首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study has examined the ascending projections of the periaqueductal gray in the rat. Injections of Phaseolus vulgaris-leucoagglutinin were placed in the dorsolateral or ventrolateral subregions, at rostral or caudal sites. From either region, fibers ascended via two bundles. The periventricular bundle ascended in the periaqueductal and periventricular gray matter. At the posterior commissure level, this bundle divided into a dorsal component that terminated in the intralaminar and midline thalamic nuclei, and a ventral component that supplied the hypothalamus. The ventral bundle formed in the deep mesencephalic reticular formation and supplied the ventral tegmental area, substantia nigra pars compacta, and the retrorubral field. The remaining fibers were incorporated into the medial forebrain bundle. These supplied the lateral hypothalamus and forebrain structures, including the preoptic area, the nuclei of the diagonal band, and the lateral division of the bed nucleus of the stria terminalis. The dorsolateral subregion preferentially innervated the centrolateral and paraventricular thalamic nuclei and the anterior hypothalamic area. The ventrolateral subregion preferentially innervated the parafascicular and central medial thalamic nuclei, the lateral hypothalamic area, and the lateral division of the bed nucleus of the stria terminalis. Although the dorsolateral and ventrolateral subregions gave rise to differential projections, the projections from both the rostral and caudal parts of either subregion were similar. This suggests that the dorsolateral and ventrolateral subregions are organized into longitudinal columns that extend throughout the length of the periaqueductal gray. These columns may correspond to those demonstrated in recent physiological studies. © 1995 Willy-Liss, Inc.  相似文献   

2.
No previous report in any species has systematically examined the descending projections of the posterior nucleus of the hypothalamus (PH). The present report describes the descending projections of the PH in the rat by using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin. PH fibers mainly descend to the brainstem through two routes: dorsally, within the central tegmental tract; and ventromedially, within the mammillo-tegmental tract and its caudal extension, ventral reticulo-tegmental tracts. PH fibers were found to distribute densely to several nuclei of the brainstem. They are (from rostral to caudal) 1) lateral/ventrolateral regions of the diencephalo-mesopontine periaqueductal gray (PAG); 2) the peripeduncular nucleus; 3) discrete nuclei of pontomesencephalic central gray (dorsal raphe nucleus, laterodorsal tegmental nucleus, and Barrington's nucleus); 4) the longitudinal extent of the central core of the mesencephalic through medullary reticular formation (RF); 5) the ventromedial medulla (nucleus gigantocellularis pars alpha, nucleus raphe magnus, and nucleus raphe pallidus); 6) the ventrolateral medulla (nucleus reticularis parvocellularis and the rostral ventrolateral medullary region); and 7) the inferior olivary nucleus. PH fibers originating from the caudal PH distribute much more heavily than those from the rostral PH to the lower brainstem. The PH has been linked to the control of several important functions, including respiration, cardiovascular activity, locomotion, antinociception, and arousal/wakefulness. It is likely that descending PH projections, particularly those to the PAG, the pontomesencephalic RF, Barrington's nucleus, and parts of the ventromedial and ventrolateral medulla, serve a role in a PH modulation of complex behaviors involving an integration of respiratory, visceromotor, and somatomotor activity. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Cells of origin of serotonergic and non-serotonergic projections to the caudal brain stem in the primate were examined using a double label technique. Following HRP injections into medullary raphe nuclei and the adjacent reticular formation double labeled cells were found in the dorsal raphe nucleus, the central superior nucleus and the ventrolateral tegmentum. Retrogradely labeled cells that did not stain for serotonin-like immunoreactivity were found primarily in the periaqueductal gray (PAG) and the mesencephalic and pontine reticular formation. The results are discussed in relation to the descending pathway(s) mediating the effects of PAG stimulation.  相似文献   

4.
