首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In the class II region of the major histocompatibility complex (MHC), four genes implicated in MHC class I-mediated antigen processing have been described. Two genes (TAP 1 and TAP 2) code for multimembrane-spanning ATP-binding transporter proteins and two genes (LMP 2 and LMP 7) code for subunits of the proteasome. While TAP 1 and TAP 2 have been shown to transport antigenic peptides from the cytosol into the endoplasmic reticulum, where the peptides associate with MHC class I molecules, the role of LMP 2/7 in antigen presentation is less clear. Using antigen processing mutant T2 cells that lack TAP 1/2 and LMP 2/7 genes, it was recently shown that expression of TAP 1/2 alone was sufficient for processing and presentation of the influenza matrix protein M1 as well as the minor histocompatibility antigen HA-2 by HLA-A2. To understand if presentation of a broader range of viral antigens occurs in the absence of LMP 2/7, we transfected T2 cells with TAP 1, TAP 2 and either of the H-2Kb, Db or Kd genes and tested their ability to present vesicular stomatitis vires and influenza virus antigens to virus-specific cytotoxic T lymphocytes. We found that T2 cells, expressing TAP 1/2 gene products, presented all tested viral antigens restricted through either the H-2Kb, Db or Kd class I molecules. We conclude that the proteasome subunits LMP 2/7 as well as other gene products in the MHC class II region, except from TAP 1/2, are not generally necessary for presentation of a broader panel of viral antigens to cytotoxic T cells. However, the present results do not exclude that LMP 2/7 in a more subtle way may, or in rare cases completely, affect processing of antigen for presentation by MHC class I molecules.  相似文献   

2.
The 20S proteasome is a protease complex of functional importance for antigen processing. Two of the 14 proteasome subunits, δ and MB1, can be replaced by the major histocompatibility complex (MHC)-encoded and interferon-γ (IFN–γ)-inducible subunits LMP2 and LMP7, respectively. LMP2 and LMP7 alter the cleavage site specificity of the 20S proteasome and are required for the efficient generation of T cell epitopes from a number of viral proteins and for optimal MHC class I cell surface expression. We compared the 20S proteasome subunit pattern from IFN-γ-induced and non-induced mouse fibroblasts on two-dimensional gels and identified a third subunit exchange by microsequencing: the non-MHC-encoded subunit MECL-1 is induced by IFN-γ and replaces a so-far barely characterized β subunit designated ‘MC14’. In analogy to LMP2 and LMP7, MECL-1 may be functional in MHC class I-restricted antigen presentation.  相似文献   

3.
Malignant transformation is often associated with genetic alterations providing tumor cells with mechanisms for escape from immune surveillance. Human and murine tumors of various origin as well as in vitro models of viral and oncogenic transformation express reduced levels of major histocompatibility complex (MHC) class I antigens resulting in decreased sensitivity to MHC class I-restricted cytotoxic T lymphocyte (CTL)-mediated lysis. We here investigate whether the suppressed MHC class I surface expression of ras-transformed fibroblasts is due to dysregulation of the genes of the antigen-processing machinery, the peptide transporters TAP-1 and TAP-2 and the proteasome subunits LMP-2 and LMP-7, and whether it can be restored by gene transfer. In comparison to parental NIH3T3 cells, the ras oncogenic transformants revealed reduced TAP and LMP mRNA expression and impaired function of these genes, leading to deficient peptide transport and peptide loading of MHC class I molecules resulting in instable expression of the MHC class I complex on the cell surface. Enhanced H-2 surface expression due to stabilization of the MHC class I complex could be achieved by culturing ras transformants at low, unphysiological temperature (26 °C) or by loading these cells with either exogenous human β2-microglobulin or MHC class I-binding peptide alone or in combination. Furthermore, interferon-γ treatment was capable to enhance the expression of TAP, LMP and MHC class I molecules in both parental as well as ras-transformed fibroblasts. Stable transfection of the human TAP-1 cDNA into ras transformants caused a partial reconstitution of the peptide transport and an enhancement of the MHC class I surface expression, whereas the level of MHC class I biosynthesis was not affected by TAP-1 overexpression in parental cells. Together these results point to the existence of an association between oncogenic transformation and deficiencies in the MHC class I antigen-restricted immunosurveillance, suggesting intervention strategies involving specific MHC class I-binding peptides or transfection of the LMP and/or TAP genes to overcome the expression of the immune escape phenotype.  相似文献   

