首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent breakthroughs in creating induced pluripotent stem cells (iPSCs) provide alternative means to obtain embryonic stem-like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c-Myc or Nanog/Lin28) into somatic cells. iPSCs are versatile tools for investigating early developmental processes and could become sources of tissues or cells for regenerative therapies. Here, for the first time, we describe a strategy to analyze genomics datasets of mouse embryonic fibroblasts (MEFs) and embryonic stem cells to identify genes constituting barriers to iPSC reprogramming. We further show that computational chemical biology combined with genomics analysis can be used to identify small molecules regulating reprogramming. Specific downregulation by small interfering RNAs (siRNAs) of several key MEF-specific genes encoding proteins with catalytic or regulatory functions, including WISP1, PRRX1, HMGA2, NFIX, PRKG2, COX2, and TGFβ3, greatly increased reprogramming efficiency. Based on this rationale, we screened only 17 small molecules in reprogramming assays and discovered that the nonsteroidal anti-inflammatory drug Nabumetone and the anticancer drug 4-hydroxytamoxifen can generate iPSCs without Sox2. Nabumetone could also produce iPSCs in the absence of c-Myc or Sox2 without compromising self-renewal and pluripotency of derived iPSCs. In summary, we report a new concept of combining genomics and computational chemical biology to identify new drugs useful for iPSC generation. This hypothesis-driven approach provides an alternative to shot-gun screening and accelerates understanding of molecular mechanisms underlying iPSC induction.  相似文献   

3.
Induced pluripotent stem cells (iPSCs) with four reprogramming factors (Oct-4/Sox2/Klf-4/c-Myc) have been shown to differentiate into hepatic lineages. However, it was unclear whether obviation of the c-Myc oncogene in iPSCs affected hepatic differentiation or inhibited in?vivo tumor formation. In this study, we demonstrated that iPSCs without c-Myc had the capacity to differentiate into hepatocyte-like cells (iPSC-Heps) with biological functions. As detected using planar-radionuclide imaging and Hoechst labeling assays, these iPSCs and iPSC-Heps tended to mobilize to the injured liver area in thioacetamide (TAA)-treated mice. Intravenous transplantation of both iPSCs and iPSC-Heps but not mouse embryonic fibroblasts (MEFs) reduced the hepatic necrotic area, improved liver functions, and rescued TAA-treated mice from lethal acute hepatic failure (AHF). In addition, microarray-based bioinformatics and quantitative RT-PCR showed high expression of antioxidant genes in iPSCs and iPSC-Heps compared to MEFs. In vivo and in?vitro studies of NAC pretreatment confirmed that iPSCs and iPSC-Heps potentially suppressed ROS production and activated antioxidant enzymes in TAA-injured livers. Six months after transplantation in TAA-treated mice, tumor formation was not seen in non-c-Myc iPSC grafts. Therefore, reprogramming adult somatic cells without c-Myc may prevent oxidative stress-induced damage and provide a safer alternative for hepatic regeneration in AHF.  相似文献   

4.
Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by overexpressing combinations of factors such as Oct4, Sox2, Klf4, and c-Myc. Reprogramming is slow and stochastic, suggesting the existence of barriers limiting its efficiency. Here we identify senescence as one such barrier. Expression of the four reprogramming factors triggers senescence by up-regulating p53, p16INK4a, and p21CIP1. Induction of DNA damage response and chromatin remodeling of the INK4a/ARF locus are two of the mechanisms behind senescence induction. Crucially, ablation of different senescence effectors improves the efficiency of reprogramming, suggesting novel strategies for maximizing the generation of iPS cells.  相似文献   