The purpose of this study was to determine which reticulospinal projections need to be preserved to allow voluntary walking and to differentiate between those pathways descending within the ventrolateral funiculus versus the ventromedial funiculus. Retrogradely transported tracers (True Blue, Fast Blue, Diamidino Yellow dihydrochloride, fluorescein-conjugated dextran-amines) were used alone as discrete funicular injections (4-5 microliters) into the lumbar cord (L1), or in conjunction with a more rostral subtotal lesion of the low thoracic cord, to determine the trajectories of brainstem-spinal projections in adult ducks and geese. No difference was found between the species. The major components of the ventromedial funiculus include projections from the medullary reticular formation, pontine reticular formation, raphe obscurus and pallidus, lateral vestibular nucleus, and interstitial nucleus, and to a minor extent from the locus coeruleus, lateral hypothalamus, and nucleus periventricularis hypothalami. The components of the ventrolateral funiculus (VLF) include projections from the nucleus of the solitary tract, nucleus alatus, pontomedullary reticular formation, raphe pallidus, raphe magnus, locus coeruleus, subcoeruleus, lateral vestibular, and descending vestibular nuclei. The principal descending projections within the dorsolateral funiculus (DLF) arose from the red nucleus, the paraventricular nucleus, locus coeruleus, subcoeruleus, dorsal division of the caudal medullary reticular formation, and raphe magnus. The functional implications of the distribution of these descending pathways are discussed with regard to locomotion. Since birds were able to walk despite bilateral lesion of the DLF or VMF but were unable to walk following a bilateral lesion of the VLF, this suggests that medullary reticulospinal pathways coursing within the VLF are essential for the provision of locomotor drive.  相似文献   

5.
The nucleus retroambiguus (NRA) of the caudal medulla is a relay nucleus by which neurons of the mesencephalic periaqueductal gray (PAG) reach motoneurons of pharynx, larynx, soft palate, intercostal and abdominal muscles, and several muscles of the hindlimbs. These PAG-NRA-motoneuronal projections are thought to play a role in survival behaviors, such as vocalization and mating behavior. In the present combined antero- and retrograde tracing study in the cat, we sought to determine whether the NRA, apart from the neurons projecting to motoneurons, also contains cells projecting back to the PAG. After injections of WGA-HRP in the caudal and intermediate PAG, labeled neurons were observed in the NRA, with a slight contralateral preponderance. In contrast, after injections in the rostral PAG or adjacent deep tectal layers, no or very few labeled neurons were present in the NRA. After injection of [(3)H]leucine in the NRA, anterograde labeling was present in the most caudal ventrolateral and dorsolateral PAG, and slightly more rostrally in the lateral PAG, mainly contralaterally. When the [(3)H]leucine injection site extended medially into the medullary lateral tegmental field, labeling was found in most parts of the PAG as well as in the adjoining deep tectal layers. No labeled fibers were found in the dorsolateral PAG, and only a few were found in the rostral PAG. Because the termination pattern of the NRA fibers in the PAG overlaps with that of the sacral cord projections to the PAG, it is suggested that the NRA-PAG projections play a role in the control of motor functions related to mating behavior.  相似文献   

6.
K Kandler  H Herbert 《Brain research》1991,562(2):230-242
We investigated projections from the cochlear nucleus in the rat using the anterograde tracer Phaseolus vulgaris-leucoagglutinin. We focused on nuclei in the brainstem which are not considered to be part of the classical auditory pathway. In addition to labeling in auditory nuclei, we found presumed terminal fibers in 4 pontine and mesencephalic areas: (1) the pontine nucleus (PN), which receives bilateral projections from the antero- and posteroventral cochlear nuclei; (2) the ventrolateral tegmental nucleus (VLTg), which receives a contralateral projection from the rostral portion of the anteroventral cochlear nucleus; (3) the caudal pontine reticular nucleus (PnC), which receives bilateral input originating predominantly in the dorsal cochlear nucleus; and (4) the lateral paragigantocellular nucleus (LPGi), which receives projections from all subdivisions of the cochlear nuclei. In the VLTg and PnC, anterogradely labeled varicose axons were often found in close apposition to the primary dendrites and somata of large reticular neurons. Injections of the retrograde fluorescent tracer Fluoro-Gold into the VLTg demonstrated that the neurons of origin are mainly located contralaterally in the rostral anteroventral cochlear nucleus and in the cochlear root nucleus. The relevance of these auditory projections for short-latency audio-motor behaviors and acoustically elicited autonomic responses is discussed.  相似文献   

7.
