首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have compared the expression of CD45RA on αβ and γδ T cells emigrating from the fetal and postnatal thymus. The fetal and postnatal thymus export both CD45RA+ and CD45RA- T cells. The number of γδ+CD45RA+ T cells was remarkably constant regardless of stage of ontogeny or T cell maturity. Around 5--8% of γδ thymic emigrants, thymocytes and peripheral blood lymphocytes expressed CD45RA in both fetal and postnatal animals. In contrast to γδ T cells, up to one quarter of both fetal and postnatal αβ emigrants expressed CD45RA. Post-thymic maturation of CD45RA expression on αβ emigrants, which occurred both before and after birth, appeared to be antigen independent.  相似文献   

2.
We have studied the in vitro activation of chicken γδ T cells. Both splenic αβ and γδ T cells obtained from complete Freund's adjuvant-primed chickens proliferated in vitro when stimulated with mycobacterial sonicate or purified protein derivative of Mycobacterium tuberculosis. When CD4+ cells or αβ T cell receptor (TcR)-positive cells were removed, both the proliferation and the blast formation of γδ T cells in response to mycobacterial antigens were abrogated. The response was restored if supernatant from concanavalin A (Con A)-activated lymphocyte cultures (CAS) as a source of helper factors was added together with the specific antigen purified protein derivative. The CD4- or αβ TcR-depleted cells still proliferated in response to Con A, although a decrease of the response was observed. To analyze the γδ T cell response more specifically we stimulated peripheral blood cells with immobilized monoclonal antibodies against T cell receptor. Anti-γδ TcR antibody alone did not induce significant proliferation. When CAS was added together with the anti-γδ TcR monoclonal antibody, a strong proliferation of γδ T cells was observed. In contrast, both Vβ1- and Vβ2-expressing αβ T cells proliferated in vitro in response to stimulation with the relevant anti-TcR monoclonal antibody alone. Depletion of either Vβ1+ or Vβ2+ T cell subset alone had no negative effect on the proliferation or blast formation of γδ T cells stimulated with mycobacterial antigens. Taken together our results suggest that CD4+ αβ T cells (both Vβl- and Vβ2-expressing) play a role in the activation and response of chicken γδ T cells.  相似文献   

3.
Intraepithelial lymphocytes (IEL) of the uterus of non-pregnant sheep were analyzed by single- and two-color flow cytometry. Very few lymphocytes carrying classical B and T cell markers (CD5, surface immunoglobulin) were detected in the uterine epithelial cell suspensions and all IEL expressed the CD8 surface marker although with varying intensities. Three distinct subpopulations were identified including a major (46-56%) population of CD8+CD45R?γδ T cell receptor (TcR)-negative cells and approximately equal numbers of CD8+CD45R+γδTcR? and CD8+CD45R+γδTcR+ lymphocytes. The same three subpopulations were also present in the interplacentomal areas of the uterus of ewes at a late stage of pregnancy but there was a dramatic increase (60-70%) in the γδ TcR+ subpopulation. In addition, a pronounced increase in both size and granularity was observed in the IEL population of pregnant uteri and this was attributed to the γδ TcR+ cells. Light and electron microscopic examination of these γδ TcR+ IEL revealed an increase in metabolic activity and the formation of exceptionally large cytoplasmic granules and confirmed their restricted localization within the uterine epithelium close to the trophoblast. These results represent for the first time, a clear example of the activation of γδ TcR+ cells which is not associated with an ongoing disease process or infection, γδ TcR+ cells have recently been observed in the epithelium of the murine reproductive tract and were characterized by their unique homogeneous receptor structure. The present results indicate that these cells may play an important physiological role during pregnancy.  相似文献   

4.
The aim of our study was to compare CD3 expression on γδ T cells and αβ T cells in human patients. The antigen density of TCR and CD3 on both subsets was assessed by a quantitative method in eight patients. In parallel, we developed and validated a reliable direct tricolor staining protocol that we tested on samples from hospitalized and healthy individuals (n = 60). Our results demonstrate that human γδ T cells constitutively express approximately twofold more of the TCR/CD3 complex than αβ T cells. We suggest that this enhanced expression of the TCR/CD3 complex could contribute to the higher reactivity of γδ T cells compared to αβ T cells. These clinical laboratory results confirm the fundamental data described elsewhere. γδ T cells deserve further clinical investigations to understand their precise role in human immunity.  相似文献   