5.
背景:由于胚胎干细胞移植存在致瘤性和伦理学争议,有关胚胎干细胞的研究及临床应用存在较大的限制。2006年Yamanaka实验室利用Oct3/4、Sox2、Klf4、c-Myc 4 种因子将鼠成纤维细胞重编程为诱导多功能干细胞,标志着一种新型类胚胎干细胞的问世。 目的:了解诱导多功能干细胞的研究进展和应用前景。 方法:由第一作者检索2006/2010 PubMed 数据库(http://www.ncbi.nlm.nih.gov/PubMed)及万方数据库(http://g.wanfangdata.com.cn/)有关诱导多功能干细胞的产生、细胞特征、产生技术的研究进展及应用前景等方面的文章,英文检索词为“induced pluripotent stem cells,defined factors,reprogramming,vectors,disease”,排除重复性研究,共保留其中的69篇进行归纳总结。 结果与结论:诱导多功能干细胞研究在诱导因子种类,因子导入方式,重编程效率及应用研究等诸多方面取得进展。然而体细胞重编程为诱导多功能干细胞仍存在一定的风险,重编程效率还非常低。一旦解决诱导多功能干细胞的安全性和重编程效率问题,诱导多功能干细胞就可被广泛应用于疾病模型,药物测试,细胞移植及患者和疾病特异性多功能干细胞的建立等诸多方面。  相似文献   

6.
7.
PiggyBac (PB) transposition of reprogramming factors (Oct3/4 (O), Sox2 (S), Klf4 (K) and c-Myc) is a safe, nonviral method for generating induced pluripotent stem cells (iPSCs). However, compared with retroviral methods, the reprogramming efficiency of the PB-mediated methods is relatively low. In this study, we describe a simple and efficient system for generating high-quality iPSCs by a single transfection of multiple plasmids that does not require the use of a virus, special instruments or skilled techniques. To improve reprogramming efficiency, we modified the components of the polycistronic 2A vectors used in this study and also investigated the combination of another reprogramming-related factor (L-Myc). By simultaneous transposition of multiple PB vectors containing an EOS (early transposon promoter and Oct3/4 and Sox2 enhancers) reporter and modified polycistronic doxycycline (Dox)-inducible factors, we reprogrammed mouse somatic cells with an efficiency higher than is usually obtained with retroviral methods and we established some iPSC lines that contributed highly to chimeras. By using the Dox-inducible system, we also showed that the appropriate elimination of exogenous-factor expression at appropriate time accelerated the induction of Oct3/4 when a combination of OKS and c-Myc vectors were used.  相似文献   

8.
9.
10.
Although tumor development requires impaired apoptosis, we describe a novel paradigm of apoptosis-dependent tumorigenesis. Because DNA damage triggers apoptosis through p53-mediated induction of BH3-only proteins Puma and Noxa, we explored their roles in γ-radiation-induced thymic lymphomagenesis. Surprisingly, whereas Noxa loss accelerated it, Puma loss ablated tumorigenesis. Tumor suppression by Puma deficiency reflected its protection of leukocytes from γ-irradiation-induced death, because their glucocorticoid-mediated decimation in Puma-deficient mice activated cycling of stem/progenitor cells and restored thymic lymphomagenesis. Our demonstration that cycles of cell attrition and repopulation by stem/progenitor cells can drive tumorigenesis has parallels in human cancers, such as therapy-induced malignancies.  相似文献   

11.
Induced pluripotent stem cells (iPSCs) have revolutionized the stem cell field. iPSCs are most often produced by using retroviruses. However, the resulting cells may be ill-suited for clinical applications. Many alternative strategies to make iPSCs have been developed, but the nonintegrating strategies tend to be inefficient, while the integrating strategies involve random integration. Here, we report a facile strategy to create murine iPSCs that uses plasmid DNA and single transfection with sequence-specific recombinases. PhiC31 integrase was used to insert the reprogramming cassette into the genome, producing iPSCs. Cre recombinase was then used for excision of the reprogramming genes. The iPSCs were demonstrated to be pluripotent by in vitro and in vivo criteria, both before and after excision of the reprogramming cassette. This strategy is comparable with retroviral approaches in efficiency, but is nonhazardous for the user, simple to perform, and results in nonrandom integration of a reprogramming cassette that can be readily deleted. We demonstrated the efficiency of this reprogramming and excision strategy in two accessible cell types, fibroblasts and adipose stem cells. This simple strategy produces pluripotent stem cells that have the potential to be used in a clinical setting.  相似文献   

