured BMEC, but did not alter occludin staining in microvessels. In cellular fractionation experiments, ZO-1 associated predominantly with the detergent-resistant cytoskeletal framework (CSK) in both cultured BMEC and brain microvessels, while a slimmer majority of occludin partitioned with the CSK. Following MCP-1 exposure, ZO-1 was reduced in the CSK fraction of cultured BMEC and microvessels, with a shift of ZO-1 to the detergent-soluble fraction in both cases. Occludin exhibited a similar pattern of MCP-1-induced loss and shift from the CSK in cultured BMEC, but remained nearly constant in microvessels. Lastly, expression of caveolin-1, a major structural component of membrane microdomains thought to be functionally complexed with TJs, was additionally altered by MCP-1 treatment of both cultured BMEC and microvessels. These results indicate that, in addition to its chemotactic activity, MCP-1 might alter BBB integrity during CNS inflammation.  相似文献   

15.
Inflammatory bowel disease (IBD) is associated with Th1/Th2 cytokine dysregulation, leukocyte extravasation, and tissue edema, but the mechanisms for cytokine-mediated vascular dysfunction are not understood. To investigate how cytokines might control edema in IBD, we determined vascular permeability and IFN-gamma expression in two models of murine colitis: SCID mice reconstituted with CD45RB(high T-lymphocytes (CD45RB(high)/SCID mice), and interleukin-10 gene deficient (IL-10(-/-)) mice. We also investigated the in vitro effects of IFN-gamma and IL-10 on human endothelial solute barrier and junction protein expression. Vascular permeability in CD45RB(high)/SCID and IL-10(-/-) mice was quantified using tissue (131)I-IgG accumulation. The IFN-gamma message was quantified using the ribonuclease protection assay. Endothelial barrier integrity in vitro was measured by transmonolayer electrical resistance, and junctional proteins were examined by immunoblotting and fluorescence microscopy. Both CD45RB(high)/SCID and IL-10(-/-) mice exhibit enhanced colonic microvascular leakage and IFN-gamma message levels compared to their respective controls. In vitro, IFN-gamma also reduced endothelial barrier (monolayer electrical resistance, increased albumin permeability) and reduced tight junction (occludin) expression and staining. These effects were reversed by pretreatment of monolayers with IL-10. Therefore, in vivo IFN-gamma and IL-10 may modulate microvascular leakage in IBD partly by controlling the expression of intestinal endothelial tight junctional proteins.  相似文献   

16.
Breakdown of the blood-brain barrier (BBB) is an early and significant event in CNS inflammation. Astrocyte-derived VEGF-A has been implicated in this response, but the underlying mechanisms remain unresolved. Here, we identify the endothelial transmembrane tight junction proteins claudin-5 (CLN-5) and occludin (OCLN) as targets of VEGF-A action. Down-regulation of CLN-5 and OCLN accompanied up-regulation of VEGF-A and correlated with BBB breakdown in experimental autoimmune encephalomyelitis, an animal model of CNS inflammatory disease. In cultures of brain microvascular endothelial cells, VEGF-A specifically down-regulated CLN-5 and OCLN protein and mRNA. In mouse cerebral cortex, microinjection of VEGF-A disrupted CLN-5 and OCLN and induced loss of barrier function. Importantly, functional studies revealed that expression of recombinant CLN-5 protected brain microvascular endothelial cell cultures from a VEGF-induced increase in paracellular permeability, whereas recombinant OCLN expressed under the same promoter was not protective. Previous studies have shown CLN-5 to be a key determinant of trans-endothelial resistance at the BBB. Our findings suggest that its down-regulation by VEGF-A constitutes a significant mechanism in BBB breakdown.  相似文献   