5.
To examine the role of T cell subpopulations in an acute graft-versus-host (GVH) reaction, γδ T cells and αβ T cells expressing one of the two prototypic Vβ gene families were negatively isolated from adult blood samples and injected into allogeneic chick embryos. CD4+ αβ T cells expressing either Vβ1 or Vβ2 receptors were equally capable of inducing acute GVH reactions, consistent with the idea that αβ T cell alloreactivity is determined by CDR3 variability. By themselves, the γδ T cells were incapable of inducing GVH reactions. However, host γδ T cells were recruited into the donor αβ T cell-initiated lesions, where they were activated and induced to proliferate. The data suggest that γβ T cells may play a secondary role in GVH reactions.  相似文献   

6.
We have previously demonstrated that grafting of CBF1(H-2b/d) fetal thymus (FTG) under the kidney capsule of congenitally athymic nude mice of BALB/c background (H-2d) generates a substantial number of T cell receptor (TCR) γδ intestinal intraepithelial lymphocytes (IEL) that were of FTG origin (H-2b+) (see accompanying report). Here we investigated the characteristics of these FTG-derived TCR γδ IEL and compared them to the extrathymically derived TCR γδ IEL found in nude mice. Phenotypically, FTG-derived TCR γδ IEL were similar to their extrathymically derived counterparts in that most were Thy-1 ?, CD5? and CD8αα (homodimer). Vγ and Vδ gene usage in thymus-derived and extrathymically derived TCR γδ IEL were found to be virtually the same. Functionally, FTG-derived TCR γδ IEL were similar to the TCR γδ IEL found in euthymic mice as both were relatively anergic to TCR cross-linking in vitro. However, FTG-derived TCR γδ IEL differed slightly from extrathymically derived TCR γδ IEL, which were completely nonresponsive to the same in vitro stimulation. Overall, these findings support the view that FTG-derived and extrathymically derived TCR γδ IEL are almost indistinguishable. Lastly, we demonstrate that despite their thymic origin, development of FTG-derived TCR γδ IEL partially takes place extrathymically; that is positive selection of FTG-derived Vδ4 IEL occurs extrathymically. In addition, we demonstrate that the CD8 molecule is not necessary for development and homing of FTG-derived TCR γδ IEL. This later finding suggests that the CD8αα molecule develops extrathymically for FTG-derived CD8αα TCR γδ IEL.  相似文献   

7.
PROBLEM: T cells bearing αβ T cell receptor (TcR) and γδ TcR are present at the fetomaternal interface, and the latter, which express surface activation markers, can react with fetal trophoblast cell antigens. What is the role of these cells? METHOD: Using stress-abortion-prone DBA/2-mated CBA/J and abortion-resistant C57/B16 mice, αβ, γδ, and CD8+/- T cell subsets were measured in spleen and uterine decidua. The effect of immunization against abortion and administration of anti-TcR antibody in vivo was examined. Cytokine synthesis was measured by intracellular staining of Brefeldin A-treated cells. RESULTS: Abortion-prone matings showed an unexpected accumulation of γδ T cells beginning in the peri-implantation period and this was suppressed by immunization against abortion. The immunization deleted γδ T cells producing the abortogenic cytokines, TNF-α and γ-interferon, and increased production of the anti-abortive cytokines, IL-10 and transforming growth factor-β2 (TGF-β2). Immunization also boosted the number of αβ T cells which were present in the decidua as early as 2 days after implantation. In vivo injection of GL4 (anti-δ) depleted γδ T cells producing Th1 cytokines in the peri-implantation period, and prevented abortions, whereas H57 (anti-β) decreased the number of αβ T cells and led to 100% abortions. CD8+ T cells present in peri-implant decidua before onset of abortions were mostly αβ TcR+, although some were γδ+. Changes in γδ and αβ T cells in pregnancy were most dramatic in uterine tissue. CONCLUSION: Although decidual γδ T cells after formation of a distinct placenta and fetus produce anti-abortive TGF-β2-like molecules and IL-10, prior events can lead to abortion. High local production of TNF-α and γ-interferon develop during the peri-implantation phase because of an excessive increase in the Th1 cytokine+ subset of γδ cells; these cytokines may be contributed by other tissues in decidua, and the contribution of bioactive factors by γδ T cells may augment the cytokine pool. In contrast, αβ T cells (which may be inactivated by stress that causes abortions) may mediate the anti-abortive effect of alloimmunization. Alloimmunization involves a shift from a Th1 to a Th2 pattern in the γδ T cells in decidua.  相似文献   