4.
The proteasome is critically involved in the production of MHC class I-restricted T cell epitopes. Approximately 20% of all peptides generated by the proteasome are too large for direct presentation by MHC class I molecules. Reits et al. (Immunity 2004. 20: 495-506) suggested that a major portion of proteasomal products are larger than 15 amino acids and require further degradation by the tripeptidyl peptidase II (TPPII) before becoming ligands of MHC class I molecules. Using the well-characterized lymphocytic choriomeningitis virus (LCMV) model, the role of TPPII in the processing of several LCMV-derived T cell epitopes was investigated. In contrast to Reits' proposal, TPPII inhibition and TPPII overexpression experiments revealed that five out of six LCMV-derived CD8(+) T cell epitopes were not affected by inhibition of TPPII, while one epitope (GP276) was slightly reduced upon TPPII overexpression. Additionally, we demonstrated that the processing of two epitopes derived from ovalbumin and murine cytomegalovirus were not altered by TPPII inhibition. We propose that TPPII is not generally required for the production of MHC class I peptides, but the presentation of some peptides can be negatively affected by TPPII.  相似文献   

5.
PA28alpha/beta is a regulatory complex of the 20S proteasome which consists of two IFN-gamma inducible subunits. Both subunits, alpha and beta, contribute equally to the formation of hexa- or heptameric rings which can associate with the 20S proteasome. Previously, we have shown that overexpression of the PA28alpha subunit enhanced the MHC class I-restricted presentation of two viral epitopes and that purified PA28alpha/beta accelerated T cell epitope generation by the 20S proteasome in vitro, indicating a role for PA28alpha/beta in antigen presentation. This conclusion was recently confirmed in PA28beta gene targeted mice which were severely deficient in MHC class I-restricted antigen presentation. These mice displayed a defect in the assembly of immunoproteasomes, suggesting that a lack of the proteasome subunits LMP2, LMP7, and MECL-1 may account for the deficiency in antigen presentation. In this study we investigated whether the effect of PA28alpha/beta on antigen presentation is dependent on a change of proteasome subunit composition. We have analyzed the assembly and subunit composition of proteasomes in fibroblast transfectants overexpressing both, alpha and beta subunits of PA28. In these transfectants we found a marked enhancement in the presentation of the immunodominant H-2Ld-restricted pp89 epitope of murine cytomegalovirus, although the 20S proteasome composition was the same as in recipient cells. We, therefore, conclude that PA28alpha/beta can enhance antigen processing independently of changes in 20S proteasome subunit composition or assembly.  相似文献   

6.
Extensive HLA class I allele promiscuity among viral CTL epitopes   总被引:4,自引:0,他引:4  
Promiscuous binding of T helper epitopes to MHC class II molecules has been well established, but few examples of promiscuous class I-restricted epitopes exist. To address the extent of promiscuity of HLA class I peptides, responses to 242 well-defined viral epitopes were tested in 100 subjects regardless of the individuals' HLA type. Surprisingly, half of all detected responses were seen in the absence of the originally reported restricting HLA class I allele, and only 3% of epitopes were recognized exclusively in the presence of their original allele. Functional assays confirmed the frequent recognition of HLA class I-restricted T cell epitopes on several alternative alleles across HLA class I supertypes and encoded on different class I loci. These data have significant implications for the understanding of MHC class I-restricted antigen presentation and vaccine development.  相似文献   