Early studies that used older tracing techniques reported exceedingly few projections from the dorsal raphe nucleus (DR) to the brainstem. The present report examined DR projections to the brainstem by use of the anterograde anatomical tracer Phaseolus vulgaris leucoagglutinin (PHA-L). DR fibers were found to terminate relatively substantially in several structures of the midbrain, pons, and medulla. The following pontine and midbrain nuclei receive moderate to dense projections from the DR: pontomesencephalic central gray, mesencephalic reticular formation, pedunculopontine tegmental nucleus, medial and lateral parabrachial nuclei, nucleus pontis oralis, nucleus pontis caudalis, locus coeruleus, laterodorsal tegmental nucleus, and raphe nuclei, including the central linear nucleus, median raphe nucleus, and raphe pontis. The following nuclei of the medulla receive moderately dense projections from the DR: nucleus gigantocellularis, nucleus raphe magnus, nucleus raphe obscurus, facial nucleus, nucleus gigantocellularis-pars alpha, and the rostral ventrolateral medullary area. DR fibers project lightly to nucleus cuneiformis, nucleus prepositus hypoglossi, nucleus paragigantocellularis, nucleus reticularis ventralis, and hypoglossal nucleus. Some differences were observed in projections from rostral and caudal parts of the DR. The major difference was that fibers from the rostral DR distribute more widely and heavily than do those from the caudal DR to structures of the medulla, including raphe magnus and obscurus, nucleus gigantocellularis-pars alpha, nucleus paragigantocellularis, facial nucleus, and the rostral ventrolateral medullary area. A role for the dorsal raphe nucleus in several brainstem controlled functions is discussed, including REM sleep and its events, nociception, and sensory motor control. © Wiley-Liss, Inc.  相似文献   

8.
Previous studies showed that the nucleus locus coeruleus (LC) receives two major afferent inputs from 1) nucleus paragigantocellularis and 2) nucleus prepositus hypoglossi, both in the rostral medulla. Recent reports suggested that the midbrain periaqueductal gray (PAG) projects to the rostromedial pericoerulear area and LC. Since the PAG is a major site for control of central antinociception, and since descending noradrenergic fibers have been implicated in pain modulation, we have investigated in detail the functional anatomy of projections from PAG to the dorsolateral pontine tegmentum. A combined anatomical and electrophysiological approach was used to assess the organization and synaptic influence of PAG on neurons in the rostromedial pericoerulear region and in LC proper. Injections of the tracer wheatgerm agglutinin conjugated to horseradish peroxidase encompassing LC proper and the rostromedial pericoerulear area retrogradely labeled neurons in PAG located lateral and ventrolateral to the cerebral aqueduct; injections restricted to LC proper did not consistently label PAG neurons. Deposits of the anterograde axonal tracer Phaseolus vulgaris leucoagglutinin into this same region of PAG labeled axons that robustly innervated the zone rostral and medial to LC. Only sparse fibers were observed in LC proper. Consistent with these results, focal electrical stimulation of LC antidromically activated only a few PAG neurons (6 of 100); all of these driven cells were located lateral and ventrolateral to the cerebral aqueduct. The majority of neurons in the rostromedial pericoerulear area were robustly activated by single pulse stimulation of PAG. In contrast, single pulse electrical stimulation of lateral PAG produced weak to moderate synaptic activation of some LC neurons; stimulation of ventrolateral PAG produced predominant inhibition of LC discharge, perhaps through recurrent collaterals subsequent to antidromic activation of neighboring LC cells. Taken together, these results indicate that PAG strongly innervates the region rostral and medial to LC, including Barrington's nucleus, but only weakly innervates LC proper. Although recent studies indicate that the dendrites of LC neurons ramify heavily and selectively in the rostromedial pericoerulear region, the results of the present physiological studies suggest that PAG preferentially targets rostromedial pericoerulear neurons rather than LC dendrites.  相似文献   

9.
The periaqueductal gray matter (PAG) projections to the intralaminar and midline thalamic nuclei were examined in rats. Phaseolus vulgaris-leucoagglutinin (PHA-L) was injected in discrete regions of the PAG, and axonal labeling was examined in the thalamus. PHA-L was also placed into the dorsal raphe nuclei or nucleus of Darkschewitsch and interstitial nucleus of Cajal as controls. In a separate group of rats, the retrograde tracer cholera toxin beta-subunit (CTb) was injected into one of the intralaminar thalamic nuclei-lateral parafascicular, medial parafascicular, central lateral (CL), paracentral (PC), or central medial nucleus-or one of the midline thalamic nuclei-paraventricular (PVT), intermediodorsal (IMD), mediodorsal, paratenial, rhomboid (Rh), reuniens (Re), or caudal ventral medial (VMc) nucleus. The distribution of CTb labeled neurons in the PAG was then mapped. All PAG regions (the four columns of the caudal two-thirds of the PAG plus rostral PAG) and the precommissural nucleus projected to the rostral PVT, IMD, and CL. The ventrolateral, lateral, and rostral PAG provided additional inputs to most of the other intralaminar and midline thalamic nuclei. PAG inputs to the VMc originated from the rostral and ventrolateral PAG areas. In addition, the lateral and rostral PAG projected to the zona incerta. No evidence was found for a PAG input to the ventroposterior lateral parvicellular, ventroposterior medial parvicellular, caudal PC, oval paracentral, and reticular thalamic nuclei. PAG --> thalamic circuits may modulate autonomic-, nociceptive-, and behavior-related forebrain circuits associated with defense and emotional responses.  相似文献   

10.