8.
Splenic γδ T cells (CD4?, CD8?) increased more that 10-fold upon resolution of either Plasmodium chabaudi adami or P. c. chabaudi infections in C57BL/6 mice compared to controls. Similarly, a 10- to 20-fold expansion of the γδ T cell population was observed in β2-microglobulin deficient (β2-m0.0) mice that had resolved P. c. adami, P. c. chabaudi or P. yoelii yoelii infections. In contrast, increases in the number of splenic αβ T cells in these infected mice were only two to three-fold indicating a differential expansion of the γδ T cell subset during malaria. Because nucleated cells of β2-m0/0 mice lack surface expression of major histocompatibility complex class I and class Ib glycoproteins, our findings suggest that antigen presentation by these glycoproteins is not necessary for the increasing number of γδ T cells. Our observation that after resolution of P. c. adami malaria, C57BL/6 mice depleted of CD8+ cells by monoclonal antibody treatment had lower numbers of γδ T. cells than untreated controls suggests that the demonstrated lack of CD8+ cells in β2-m0/0 mice does not contribute to the expansion of the γδ T cell population during non-lethal malaria.  相似文献   

9.
The majority of peripheral blood γδ T cells in human adults expresses T cell receptors (TCR) with identical V regions (Vγ9 and Vδ2). These Vγ9Vδ2 T cells recognize the major histocompatibility complex (MHC) class I-deficient B cell line Daudi and broadly distributed nonpeptidic antigens present in bacteria and parasites. Here we show that unlike αβ or Vγ9? γδ T cells, the majority of Vγ9Vδ2T cells harbor natural killer inhibitory receptors (KIR) (mainly CD94/NKG2A heterodimers), which are known to deliver inhibitory signals upon interaction with MHC class I molecules. Within Vγ9δ2 T cells, KIR were mainly expressed by clones exhibiting a strong lytic activity against Daudi cells. In stark contrast, almost all Vγ9Vδ2 T cell clones devoid of killing activity were KIR?, thus suggesting a coordinate acquisition of KIR and cytotoxic activity within Vγ9Vδ2 T cells. In functional terms, KIR inhibited lysis of MHC class I-positive tumor B cell lines by Vγ9Vδ2 cytotoxic T lymphocytes (CTL) and raised their threshold of activation by microbial antigens presented by MHC class I-positive cells. Furthermore, masking KIR or MHC class I molecules revealed a TCR-dependent recognition by Vγ9Vδ2 CTL of ligands expressed by activated T lymphocytes, including the effector cells themselves. Taken together, these results suggest a general implication of Vγ9Vδ2 T cells in immune response regulation and a central role of KIR in the control of self-reactive γδ CTL.  相似文献   