7.
《Immunobiology》2001,204(1-2)
H. 1 Subcellular distribution of proteases in the endocytic compartment of human dendritic cellsH. 2 Potential nickel coordination sites in a MHC-Ni2+-TCR complexH. 3 Multiple functions of tapasin in the loading complex: Loading of class I molecules with optimal peptides and stabilization of the transporter associated with antigen presentationH. 4 Differences in specificity of thymus-selected T cells and corresponding hybridomas: Evidences for a multivalent αβT cell receptorH. 5 Neosynthesis is required for the presentation of a T cell epitope from a long-lived viral proteinH. 6 Residue V38 of MHC class II α-chains: Negative effects of the substitution V38M on surface expression and antigen presentation can be rescued by enforced peptide bindingH. 7 Long-term procainamide treatment in the drinking water of A/J mice produces a positive T cell reaction to an unidentified neo-antigen in the lymphocyte transformation testH. 8 The role of ER60/ERp57 in MHC class I assemblyH. 9 Characterization of domains in the human peptide transporter subunit TAP2 required for TAP functionH. 10 Proteasome-dependent processing of autoantigens of systemic rheumatic diseasesH. 11 Human dendritic cells counter-regulate HLA-DM and HLA-DR in the course of maturationH. 12 Expression of the proteasome activator PA28 rescues the presentation of a cytotoxic T lymphocyte epitope on human melanoma cellsH. 13 Interferon-γ influences the in vivo antigen presentation of dendritic cellsH. 14 Antigen presentation by human B cells demonstrates colocalisation of B and T cell epitopes and dominant HLA-DR presentation of part of the B cell epitopeH. 15 MHC class II/peptide complexes become enriched in tetraspan microdomains depending on the type of peptide boundH. 16 Dendritic cells pulsed with the viral pseudocapsid HBsAg efficiently cross-present different epitopes to murine MHC class I-restricted cytotoxic T cellsH. 17 Recruitment of MHC class I molecules by tapasin into the TAP-associated complex is essential for optimal peptide loadingH. 18 Incorrect folding of MHC class I molecules in hemodialysis patients: A reason for impaired immune function?H. 19 Structural analysis of HLA-B27 subtypes differently associated with arthritisH. 20 Ligands binding to the MHC class II allele DQA1*0401-DQB1*0402 identified by screening synthetic combinatorial peptide libraries  相似文献   

8.
In the frog Xenopus, MHC class I antigen presentation and processing genes (the immunoproteasome LMP2 and LMP7 and the transporter TAP1 and TAP2) seem to be closely linked in a primordial organization. Two distinct lineages of class Ia and LMP7 loci were previously identified, thus strongly suggesting co-evolution among 'class I region' genes. We now show that the Xenopus MHC 'class I region' lies between class II and class III genes and we have isolated two distinct alleles at both the TAP1 and TAP2 loci. The alleles at each locus are remarkably divergent from each other and phylogenetic tree analysis revealed in both cases that they diverged from each other 60-100 million years ago (MYA). For lineage-frequency and linkage analysis, 25 wild-caught X. laevis and 16 X. tropicalis were examined. The two lineages were present in different frequencies for X. laevis and X. tropicalis. Nevertheless, in all cases, the LMP7, TAP1, and TAP2 lineages were found in a set comprising one of the two lineages. Furthermore, like the LMP7 lineages, the TAP lineages were detected in most Xenopus species that diverged from a common ancestor 80-100 MYA, suggesting that the 'class I region' biallelic lineages are under balancing selection.  相似文献   

9.
Within the class II region of the MHC are several genes whose products are involved in processing antigen for HLA class I presentation. Two such genes, LMP2 and LMP7, encode products that are incorporated into a multicatalytic proteinase complex which serves as the major pathway for protein degradation for class I peptide presentation. Polymorphic residues have been identified in both LMP2 and LMP7. In this report, we describe an ARMS-PCR method to distinguish LMP7 alleles. We applied this method to characterize these alleles in addition to LMP2 alleles in 50 homozygous typing cells (HTC) as well as in a panel of 110 random individuals. Of the four possible combinations of LMP2 and LMP7, we observed three in the HTC population, while all four were observed in the random population. The frequencies at which allele combinations were observed were similar to that predicted by individual allele frequencies. We also analyzed the possibility of linkage disequilibrium of LMP2 and LMP7 alleles with TAP1, TAP2, and specific HLA class I alleles in both populations. From this data, there seems to be no apparent linkage disequilibrium and no indication that particular combinations of LMP2 and LMP7 have been maintained.  相似文献   