Previous anatomical and physiological studies have revealed a substantial projection from the periaqueductal gray (PAG) to the nucleus paragigantocellularis (PGi). In addition, physiological studies have indicated that the PAG is composed of functionally distinct subregions. However, projections from PAG subregions to PGi have not been comprehensively examined. In the present study, we sought to examine possible topographic specificity for projections from subregions of the PAG to PGi. Pressure or iontophoretic injections of wheat germ agglutinin-conjugated horseradish peroxidase, or of Fluoro-Gold, placed into the PGi of the rat retrogradely labeled a substantial number of neurons in the PAG from the level of the Edinger-Westphal nucleus to the caudal midbrain. Retrogradely labeled neurons were preferentially aggregated in distinct subregions of the PAG. Rostrally, at the level of the oculomotor nucleus, labeled neurons were i) compactly aggregated in the ventromedial portion of the PAG corresponding closely to the supraoculomotor nucleus of the central gray, ii) in the lateral and ventrolateral PAG, and iii) in medial dorsal PAG. More caudally, retrogradely labeled neurons became less numerous in the dorsomedial PAG but were more widely scattered throughout the lateral and ventrolateral parts of the PAG. Only few retrogradely labeled neurons were found in the ventromedial part of the PAG at caudal levels. Injections of retrograde tracers restricted to subregions of the PGi suggested topography for afferents from the PAG. Injections into the lateral portion of the PGi yielded the greatest number of labeled neurons within the rostral ventromedial PAG. Medially placed injections yielded numerous retrogradely labeled neurons in the lateral and ventrolateral PAG. Injections placed in the rostral pole of the PGi (medial to the facial nucleus) produced the greatest number of retrogradely labeled neurons in the dorsal PAG. To examine the pathways taken by fibers projecting from PAG neurons to the medulla, and to further specify the topography for the terminations of these afferents in the PGi, the anterograde tracer Phaseolus vulgaris-leucoagglutinin was iontophoretically deposited into subregions of the PAG that contained retrogradely labeled neurons in the above experiments. These results revealed distinct fiber pathways to the rostral medulla that arise from the dorsal, lateral/ventrolateral, and ventromedial parts of the PAG. These injections also showed that there are differential but overlapping innervation patterns within the PGi. Consistent with the retrograde tracing results, injections into the rostral ventromedial PAG near the supraoculomotor nucleus yielded anterograde labeling immediately ventral to the nucleus ambiguus in the ventrolateral medulla, within the retrofacial portion of the PGi.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The pontine micturition center (PMC) or Barrington's nucleus controls micturition by way of its descending projections to the sacral spinal cord. However, little is known about the afferents to the PMC that control its function and may be responsible for dysfunction in patients with urge-incontinence and overactive bladder. In five female cats, wheatgerm agglutinin-conjugated horseradish peroxidase (WGA-HRP) injections were made in the PMC and adjoining dorsolateral pontine tegmentum. Retrogradely labeled neurons were found in a large area, including the medullary and pontine medial and lateral tegmental field; dorsomedial, lateral, and ventrolateral periaqueductal gray matter (PAG); posterior hypothalamus; medial preoptic area (MPO); bed nucleus of the stria terminalis; central nucleus of the amygdala; and infralimbic, prelimbic, and insular cortices. To verify whether these areas indeed project specifically to the PMC or perhaps only to adjacent structures in the pontine tegmentum, in 67 cats (3)H-leucine or WGA-HRP injections were made in each of these regions. Five cell groups appeared to have direct connections to the PMC, the ventromedial pontomedullary tegmental field, the ventrolateral and dorsomedial PAG, the MPO, and the posterior hypothalamus. The possible functions of these projections are discussed. These results indicate that all other parts of the brain that influence micturition have no direct connection with the PMC.  相似文献   

12.
