首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this study, a human adult testis cDNA microarray was constructed and hybridized with (33)P-labeled human adult testis, embryo testis and sperm cDNA probes, respectively. A novel alternative splice variant of BRDT gene, named BRDT-NY, presumably involved in testicular function was cloned. It was expressed 3.96-fold more in human adult than embryo testis and also expressed in human spermatozoa. Similarly, RT-PCR revealed a differential expression pattern of this gene in human adult testes and fetal testes. The full length of BRDT-NY was 3438 bp and contained a 2883 bp open reading frame, encoding a 960-amino-acid protein. Sequence analysis showed that it has two bromodomains in N-terminal of the protein. Multiple tissue RT-PCR results showed that BRDT-NY was exclusively expressed in testis. mRNA expression of BRDT-NY gene was deleted in some azoospermic patients' testes. These experiments suggested that BRDT-NY gene may have an important role in the process of spermatogenesis and may be correlated with male infertility.  相似文献   

3.
4.
5.
6.
7.
8.
中心体蛋白centrin在大鼠精子发生过程中的表达   总被引:6,自引:0,他引:6  
目的:研究中心体蛋白centrin在大鼠生精细胞中的表达情况,以深入了解centrin在精子发生过程中的作用。方法:通过重力沉降法分离大鼠不同发育阶段的生精细胞,用免疫荧光和蛋白印迹实验检测各级生精细胞中centrin蛋白的表达,用定量RT-PCR检测centrin同源基因centrin1和centrin2mRNA的表达水平。结果:间接免疫荧光和蛋白印迹显示精母细胞、圆形、长形精子细胞均有centrin蛋白存在,位于中心粒上,而在附睾的成熟精子中centrin则消失。RT-PCR研究发现,centrin在睾丸组织中特异性表达,centrin2在多种组织中均有表达。在睾丸中,centrin1仅在生精细胞进入减数分裂后转录,其mRNA水平在圆形精子细胞中最高,而centrin2在精原细胞中即有表达,减数分裂后其mRNA难以检测到。结论centrin蛋白在大鼠雄性配子的发育过程中最终丢失;该基因家族中同源基因centrin1和centrin2表达呈现组织特异性和发育阶段特性,在精子发生过程中发挥不同功能,centrin1蛋白可能与减数分裂及鞭毛生成相关,centrin2则参与细胞有丝分裂过程。  相似文献   

9.
Gene expression during the camptothecin-induced apoptotic death of human leukemic U937 cells and mouse T-cell hybridoma QW4.1 cells was studied by the mRNA differential display technique. Ten clones were confirmed to be differentially expressed, nine of which encoded novel sequences. One clone, U3.2, was induced approximately 10-fold in camptothecin-treated cells and was found to be identical to a highly basic 23-kDa human protein which contains basic leucine zipper-like motifs and has recently been identified as the human homologue of the rat ribosomal protein L13a. Northern blot analysis revealed a major mRNA of 0.9 kb and a minor mRNA of 1.3 kb. Overexpression of a full-length 23K cDNA, tagged with a FLAG sequence, in COS-7 cells revealed a predominantly nucleolar localization and the absence of any 23K protein from the cytoplasm. Subsequent transfection studies, using antisense phosphorothioate-modified oligonucleotides, revealed that inhibition of 23K expression results in an increased cell proliferation and greater sensitivity of U937 cells to the effects of camptothecin-induced cell death. Upregulation of 23K expression using a cDNA construct resulted in a decrease in cell proliferation and growth arrest, suggesting a role for 23K protein as a proliferation checkpoint following a cellular insult.  相似文献   

10.
11.
Hemogen is a nuclear protein encoded by HEMGN (also known as hemogen in mouse, EDAG in human and RP59 in rat). It is considered to be a hematopoiesis-specific gene that is expressed during the ontogeny of hematopoiesis. Herein, we characterize two distinct splicing variants of HEMGN mRNA with restricted expression to hematopoietic cells and to round spermatids in the testis, respectively. Expression of the testis-specific HEMGN mRNA (HEMGN-t) is developmentally regulated and is concurrent with the first wave of meiosis in prepuberal mice. Sequence analysis reveals that HEMGN-t and the hematopoietic HEMGN mRNA (HEMGN-h) share a common coding sequence with distinct 5' and 3' untranslated regions and that these two isoforms are transcribed from the same gene locus, HEMGN, through the use of alternative promoters and polyadenylation sites. Thus, HEMGN expression exemplifies a developmental regulatory mechanism by which the diversification of gene expression is achieved through using distinct regulatory sequences in different cell types. Moreover, the existence of a testis-specific isoform of HEMGN suggests a role in spermatogenesis. Finally, fluorescence in situ hybridization demonstrates that HEMGN is localized to chromosome 4 A5-B2 in mouse and to chromosome 9q22 in human, which is a region known to harbor a cluster of leukemia breakpoints.  相似文献   