17.
BACKGROUND: Epithelial barrier function is impaired in Crohn's disease. AIM: To define the underlying cellular mechanisms with special attention to tight junctions. METHODS: Biopsy specimens from the sigmoid colon of patients with mild to moderately active or inactive Crohn's disease were studied in Ussing chambers, and barrier function was determined by impedance analysis and conductance scanning. Tight junction structure was analysed by freeze fracture electron microscopy, and tight junction proteins were investigated immunohistochemically by confocal laser scanning microscopy and quantified in immunoblots. Epithelial apoptosis was analysed in terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelling and 4',6-diamidino-2-phenylindole staining. RESULTS: Patients with active Crohn's disease showed an impaired intestinal barrier function as indicated by a distinct reduction in epithelial resistance. As distribution of conductivity was even, focal epithelial lesions (eg, microerosions) did not contribute to barrier dysfunction. Instead, freeze fracture electron microscopy analysis showed reduced and discontinuous tight junction strands. Occludin and the sealing tight junction proteins claudin 5 and claudin 8 were downregulated and redistributed off the tight junction, whereas the pore-forming tight junctions protein claudin 2 was strongly upregulated, which constitute the molecular basis of tight junction changes. Other claudins were unchanged (claudins 1, 4 and 7) or not detectable in sigmoid colon (claudins 11, 12, 14, 15 and 16). Claudin 2 upregulation was less pronounced in active Crohn's disease compared with active ulcerative colitis and was inducible by tumour necrosis factor alpha. As a second source of impaired barrier function, epithelial apoptosis was distinctly increased in active Crohn's disease (mean (SD) 5.2 (0.5)% v 1.9 (0.2)% in control). By contrast, barrier function, tight junction proteins and apoptosis were unaffected in Crohn's disease in remission. CONCLUSION: Upregulation of pore-forming claudin 2 and downregulation and redistribution of sealing claudins 5 and 8 lead to altered tight junction structure and pronounced barrier dysfunction already in mild to moderately active Crohn's disease.  相似文献   

18.
BACKGROUND: It remains uncertain whether obesity is an independent risk factor for coronary heart disease in young adults, as well as adults, in Japan. METHODS AND RESULTS: In the present study, 1,260 cases of acute myocardial infarction (AMI) and 3,775 community controls were recruited from the AMI-Kyoto Multi-Center Risk Study and Kyoto Citizen's Health and Nutrition Study, respectively. Obesity and other risk factors were retrospectively examined between cases and controls in each subgroup of young males (20-40 years), middle-aged males or females (40-60 years), older males or females (60-80 years), and very old males or females (80-100 years). In young, middle-aged, and older males, as well as in older females, cases had a higher body mass index (BMI) than controls. In young males, as well as in middle-aged and older females, cases had a higher prevalence of smoking than controls. Except for very old males, the prevalences of hypercholesterolemia, hypertension, and diabetes mellitus were higher in each subgroup of cases than in controls. Multivariate logistic regression analysis revealed that obesity (BMI >or=25) was an independent risk for AMI in young and middle-aged males, but not in females, whereas smoking was an independent risk for AMI in middle-aged and older females as well as in older males. CONCLUSIONS: Obesity is significantly associated with AMI, independent of the classic coronary risk factors, in young and middle-aged males. These findings support the current emphasis on controlling obesity to prevent coronary events in young Japanese male adults.  相似文献   

19.
Endoneurial microvessels and the perineurium are responsible for maintaining homeostasis in peripheral nerves. Endoneurial endothelial cells form the blood-nerve barrier (BNB). The molecular pathways responsible for endoneurial microvascular barrier formation in humans are not fully understood. We tested the effect of different mitogens on the transendothelial electrical resistance (TEER) of confluent primary human endoneurial endothelial cell (pHEndEC) cultures following serum withdrawal (mimicking diffuse endothelial injury) in vitro. We show that glial-derived neurotrophic factor (GDNF, 1 ng/mL) sufficiently induced a maximal 114.2% recovery in TEER over basal conditions 48 h after serum withdrawal. Solute permeability to high molecular weight dextran was reduced by 52.4% following GDNF treatment. GDNF-mediated increase in TEER was dependent on RET tyrosine-kinase signaling pathways and mildly enhanced by cyclic adenosine monophosphate in combination with maximal concentrations of multiple redundant mitogens. There was no significant increase in adherens or tight junction proteins β-catenin, VE-Cadherin, zona occludens-1 and occludin following GDNF treatment. GDNF induced a small increase in total claudin-5 protein expression without significant increase in messenger RNA or modulation in tyrosine phosphorylation following serum withdrawal. Indirect immunocytochemistry revealed membrane relocation of longitudinal F-actin cytoskeletal filaments in pHEndECs following GDNF treatment, resulting in more continuous intercellular contacts that formed adherens and tight junctions. Together, these results demonstrate a sufficient role for GDNF in human BNB recovery following serum withdrawal in vitro, facilitated primarily by endothelial cell cytoskeletal reorganization. These observations provide insights into the regulation of human BNB function during recovery from peripheral nerve injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号