The paraventricular hypothalamic nucleus (PVH) contains many neurons that innervate the brainstem, but information regarding their target sites remains incomplete. Here we labeled neurons in the rat PVH with an anterograde axonal tracer, Phaseolus vulgaris leucoagglutinin (PHAL), and studied their descending projections in reference to specific neuronal subpopulations throughout the brainstem. While many of their target sites were identified previously, numerous new observations were made. Major findings include: 1) In the midbrain, the PVH projects lightly to the ventral tegmental area, Edinger‐Westphal nucleus, ventrolateral periaqueductal gray matter, reticular formation, pedunculopontine tegmental nucleus, and dorsal raphe nucleus. 2) In the dorsal pons, the PVH projects heavily to the pre‐locus coeruleus, yet very little to the catecholamine neurons in the locus coeruleus, and selectively targets the viscerosensory subregions of the parabrachial nucleus. 3) In the ventral medulla, the superior salivatory nucleus, retrotrapezoid nucleus, compact and external formations of the nucleus ambiguus, A1 and caudal C1 catecholamine neurons, and caudal pressor area receive dense axonal projections, generally exceeding the PVH projection to the rostral C1 region. 4) The medial nucleus of the solitary tract (including A2 noradrenergic and aldosterone‐sensitive neurons) receives the most extensive projections of the PVH, substantially more than the dorsal vagal nucleus or area postrema. Our findings suggest that the PVH may modulate a range of homeostatic functions, including cerebral and ocular blood flow, corneal and nasal hydration, ingestive behavior, sodium intake, and glucose metabolism, as well as cardiovascular, gastrointestinal, and respiratory activities. J. Comp. Neurol. 518:1460–1499, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
In a systematic attempt to trace all projections from the brainstem and diencephalon to the pontine nuclei of the cat, implantations and injections of horseradish peroxidase-wheat germ agglutinin (HRP-WGA) or Fluoro-Gold were placed in the pontine nuclei of 21 cats. In most of the cases there was no evidence of spread of tracer outside the pontine nuclei. Retrogradely labeled cells in the brainstem and diencephalon were carefully mapped and counted. The number labeled cells in the brainstem and diencephalon ranged from 24 in cases with very small implantations to 3,490 in cases with large injections in the pontine nuclei (counts from every fifth section). The labeled cells are located bilaterally with an ipsilateral preponderance. After large injections, 25-38% of the labeled cells were located in the brainstem reticular formation, 10-16% in the pretectal nuclei, 10-15% in the hypothalamus, 7-9% in the zona incerta, 3-9% in the fields of Forel, 4-5% in the nucleus locus coeruleus, 3-5% in the ventral lateral geniculate body, 2-4% in the superior colliculus, 3% in the periaqueductal gray, and 14-15% in other parts of the brainstem. Judging from cases with small tracer deposits entirely confined to the pontine nuclei, there appear to be two types of subcortical inputs: Projections from the reticular formation, the nucleus locus coeruleus, the periaqueductal gray, and the raphe nuclei are widespread, presumably reaching all parts of the pontine nuclei, while projections from a diversity of other sources are localized, reaching limited parts of the pontine nuclei only or predominantly.  相似文献   

14.