10.
After the development of highly active anti‐retroviral therapy, it became clear that the majority of emergent HIV‐1 is macrophage‐tropic and infects CD4+, CCR5‐expressing cells (R5‐tropic). There are three distinct cell populations, R5‐tropic, HIV‐1‐susceptible CD4+ cells: (i) natural killer T (NKT) cells, (ii) dendritic cells and macrophages, and (iii) tissue‐associated T cells residing primarily at mucosal surfaces. We have confirmed that CD4+ NKT cells derived from peripheral blood mononuclear cells (PBMCs) predominantly express CCR5 rather than CXCR4, whereas the reverse is true for CD4+ T cells derived from circulating PBMCs, and that R5‐tropic HIV‐1 expands efficiently in the CD4+ NKT cells. Moreover, when PBMCs depleted of CD8α+ cells were stimulated in the presence of α‐galactosylceramide (α‐GalCer) and R5‐tropic HIV‐1 [NL(AD8)], the production of HIV‐1 virions was not suppressed, whereas, similar to the untreated PBMCs, depletion of CD8β+ cells from PBMCs significantly inhibited virion production. These findings suggest that CD8αα+ but not CD8αβ+ cells may have the ability to inhibit R5‐tropic HIV‐1 replication in CD4+ NKT cells. Here, we show that co‐culturing R5‐tropic HIV‐1‐infected CD4+ NKT cells with CD8αα+ γδ T cells, in particular Vγ1Vδ1 cells, but not with CD8αα+ NKT cells or CD8αα+ dendritic cells, inhibits HIV‐1 replication mainly by secreting chemokines, such as macrophage inflammatory proteins 1α and 1β and RANTES. Collectively, these results indicate the importance of CD8αα+ γδ T cells in the control of R5‐tropic HIV‐1 replication and persistence in CD4+ NKT cells.  相似文献   

11.
We investigated the protective functions of macrophages and γδ T cells in adult CD45 exon 6-deficient (CD45?/?) mice against an intraperitoneal (i.p.) infection with Listeria monocytogenes. γδ T cells are preferentially localized in the spleen, liver, and intraperitoneal cavity of the adult CD45?/? mice. Increased numbers of γδ T cells were observed after i.p. infection with L. monocytogenes in the peritoneal cavity of C57BL/6 (CD45+/+) mice but not in CD45?/? mice. The γδ T cells showed predominant usage of Vδ5 and Vδ6 rearranged to Jδ1 in the infected CD45?/? mice which are the same as those used by resident γδ T cells of noninfected CD45+/+ and CD45?/? mice. Furthermore, we analyzed the protective abilities of the CD45?/?, CD45+/+, and γδ T cell-depleted mice at the early stage of the listerial infection. The numbers of bacteria in the spleens and livers of the CD45?/? mice 5 days after the listerial infection were almost ten times larger than those in the CD45?/? and γδ T cell-depleted CD45+/+ mice. Macrophages showed normal antigen presentation, nitric oxide production and bactericidal activity for L. monocytogenes despite their lacking CD45 surface expression, suggesting that CD45-negative macrophages have a minimal influence on the increased bacterial multiplication in the CD45?/? mice. These results suggest that the γδ T cells are induced by the bacterial infection in a CD45-dependent manner, and that unresponsiveness of the γδ T cells results in only weak protection against L. monocytogenes in CD45?/? mice.  相似文献   

12.
In rheumatoid arthritis and other inflammatory diseases we and others have found that γδ T cells express activation antigens, suggesting that they are involved in the pathogenesis of these disorders. In this study we have stimulated peripheral blood mononuclear cells from normal donors with recombinant interleukin-2 (rIL-2) to see whether such a stimulus alone could activate γδ T cells. Short-term exposure (24-96 h) to rIL-2 selectively stimulated the γδ but not the αβ T cells to express activation antigens (CD69, CD25 and HLA-DR). Long-term culture (2 weeks) in rIL-2-containing medium caused a selective increase in the proportion of the γδ T cells and a corresponding reduction of the fraction of αβ T cells. Limiting dilution analysis revealed that approximately 1/60 of the γδ T cells responded to IL-2 in contrast to only 1/250 of the αβ T cells. Comparison of the expression of the IL-2 receptor (IL-2R) a and P chains showed that there was a similar expression of the α chain on γδ and αβ T cells whereas the relative density of the β chain was more than twice as high on γδ T cells. Both the IL-2-induced proliferation of γδ T cells and the expression of activation antigens on these cells could be inhibited by an anti-IL-2Rβ monoclonal antibody (mAb) but not by an anti-IL-2Rα mAb. Expression of CD69 on γδ T cells was dependent neither on the presence of B cells, monocytes, nor αβ T cells. Finally, we found that the IL-2-induced expression of CD69 was inhibited by activation of cAMP-dependent protein kinase and by inhibition of the Src-family of the tyrosine protein kinase, but not by inhibition of protein kinase C or by activation of the CD45 associated tyrosine phosphatase. The ability of γδ T cells to be activated by IL-2 is a feature which they have in common with natural killer cells. Moreover, it may be possible that the expression of activation antigens on γδ T cells in inflammatory diseases is an epiphenomenon secondary to IL-2 produced by activated αβ T cells.  相似文献   