10.
Genes within the class II region of the major histocompatibility complex (MHC), including genes involved in antigen processing and presentation, have been reported to be associated with several autoimmune diseases. We report here that the LMP/TAP gene region is significantly associated with vitiligo, a disorder in which biochemical defects and/or autoimmune destruction cause melanocyte loss and resulting skin depigmentation. Case/control analyses revealed genetic association of vitiligo in Caucasian patients with an early age of onset with the transporter associated with antigen processing-1 (TAP1) gene. A family-based association method revealed biased transmission of specific alleles from heterozygous parents to affected offspring for the TAP1 gene, as well as for the closely linked LMP2 and LMP7 genes encoding subunits of the immunoproteasome. No association with vitiligo was found for the MECL1 gene, which encodes a third immunoproteasome subunit and is unlinked to the MHC class II region. These results suggest a possible role for the MHC class I antigen processing and/or presentation pathway in the antimelanocyte autoimmune response involved in vitiligo pathogenesis.  相似文献   

11.
The role of the proteasome activator PA28 in MHC class I antigen processing   总被引:1,自引:0,他引:1  
The proteasome system is the major source for the generation of viral antigens and tumor antigens presented by major histocompatibility complex class I (MHC class I) molecules. A specific feature of the proteasomal antigen processing machinery is that five of its components are inducible by IFN-gamma. Two of these are the alpha and beta subunits of the proteasome activator PA28. Our results show that PA28 selectively up-regulates the presentation of viral MHC class I epitopes and that down regulation PA28 in tumor cells results in impaired presentation of a human TRP2 tumor antigen.  相似文献   

12.
In the class II region of the major histocompatibility complex (MHC), four genes implicated in processing of MHC class I‐presented antigens have been described. Two of these (TAP1 and TAP2) code for endoplasmic reticulum membrane transporter proteins and the other two (LMP2 and LMP7) for proteasome subunits. These genes are polymorphic, although much less so than classical MHC class I and II genes. There is controversy concerning the possible functional implications of this variation. Population genetics is one of the means of investigating the evolutionary and functional significance of genetic polymorphisms; however, few populations have been analysed with respect to TAP and LMP diversity. We present here the polymorphism of TAP1, TAP2, LMP2 and LMP7 genes in the Kaingang and Guarani Amerindian tribes, and in the Caucasoid population of the Brazilian State of Paraná. Allele frequencies found in the Caucasoids were close to those described for similar populations. Amerindians had a somewhat more restricted polymorphism, and allele and haplotype frequencies differed greatly between the two tribes. Overall linkage disequilibrium (LD) between the four genes was low in the Caucasoids, but high in the Amerindians, for which significant LD was seen for all informative pairs of loci. Comparing results of this and previous studies we observed that, whenever significant LD occurs in non‐Amerindians, it tends to be similar in the different ethnic groups. While this might be interpreted as evidence of co‐evolution of genes in the TAP‐LMP region, the high haplotypic diversity in all populations and low LD in non‐Amerindians indicate absence of co‐evolution of the different genes. Distributions of allele and genotype frequencies are consistent with the hypothesis of selective neutrality. We conclude that genetic polymorphism of the human TAP and LMP genes and haplotypes is of little, if any, functional significance.  相似文献   

13.
HLA class I antigens of the human major histocompatibility complex play an important role in immune response. These molecules present foreign antigenic peptides to cytotoxic T lymphocytes and thereby play a role in the immune surveillance of cells infected with virus or other intracellular pathogens or altered by malignant transformation. A marked deficiency or lack of expression of these antigens has been reported in a variety of human neoplasms. In the present study, we examined the expression of class I chain, β2-microglobulin, TAP (TAP1 and TAP2) and LMP (LMP2 and LMP7) genes in a number of human tumor cell lines including small-cell lung carcinoma, hepatocellular carcinoma, colon adenocarcinoma and basophilic leukaemia. These cell lines were deficient in expression of both class I chain and β2-microglobulin gene products. In addition, these cell lines lacked the products of MHC-encoded proteasome subunit LMP2 as well as the putative peptide transporter TAP1 genes. In contrast, TAP2 and LMP7 genes were expressed in these cell lines. Treatment of cells with γ-IFN markedly enhanced the expression of class I chain, β2-microglobulin, TAP1 and LMP2 genes with a concomitant increase in cell-surface expression of class I molecules. The upregulation of TAP1 and LMP2 expression is associated with increased class I expression, suggesting that endogenous antigens, e.g. tumor antigens, could be presented by class I molecules following treatment of tumor cells with γ-IFN.  相似文献   