Because fastigial efferent fibers partially decussate within the cerebellum and cerebellar corticovestibular projections pass near, or through, the fastigial nucleus (FN), degeneration studies based on lesions in the nucleus leave unresolved questions concerning fastigial projections. Attempts were made to determine fastigial projections in the monkey using autoradiographic tracing technics. Cells in rostral, caudal and all parts of the FN were labeled with [3H] amino acids. Selective labeling of neurons in either rostral or caudal parts of the FN results in transport of isotope primarily via fibers of the contralateral uncinate fasciculus (UF) and the ipsilateral juxtarestiform body (JRB). Fastigial projections to the vestibular nuclei are mainly to ventral portions of the lateral (LVN) and inferior (IVN) vestibular nuclei, are nearly symmetrical and are quantitatively similar on each side. Fastigiovestibular projections to cell groups f and x arise from all parts of the FN and are mainly crossed; modest projections to the medial vestibular nucleus are uncrossed. No fastigial efferent fibers end in the superior vestibular nucleus on either side, or in dorsal regions of the LVN. Crossed fibers descending in IVN terminate in the nucleus parasolitarius. Fastigioreticular fibers arise predominately from rostral regions of the FN, are entirely crossed and project mainly to: (1) medial regions of the nucleus reticularis gigantocellularis, (2) the dorsal paramedian reticular nucleus and (3) the magnocellular part of the lateral reticular nucleus. Fastigiopontine fibers, emerge with the UF, bypass the vestibular nuclei and terminate upon the contralateral dorsolateral pontine nuclei. Crossed fastigiospinal fibers separate from fastigiopontine fibers and descend in the ventrolateral tegmentum beneath the spinal trigeminal tract; in the medulla and upper cervical spinal cord these fibers are intermingled with those of the vestibulospinal tract. Fastigiospinal fibers terminate in the anterior gray horn at C-1 and probably descend further. Ascending fastigial projections arise from caudal parts of the FN, are entirely crossed and ascend in dorsal parts of the midbrain tegmentum. Label is transported bilaterally to the superior colliculi and the nuclei of the posterior commissure. Contralateral fastigiothalamic projections terminate in the ventral posterolateral (VPLc and VPLo) and in parts of the ventral lateral (VLo) thalamic nuclei. The major region of termination of fastigiothalamic fibers is in VPLo. Fastigiothalamic projections, probably conveying impulses concerned with equilibrium and somatic proprioception, appear to impinge upon thalamic neurons receiving inputs from less specialized receptors that signal information concerning position sense and body movement. More modest fastigial projections to VLo could directly influence activity of neurons in the primary motor cortex.  相似文献   

15.
The pattern of neocortical projections to the pons and medulla was determined by employing the Nauta-Gygax technique ('54) on the brains of armadillos subjected to neocortical ablations. The results of this study indicate that the pretrigeminal basilar pontine gray receives input from a considerable portion of the neocortex. Degenerating fibers resulting from a lesion of the frontal tip of the neocortex terminated within the dorsal medial, the medial and the ventral medial areas of the rostral basilar pontine gray. Corticopontine fibers from the mid-presupraorbital neocortex ended throughout the rostral to caudal extent of the basilar pontine gray, and terminated within the dorsal medial, the medial and the ventral medial areas; whereas degenerating fibers resulting from a lesion of the neocortex immediately rostral to the supraorbital sulcus terminated within the medial, the ventral and the ventral lateral areas of the basilar pontine gray. The neocortex immediately caudal to the supraorbital sulcus distributed corticopontine fibers to the ventral, the ventral lateral, the dorsal lateral and to the dorsal areas of the basilar pontine gray, while degenerating fibers resulting from lesions of the caudal one-third and most caudal tip of the neocortex projected to the ventral and lateral portions of the basilar pontine gray. Neocortical projections to the pontine and medullary reticular formation originated mainly from cortical areas rostral and immediately caudal to the supraorbital sulcus. The neocortex rostral to the supraorbital sulcus distributed to the rostral and medial portions of the pontine reticular formation, whereas corticoreticular fibers from the neocortex immediately caudal to the suprarbital sulcus, also distributed degenerating fascicles to the spinal trigeminal nucleus, the nucleus of the solitary tract and to the nucleus cuneatus. No degenerating fibers were seen to terminate within motor nuclei of cranial nerves located within either the pons or medulla.  相似文献   

16.