12.
Regenerative medicine using spluripotent/multipotent stem cells holds a great promise in developing therapies for treating developmental abnormalities, degenerative disorders, and aging-related illness. However, supply and safety of the stem cells are two major problems with today's regenerative medicine. Recent development of induced pluripotent stem cells (iPSCs) has overcome the supply shortages by allowing the reprogramming of patients' body cells to embryonic stem cell (ESC)-like pluripotent cells. Still, the potential tumorigenicity of iPSCs remains as an obstacle. During early embryogenesis ESCs can be generated without tumor formation; therefore, understanding the mechanisms underlying ESC generation may help us to prevent iPSC tumorigenicity. Previous studies have shown that an ESC-enriched noncoding RNA, miR-302, induces somatic cell reprogramming (SCR) to form iPSCs, suggesting its pivotal role in stem cell generation. Recent research further revealed that miR-302-induced SCR involves an epigenetic reprogramming mechanism similar to the natural zygotic reprogramming process in the two- to eight-cell-stage embryos. These findings indicate that miR-302, as a cytoplasmic gene silencer, inhibits the translation of multiple key epigenetic regulators, including AOF1/2, methyl-CpG binding proteins 1 and 2, and DNA (cytosine-5-)-methyltransferase 1, to induce global DNA demethylation, which subsequently triggers the activation of the previously defined factors Oct4, Sox2, and Nanog to complete the reprogramming process. The same mechanism was also found in the event of somatic cell nuclear transfer. Based on these advanced understandings, this review describes the currently established SCR mechanism--as compared to the natural process of early ESC formation--and demonstrates how stem cell researchers may use this mechanism to improve iPSC generation.  相似文献   

13.
The generation of induced pluripotent stem cells (iPSCs) often causes genetic and epigenetic defects, which may limit their clinical applications. Here, we show that reprogramming in the presence of small molecules preserved the genomic stability of iPSCs by inhibiting DNA double-strand breaks (DSBs) and activating Zscan4 gene. Surprisingly, the small molecules protected normal karyotype by facilitating repair of the DSBs that occurred during the early reprogramming process and long-term culture of iPSCs. The stemness and cell growth of iPSCs(+) were normally sustained with high expression of pluripotency genes compared that of iPSCs(−). Moreover, small molecules maintained the differentiation potential of iPSCs(+) for the three germ layers, whereas it was lost in iPSCs(−). Our results demonstrate that the defined small molecules are potent factors for generation of high quality iPSCs with preservation of genomic integrity by facilitating the reprogramming process.  相似文献   

14.
15.
The derivation of induced pluripotent stem cells (iPSCs) requires not only efficient reprogramming methods, but also reliable markers for identification and purification of iPSCs. Here, we demonstrate that surface markers, epithelial cells adhesion molecule (EpCAM) and epithelial cadherin (E-cadherin) can be used for efficient identification and/or isolation of reprogrammed mouse iPSCs. By viral transduction of Oct4, Sox2, Klf4 and n- or c-Myc into mouse embryonic fibroblasts, we observed that the conventional mouse embryonic stem cell (mESC) markers, alkaline phosphatase (AP) and stage-specific embryonic antigen 1 (SSEA1), were expressed in incompletely reprogrammed cells that did not express all the exogenous reprogramming factors or failed to acquire pluripotent status even though exogenous reprogramming factors were expressed. EpCAM and E-cadherin, however, remained inactivated in these cells. Expression of EpCAM and E-cadherin correlated with the activation of Nanog and endogenous Oct4, and was only seen in the successfully reprogrammed iPSCs. Furthermore, purification of EpCAM-expressing cells at late reprogramming stage by FACS enriched the Nanog-expressing cell population suggesting the feasibility of selecting successful reprogrammed mouse iPSCs by EpCAM expression. We have thus identified new surface markers that can efficiently identify successfully reprogrammed iPSCs and provide an effective means for iPSC isolation.  相似文献   