14.
Dendritic cells (DC) are professional antigen-presenting cells (APC) which proceed from immature to a mature stage during their final differentiation. Immature DC are highly effective in terms of antigen uptake and processing, whereas mature DC become potent immunostimulatory cells. Until now, the expression profiles of the major components of the MHC class I antigen-processing machinery (APM) during DC development have not been well characterized. In this study, the mRNA and protein expression levels of the IFN-gamma inducible proteasome subunits, of the proteasome activators PA28, and of key components required for peptide transport and MHC class I-peptide complex assembly have been evaluated in immature and mature stages of human monocyte-derived DC using semiquantitative RT-PCR and Western blot analyses. The IFN-gamma-responsive immunoproteasome subunits LMP2, LMP7 and MECL1 are up-regulated in immature DC, whereas the other components of the MHC class I presentation machinery, such as PA28, TAP, tapasin, and HLA heavy and light chains, were found to be more abundant in mature DC. These findings support the hypothesis that immature DC produced by the differentiation of monocytes in response to IL-4 and granulocyte macrophage colony stimulating factor first increase their capacity to capture antigens and process them into peptides, thereby switching from housekeeping to immunoproteasomes, while mature DC rather up-regulate the components required for peptide translocation and MHC class I-peptide complex formation, and thus specialize in antigen presentation. Our results establish that MHC class I, like MHC class II surface expression, is markedly regulated during DC development and maturation.  相似文献   

15.
TAP, LMP and DM genes map within the major histocompatibility complex (MHC) class II region between the DQB1 and DPB1 loci, and are involved in the processing of peptides bound to HLA class I or class II molecules. In order to determine the various linkage disequilibria existing between these genes and HLA class II genes, we have analyzed TAP1, TAP2, LMP2, DMA, DMB, DRB1, DQA1, DQB1 and DPB1 polymorphisms in 162 unrelated healthy Caucasian individuals. Many positive or negative associations were observed between alleles at these loci, such as between DR/DQ and TAP2, DM or LMP, between DP and DMB, and between TAP2 and DM, TAP2 and LMP. Conversely, no linkage disequilibrium was detected between some closely related genes (DR/DQ and TAP1, TAP1 and TAP2, LMP2 and DM), in agreement with the existence of recombination hot spots in this region. Other weak linkage disequilibria are likely to exist in this region. These data allow to define some conserved MHC class II haplotypes including HLA class II and TAP, LMP and DM alleles. Furthermore, the knowledge of such linkage disequilibria is of outstanding importance in order to avoid misinterpretation of the data when studying MHC class II associations with autoimmune diseases.  相似文献   

16.
Virus subversion of the MHC class I peptide-loading complex   总被引:3,自引:0,他引:3  
Many viral proteins modulate class I expression, yet, in general, their mechanisms of specific class I recognition are poorly understood. The mK3 protein of gamma(2)-Herpesvirus 68 targets the degradation of nascent class I molecules via the ubiquitin/proteasome pathway. Here, we identify cellular components of the MHC class I assembly machinery, TAP and tapasin, that are required for mK3 function. mK3 failed to regulate class I in TAP- or tapasin-deficient cells, and mK3 interacted with TAP/tapasin, even in the absence of class I. Expression of mK3 resulted in the ubiquitination of TAP/tapasin-associated class I, and mutants of class I incapable of TAP/tapasin interaction were unaffected by mK3. Thus, mK3 subverts TAP/tapasin to specifically target class I molecules for destruction.  相似文献   

17.
Antigenic peptides derived from endogenous or viral proteins can associate with class I or class II major histocompatibility complex (MHC) molecules, while exogenous antigens are endocytosed, processed intracellularly and presented on MHC class II molecules. Here we describe a method that allows the presentation of an MHC class I-restricted antigenic peptide on MHC class I molecules, although it was taken up from the outside. The HLA-A2-restricted influenza virus matrix protein-derived peptide (flu, 57–68) was used either in soluble form or coupled via an S-S bridge to transferrin (Tf-flu). Target cells were incubated with flu or Tf-flu and the effective antigen presentation was detected in a cytotoxicity assay using flu peptide-specific, HLA-A2-restricted CD8+ cytotoxic T lymphocytes. Sensitization of target cells with Tf-flu required 5 to 10 times higher molar concentrations of peptide compared to sensitization with soluble free peptide. The Tf-flu construct was taken up by the cells via the Tf receptor (CD71) as the binding of Tf-flu was blocked by an excess of Tf. In contrast to the flu peptide, cytotoxicity elicited by Tf-flu was blocked by brefeldin A but not by chloroquine nor inhibitors of intracellular reducing steps, like 1-buthionine-(s, r)-sulfoximine or n-ethylmaleimide. Presentation of the flu peptide derived from Tf-flu construct is not hindered in the mutant T2 cell line, which lacks genes coding for transporter proteins for antigenic peptides (TAP1/TAP2) and proteasomes subunits, suggesting that the processing pathway described in this report may involve TAP-independent steps.  相似文献   