The origin and termination of prefrontal cortical projections to the periaqueductal gray (PAG) were defined with retrograde axonal tracers injected into the PAG and anterograde axonal tracers injected into the prefrontal cortex (PFC). The retrograde tracer experiments demonstrate projections to the PAG that arise primarily from the medial prefrontal areas 25, 32, and 10m, anterior cingulate, and dorsomedial areas 24b and 9, select orbital areas 14c, 13a, Iai, 12o, and caudal 12l, and ventrolateral area 6v. Only scattered cells were retrogradely labeled in other areas in the PFC. Caudal to the PFC, projections to the PAG also arise from the posterior cingulate cortex, the dorsal dysgranular, and granular parts of the temporal polar cortex, the ventral insula, and the dorsal bank of the superior temporal sulcus. Cells were also labeled in subcortical structures, including the central nucleus and ventrolateral part of the basal nucleus of the amygdala. The anterograde tracer experiments indicate that projections from distinct cortical areas terminate primarily in individual longitudinal PAG columns. The projections from medial prefrontal areas 10m, 25, and 32 end predominantly in the dorsolateral columns, bilaterally. Fibers from orbital areas 13a, Iai, 12o, and caudal 12l terminate primarily in the ventrolateral column, whereas fibers from dorsomedial areas 9 and 24b terminate mainly in the lateral column. The PFC areas that project to the PAG include most of the areas previously defined as the “medial prefrontal network.” The areas that comprise this network represent a visceromotor system, distinct from the sensory related “orbital network.” J. Comp. Neurol. 401:455–479, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
The ascending projections of the locus coeruleus were studied using an autoradiographic method. The major projection of locus coeruleus neurons ascends in a dorsal pathway traversing the midbrain tegmentum in a position ventrolateral to the periaqueductal gray. At the caudal diencephalon the locus coeruleus axons descend to enter the medial forebrain bundle at a caudal tuberal hypothalamic level. They are jointed in the medial forebrain bundle by a much smaller locus coeruleus projection which takes a ventral course through the midbrain tegmentum and enters the medial forebrain bundle via the mammillary peduncle and ventral tegmental area. Terminal projections are evident in the midbrain to the periaqueductal gray, tegmentum and raphe nuclei. There are widespread projections to the dorsal thalamus. The heaviest of these are to the intralaminar nuclei, the anteroventral and anteromedial nuclei, the dorsal lateral geniculate and the paraventricular nucleus. In the hypothalamus the largest projections are to the lateral hypothalamic area, periventricular nucleus, supraoptic nucleus and paraventricular nucleus. As the locus coeruleus projection ascends in the medial forebrain bundle, fibers leave it to traverse the lateral hypothalamus and zona incerta and enter the internal capsule, the ventral amygdaloid bundle and ansa peduncularis. These appear to terminate in the amygdaloid complex and, via the external capsule, in the lateral and dorsal neocortex. At the level of the septum 4 projections are evident. One group of fibers enters the stria medullaris to terminate in the paraventricular nucleus and habenular nuclei. A second group joins the stria terminalis to terminate in the anygdaloid complex. The third group turns into the diagonal band and medial septum; some fibers terminate in the septal nuclei and others continue into the fornix to termimate in hippocampus. A large component continues around the corpus callosum into the cingulum to terminate in the cingulate and adjacent neocortex, the subiculum and hippocampus. The remaining fibers continue rostrally in the medial forebrain bundle to terminate in olfactory forebrain and frontal neocortex. Commissural projections arise at 4 locations. The first decussation occurs in the dorsal tegmentum just below the central gray rostral to the locus coeruleus. The crossing fibers enter the contralateral dorsal bundle. A second group of fibers leaves the ipsilateral dorsal pathway, crosses in the posterior commissure and enters the contralateral dorsal pathway at the level. The third commissural projection arises more rostrally and crosses in the dorsal supraoptic commissure to enter the contralateral medial forebrain bundle. The fourth commissural projection is through the anterior commissure. The termination of the contralateral projection appears similar to that of the ipsilateral projection.  相似文献   

18.
The rostral ventromedial medulla (RVMM) is a sympathoexcitatory area. However, little is known about its efferent projections. In this study, biotinylated dextran amine (BDA) or Phaseolus vulgaris leucoagglutinin (PHA-L) were used to investigate the medullary and spinal cord projections from pressor sites in RVMM. Initially, RVMM was systematically explored in urethane-anesthetized rats using microinjection of L-glutamate for sites that elicited increases in arterial pressure. A pressor area was identified that included the rostral magnocellular reticular and rostral lateral paragigantocellular reticular nuclei. In the second series of experiments, BDA or PHA-L was iontophoretically injected into RVMM pressor sites. Anterograde labeling was observed throughout the brainstem and spinal cord, bilaterally, but with an ipsilateral predominance. Dense labeling was observed within the nucleus of the solitary tract (NTS); the greatest density of labeling was observed in the caudal dorsolateral, medial, and ventrolateral subnuclei. Additionally, light to moderately dense labeling was found within the nucleus substantia gelatinosus and commissural nucleus. In the nucleus ambiguus/ventrolateral medullary (Amb/VLM) region, the density of labeling was greatest in caudal regions. Within Amb, most of the labeling was localized to its external formation. Anterograde labeling was also found throughout the spinal cord. In the thoracolumbar segments, dense axonal labeling was observed within the dorsolateral funiculus. These labeled axons innervated the intermediolateral nucleus and the central autonomic area. Taken together, these data suggest that RVMM neurons elicit increases in sympathetic activity by likely providing a direct excitatory input to spinal sympathetic preganglionic neurons, and by a direct inhibitory input to medullary cardioinhibitory and depressor areas.  相似文献   

19.