16.
Induction of cell death by p14ARF is mediated through a Bax/Bak-dependent mitochondrial apoptosis pathway. To investigate the upstream signaling events required for the activation of Bax and/or Bak and to determine the functional impact of de-regulated cell cycle restriction point control in this context, we genetically dissected the impact of BH3-only proteins and the role of the cyclin-dependent kinase (cdk) inhibitor p21CDKN1. Using isogenic HCT116 colorectal cancer cells, either wild-type or homozygously deleted for the BH3-only protein Puma/bbc3 and/or p21CDKN1 or p53-reconstituted DU145 prostate cancer cells, we show that p14ARF-induced apoptosis is attenuated in the absence of Puma. Upon expression of p14ARF in HCT116 cells, Puma is rapidly induced at both the mRNA and protein level. Puma-proficient HCT116 cells undergo apoptotic (nuclear) DNA fragmentation, which is preceded by the N-terminal conformational change of Bax, the breakdown of the mitochondrial membrane potential, and induction of caspase-9 (LEHD)-like and caspase-3/7 (DEVD)-like activities. In contrast, p14ARF-induced apoptosis is markedly attenuated in isogenic HCT116 cells bi-allelically deleted for puma. The sensitivity of Puma-deficient cells to p14ARF-induced apoptosis is fully restored by functional reconstitution of Puma using a conditional adenoviral expression vector. Notably, the concomitant deletion of p21CDKN1 strongly enhances p14ARF-induced apoptosis in Puma-proficient cells, but not in isogenic Puma-deficient cells. These results indicate that p14ARF-induced mitochondrial apoptosis critically depends on the BH3-only protein Puma. In the presence of a functional p53/Puma/Bax-signaling axis, p14ARF-triggered apoptosis is enhanced by loss of p21CDKN1-mediated cell cycle checkpoint control.  相似文献   

17.
18.
Lin Z  Perez P  Lei D  Xu J  Gao X  Bao J 《Stem cells (Dayton, Ohio)》2011,29(12):1963-1974
Induced pluripotent stem cells (iPSCs) can be reprogrammed from adult somatic cells by transduction with Oct4, Sox2, Klf4, and c-Myc, but the molecular cascades initiated by these factors remain poorly understood. Impeding their elucidation is the stochastic nature of the iPS induction process, which results in heterogeneous cell populations. Here we have synchronized the reprogramming process by a two-phase induction: an initial stable intermediate phase following transduction with Oct4, Klf4, and c-Myc, and a final iPS phase following overexpression of Sox2. This approach has enabled us to examine temporal gene expression profiles, permitting the identification of Sox2 downstream genes critical for induction. Furthermore, we have validated the feasibility of our new approach by using it to confirm that downregulation of transforming growth factor β signaling by Sox2 proves essential to the reprogramming process. Thus, we present a novel means for dissecting the details underlying the induction of iPSCs, an approach with significant utility in this arena and the potential for wide-ranging implications in the study of other reprogramming mechanisms.  相似文献   

19.
20.
目的: 观察野生型鼠和膜1型基质金属蛋白酶( MT1-MMP )基因敲除鼠的成纤维细胞重新编程为诱导多能干细胞(iPSCs)后,其细胞特性是否具有胚胎干细胞(ESCs)相似的潜能。方法: 利用逆转录病毒介导 Oct3/4、Sox2、c-Myc和Klf4 四种基因,转染到野生型鼠和 MT1-MMP 基因敲除鼠的成纤维细胞中。iPSCs克隆形成后,用免疫细胞化学检测ESCs特异性标志的表达情况。体外将iPSCs通过"悬滴法"向内皮细胞和心肌细胞分化,以检测其分化能力。结果: 转染野生型鼠和 MT1-MMP 基因敲除鼠的成纤维细胞2周后,可见ESCs样克隆开始形成。iPSCs明显表达ESCs特异性标志物碱性磷酸酶(AP)、阶段特异性胚胎抗原-1(SSEA-1)和八聚体结合转录因子3/4(OCT3/4)。诱导分化的内皮细胞表达早期内皮标志物Flk-1/KDR;诱导分化的心肌细胞出现跳动,表达心肌标志物肌钙蛋白I。结论: 野生型鼠和 MT1-MMP 基因敲除鼠的成纤维细胞可被重新编程为iPSCs,iPSCs具有ESCs的特征及增殖分化能力,因此可能为再生医学的研究和临床上进行细胞移植治疗提供理想的种子细胞来源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号