13.
A candidate avian CD6 homolog is identified by the S3 monoclonal antibody. The S3 antigen exists in a phosphorylated glycoprotein form of 130 kDa and a nonphosphorylated form of 110 kDa. Removal of phosphate groups and N-linked carbohydrates indicates a 78-kDa protein core. During thymocyte differentiation, the γδ T cells do not express S3, whereas mature CD4+ and CD8+ cells of αβ lineage acquire S3 antigen. All αβ T cells in the blood and spleen express the S3 antigen at relatively high levels. In contrast, only the CD8+ sub-population of γδ T cells in the spleen expresses the antigen and neither αβ nor γδ T cells in the intestinal epithelium express the S3 antigen. The S3 antigen is also found on embryonic splenocytes with a phenotypic profile characteristic of avian natural killer cells. The biochemical characteristics and this cellular expression pattern imply that the S3 antigen is the chicken CD6 homolog.  相似文献   

14.
15.
In this study we show the inheritance of a CD4+CD8+ peripheral T cell population in the H.B15 chicken strain. A large proportion of αβ T cells in peripheral blood (20–40%), spleen (10–20%) and intestinal epithelium (5–10%) co-express CD4 and CD8α, but not CD8β. CD4+ CD8αα cells are functionally normal T cells, since they proliferate in response to mitogens and signals delivered via the αβT cell receptor as well as via the CD28 co-receptor. These cells induce in vivo a graft versus host-reaction, providing further evidence for their function as CD4+ T cells. The CD4+CD8αα T cell population was found in 75% of the first progeny and in 100% of further progenies, demonstrating that co-expression of CD4 and CD8 on peripheral T cells is an inherited phenomenon. In addition, cross-breeding data suggest a dominant Mendelian form of inheritance. The hereditary expression of CD8α on peripheral CD4+ T cells in chicken provides a unique model in which to study the regulation of CD4 and CD8 expression.  相似文献   

16.
17.
Extensive evidence suggests that the immune system exerts powerful effects on bone cells, particularly in chronic disease pathologies such as rheumatoid arthritis (RA). The chronic inflammatory state in RA, particularly the excessive production of T cell‐derived proinflammatory cytokines such as tumour necrosis factor (TNF)‐α and interleukin (IL)‐17, triggers bone erosions through the increased stimulation of osteoclast formation and activity. While evidence supports a role for IL‐17 and TNF‐α secreted by conventional CD4+ T cells in RA, recent evidence in animal models of RA have implicated γδ T cells as a major producer of pathogenic IL‐17. However, the capacity of γδ T cells to influence osteoclast formation and activity in humans has not yet been investigated widely. To address this issue we investigated the effects of γδ T cells on osteoclast differentiation and resorptive activity. We have demonstrated that anti‐CD3/CD28‐stimulated γδ T cells or CD4+ T cells inhibit human osteoclast formation and resorptive activity in vitro. Furthermore, we assessed cytokine production by CD3/CD28‐stimulated γδ T cells and observed a lack of IL‐17 production, with activated γδ T cells producing abundant interferon (IFN)‐γ. The neutralization of IFN‐γ markedly restored the formation of osteoclasts from precursor cells and the resorptive activity of mature osteoclasts, suggesting that IFN‐γ is the major factor responsible for the inhibitory role of activated γδ T cells on osteoclastogenesis and resorptive activity of mature osteoclasts. Our work therefore provides new insights on the interactions between γδ T cells and osteoclasts in humans.  相似文献   