18.
Proteasomes play a fundamental role in the processing of intracellular antigens into peptides that bind to MHC class I molecules for the presentation of CD8(+) T cells. Three IFN-γ-inducible catalytic proteasome (immuno)subunits as well as the IFN-γ-inducible proteasome activator PA28 dramatically accelerate the generation of a subset of MHC class I-presented antigenic peptides. To determine whether these IFN-γ-inducible proteasome components play a compounded role in antigen processing, we generated mice lacking both PA28 and immunosubunits β5i/LMP7 and β2i/MECL-1. Analyses of MHC class I cell-surface levels ex vivo demonstrated that PA28 deficiency reduced the production of MHC class I-binding peptides both in cells with and without immunosubunits, in the latter cells further decreasing an already diminished production of MHC ligands in the absence of immunoproteasomes. In contrast, the immunosubunits but not PA28 appeared to be of critical importance for the induction of CD8(+) T-cell responses to multiple dominant Influenza and Listeria-derived epitopes. Taken together, our data demonstrate that PA28 and the proteasome immunosubunits use fundamentally different mechanisms to enhance the supply of MHC class I-binding peptides; however, only the immunosubunit-imposed effects on proteolytic epitope processing appear to have substantial influence on the specificity of pathogen-specific CD8(+) T-cell responses.  相似文献   

19.
Proteasome‐mediated proteolysis is responsible for the generation of immunogenic epitopes presented by MHC class I molecules, which activate antigen‐specific CD8+ T cells. Immunoproteasomes, defined by the presence of the three catalytic subunits LMP2, MECL‐1, and LMP7, have been hypothesized to optimize MHC class I antigen processing. In this study, we demonstrate that the infection of mice with a protozoan parasite, Toxoplasma gondii, induced the expression of LMP7 mRNA in APC and increased the capacity of APC to induce the production of IFN‐γ by antigen‐specific CD8+ T cells. In vitro infection of a DC cell line with T. gondii also induced the expression of LMP7 and resulted in enhanced proteasome proteolytic activity. Finally, mice lacking LMP7 were highly susceptible to infection with T. gondii and showed a reduced number of functional CD8+ T cells. These results demonstrate that proteasomes containing LMP7 play an indispensable role in the survival of mice infected with T. gondii, presumably due to the efficient generation of CTL epitopes required for the functional development of CD8+ T cells.  相似文献   

20.
A growing body of evidence indicates that viral infections of the heart contribute to ongoing myocarditis and dilated cardiomyopathy. Murine models of coxsackievirus B3 (CVB3)-induced myocarditis mimic the human disease and allow identification of susceptibility factors that modulate the course of viral myocarditis. Susceptible mouse strains develop chronic myocarditis on the basis of restricted viral replication, whereas resistant strains recover after successful virus elimination. In comparative whole-genome microarray analyses of infected hearts, several genes involved in the processing and presentation of viral epitopes were found to be uniformly up-regulated in acutely CVB3-infected susceptible mice compared with resistant animals. In particular, expression of the catalytic subunits LMP2, LMP7, and MECL-1, immunoproteasome proteins important in the generation of major histocom-patibility complex (MHC) class I-restricted peptides, was clearly enhanced in the susceptible host. Increased expression resulted in enhanced formation of immunoproteasomes and altered proteolytic activities of proteasomes in the heart. This was accompanied by a concerted up-regulation of the antigen-presenting machinery in susceptible mice. Thus, we propose that increased formation of immunoproteasomes in susceptible mice affects the generation of antigenic peptides and the subsequent T-cell-mediated immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号