The central projections of the ethmoidal, glossopharyngeal, and superior laryngeal nerves were determined in the muskrat by use of the transganglionic transport of a mixture of horseradish peroxidase (HRP) and wheat germ agglutinin (WGA)-HRP. The ethmoidal nerve projected to discrete areas in all subdivisions of the ipsilateral trigeminal sensory complex. Reaction product was focused in ventromedial portions of the principal nucleus, subnucleus oralis, and subnucleus interpolaris. The subnucleus oralis also contained sparse reaction product in its dorsomedial part. Projections were dense to ventrolateral parts of laminae I and II of the rostral medullary dorsal horn, with sparser projections to lamina V. Label in laminae I and V extended into the cervical dorsal horn. A few labeled fibers were followed to the contralateral dorsal horn. The interstitial neuropil of the ventral paratrigeminal nucleus was densely labeled. Extratrigeminal primary afferent projections in ethmoidal nerve cases involved the K?lliker-Fuse nucleus and ventrolateral part of the parabrachial nucleus, the reticular formation surrounding the rostral ambiguous complex, and the dorsal reticular formation of the closed medulla. Retrograde labeling in the brain was observed in only the mesencephalic trigeminal nucleus in these cases. The cervical trunk of the glossopharyngeal and superior laryngeal nerves also projected to the trigeminal sensory complex, but almost exclusively to its caudal parts. These nerves terminated in the dorsal and ventral paratrigeminal nuclei as well as lamina I of the medullary and cervical dorsal horns. Lamina V received sparse projections. The glossopharyngeal and superior laryngeal nerves projected to the ipsilateral solitary complex at all levels extending from the caudal facial nucleus to the cervical spinal cord. At the level of the obex, these nerves projected densely to ipsilateral areas ventral and ventromedial to the solitary tract. Additional ipsilateral projections were observed along the dorsolateral border of the solitary complex. Near the obex and caudally, the commissural area was labeled bilaterally. Labeled fibers from the solitary tract projected into the caudal reticular formation bilaterally, especially when the cervical trunk of the glossopharyngeal nerve received tracer. Labeled fibers descending further in the solitary tract gradually shifted toward the base of the cervical dorsal horn. The labeled fibers left the solitary tract and entered the spinal trigeminal tract at these levels. Retrogradely labeled cells were observed in the ambiguous complex, especially rostrally, and in the rostral dorsal vagal nucleus after application of HRP and WGA-HRP to either the glossopharyngeal or superior laryngeal nerves. In glossopharyngeal nerve cases, retrogradely labeled neurons also were seen in the inferior salivatory nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
A replication-defective lentivirus vector that expresses enhanced green fluorescent protein (EGFP) under the control of a synthetic dopamine-beta-hydroxylase (DbetaH) promoter was used to define efferent projections of C1 catecholamine neurons in rat rostral ventrolateral medulla (RVLM). EGFP expression was restricted to C1 neurons and filled their somatodendritic compartments and efferent axons 7-28 days after vector injection. This included the descending projections to thoracic spinal cord and a network in brainstem, midbrain, and diencephalon. In caudal brainstem, restricted terminal fields were present in the dorsal motor vagal complex, A1, raphe pallidus and obscurus, and marginal layer of ventrolateral medulla. Innervation of raphe nuclei was most dense at the level of RVLM, but rostral levels of pallidus were devoid of innervation. A sparse commissural projection to contralateral RVLM was observed, and pericellular arbors were present in the dorsal reticular formation among the projection pathway of catecholamine axons. Rostral brainstem contained a dense innervation of locus coeruleus and the nucleus subcoeruleus. A restricted innervation of the ventrolateral column of the periaqueductal gray distinguished the midbrain. Forebrain labeling was restricted to the diencephalon, where distinctive terminal fields were observed in the paraventricular thalamic nucleus; the lateral hypothalamic area; and the paraventricular, dorsomedial, supraoptic, and median preoptic nuclei of hypothalamus. Projection fibers also coursed through the tuberal hypothalamus into the median eminence. Collectively, these data demonstrate that RVLM C1 neurons modulate the activity of other central cell groups known to participate in the regulation of cardiovascular and autonomic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号