18.
We demonstrate that pretreatment of primary CD4+, but not CD8+ T cells with anti-CD45 inhibits activation signals induced through the T cell receptor for antigen (TCRαβ). Specifically, anti-TCRαβ-mediated tyrosine phosphorylation of phospholipase C-γ1 is inhibited, and this in turn correlates with the inhibition of subsequent Ca2+ mobilization and DNA synthesis. In marked contrast, none of these activation parameters are affected by anti-CD45 in CD8+ T cells. Perturbation of TCRαβ signalling in CD4+ cells is observed in conditions which do not detectably affect the level of CD45 expression, or its membrane distribution. Further, changes in the intrinsic phosphatase activity of CD45 are not detectable. While anti-CD45 ablates TCRαβ signalling, anti-CD3?-mediated activation is unaffected. This suggests that elements of the antigen receptor complex can be functionally uncoupled, and indicates that the requirements for CD45 in signalling through these two elements are different. The results demonstrate that the involvement of CD45 in coupling TCRαβ to second messenger-generating pathways is under distinct physical and/or functional constraints in primary CD4+ and CD8+ T cells.  相似文献   

19.
Present literature supports the view of an extrathymic origin for the subset of intestinal intraepithelial lymphocytes (IEL) that express the CD4?CD8+ αα phenotype. This subset would include virtually all T cell receptor (TCR) γδ IEL and a portion of TCR αβ IEL. However, these reports do not exclude the possibility that some CD4?CD8+ αα IEL are actually thymically derived. To clarify this issue, we examined the IEL day 3 neonatally thymectomized (NTX) mice. NTX resulted in as much as 80 % reduction in total TCR γδ IEL and in a nearly complete elimination of TCR αβ CD4?CD8+ αα IEL early in ontogeny (3-to 5-week-old mice). The thymus dependency of TCR γδ IEL and TCR αβ CD4?CD8+ IEL was less prominent in older mice (7- to 10-week-old mice), as the total number of these IEL increased in NTX mice, but still remained severalfold less than that in euthymic mice. Furthermore, we demonstrate, by grafting the fetal thymus of CBF1 (H-2b/d) mice under the kidney capsule of congenitally nude athymic mice of BALB/c background (H-2d), that a substantial number of TCR γδ IEL and TCR αβ CD4?CD8+ αα IEL can be thymically derived (H-2b+). In contrast, but consistent with our NTX data, grafting of adult thymi into nude mice generated virtually no TCR γδ IEL and relatively less TCR αβ CD4?CD8+ αα IEL than did the grafting of fetal thymi. These results suggest that the thymus is the major source of TCR γδ and TCR αβ CD4?CD8+ αα IEL early in ontogeny, but that the extrathymic pathway is probably the major source of these IEL later in ontogeny. A reassessment of the theory that most CD4?CD8+ IEL are extrathymically derived is needed.  相似文献   

20.
Two subpopulations of human T lymphocytes expressing different antigen receptors, α / β and γ / δ, emigrate into inflamed tissues in distinctive patterns. We compared the transmigration of α / β and γ / δ T cells to C-C and C-X-C chemokines using an in vitro transendothelial chemotaxis assay. The C-C chemokines monocyte chemoattractant protein (MCP)-1, RANTES, macrophage inflammatory protein (MIP)-1α and MIP-1β stimulated similar, dose-dependent chemotaxis of purified γ / δ T cells, whereas MCP-1, RANTES, and MIP-1α pro duced greater chemotaxis of purified α / β T cells than MIP-1β. In contrast, the C-X-C chemokines interleukin (IL)-8 and interferon-γ inducible protein-10 (IP-10) did not promote chemotaxis of either α / β or γ / δ T cells. Three γ / δ T cell clones with differing CD4 and CD8 phenotypes also migrated exclusively to C-C chemokines. Phenotypic analysis of mononuclear cells that transmigrated from an input population of unfractionated peripheral blood mono nuclear cells confirmed the results with purified γ / δ T cells. Our data demonstrate that human peripheral blood α / β and γ / δ T cells can transmigrate to MCP-1, RANTES, MIP-1α, and MIP-1β, and suggest that both T lymphocyte subpopulations share the capacity to emigrate in response to C-C chemokines during inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号