12.
We have used mRNA differential display PCR to search for genes induced in activated T cells and we identified a gene encoding an alpha2,6-sialyltransferase (ST6GalNAc IV) that is rapidly induced in lymphocytes after antigen or mitogen stimulation. The 3.6 kb full-length cDNA clone (MK45) obtained contained a single open reading frame encoding a 302 amino acid protein and a 2.5 kb 3' untranslated region. MK45 expression in in vivo-activated CD8 T cells reached the highest level 4 h after antigen triggering and then declined rapidly to nearly base levels within 45 h. Northern blot analysis further revealed that MK45 expression was also induced in LPS-activated B cells and antigen-triggered CD4 T cells in vitro. MK45 expression was low or undetectable in most other mouse tissues examined, when compared to activated lymphocytes. Importantly, the mRNA expression level of other sialyltransferases remained largely unchanged during the early stage of lymphocyte activation. Finally, increased ecto-sialyltransferase activity and an altered sialylation pattern were demonstrated on the cell surface of early activated CD8 T cells. Our report identifies a candidate sialyltransferase gene that is involved in the early alteration of the sialylation pattern of cell surface molecules in activated lymphocytes.  相似文献   

13.
14.
15.
16.
17.
18.
19.
In immature rat Sertoli cells, leucine-rich primary response gene 1 (LRPR1) represents a follicle stimulating hormone (FSH)-responsive gene; the function of the encoded protein is not yet known. LRPR1 mRNA expression is up-regulated very rapidly and specifically by FSH, both in cultured Sertoli cells and in vivo in regulation in more detail, in testis and ovary of fetal, immature, and adult rats. In addition, we have studied the expression of FSH receptor (FSHR) mRNA in relation to LRPR1 mRNA expression. In rat testis, LRPR1 mRNA and FSHR mRNA followed a similar expression pattern, during postnatal development and also at different stages of the spermatogenic cycle in the adult rat. Furthermore, after short-term challenge of the FSH signal transduction pathway in intact immature rats by injection with a relatively high dose of FSH, an inverse relationship between LRPR1 mRNA (up-regulation) and FSHR mRNA expression (down-regulation) was observed. Similar studies in the ovary provided completely different results. LRPR1 mRNA in the postnatal ovary is present well before expression of FSHR mRNA can be first detected. In addition, incubation of ovaries of immature rats with FSH or dibutyryl cyclic AMP (dbcAMP) did not result in up- regulation of LRPR1 mRNA expression. During fetal development, the LRPR1 mRNA expression pattern involved many more tissues, in contrast to the relatively tissue-specific expression of LRPR1 mRNA in gonads of 21 day old and adult rats. Moreover, LRPR1 mRNA expression could be detected as early as 12.5 days post-coitum, whereas FSHR mRNA is absent at this stage of fetal development. We concluded that the pronounced regulation of LRPR1 by FSH observed in the immature rat testis does not occur in the ovary. Furthermore, in the ovary LRPR1 mRNA expression does not appear to be dependent on FSH action. Finally, the LRPR1 gene product may play a general role during fetal development.   相似文献   

20.
Using cDNA microarray hybridization from a human testicular cDNA library, one gene named lactate dehydrogenase A-like gene (LDHL, also known as LDHL6B) was cloned. LDHL exhibited 3.8-fold difference at expression level between adult and fetal human testes. The full cDNA length of LDHL is 1680 bp and had a 1145 bp open reading frame, which encoded a 41.9 kDa protein of 381 amino acids. Sequence analysis showed that LDHL harbors all the domains (one lactate/malate dehydrogenase, NAD binding domain and one lactate/malate dehydrogenase, alpha/beta C-terminal domain) in lactate dehydrogenase gene family. Blasting human genome database localized LDHL to human chromosome 15q22.2 and it was an intronless gene. Results of multiple-tissue PCR and real-time PCR showed that LDHL expressed mainly in testis and its mRNA abundance was testis development-related. In summary, LDHL is believed to be involved in testis development and spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号