首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytogenetic analysis of short-term cultures from 52 primary colorectal adenocarcinomas revealed clonal chromosome aberrations in 45 tumors, whereas the remaining 7 had a normal karyotype. More than 1 abnormal clone was detected in 26 tumors; in 18 of them, the clones were cytogenetically unrelated. The modal chromosome number was near-diploid in 32 tumors and near-triploid to near-tetraploid in 13. Only numerical aberrations were identified in 13 carcinomas, only structural aberrations in 3, and 29 had both numerical and structural changes. The most common numerical abnormalities were, in order of decreasing frequency, gains of chromosomes 7, 13, 20, and Y and losses of chromosomes 18, Y, 14, and 15. The structural changes most often affected chromosomes 1, 17, 8, 7, and 13. The most frequently rearranged chromosome bands were, in order of decreasing frequency, 13q10, 17p10, 1p22, 8q10, 17p11, 7q11, 1p33, 7p22, 7q32, 12q24, 16p13, and 19p13. Frequently recurring aberrations affecting these bands were del(1)(p22), i(8)(q10), i(13)(q10), and add(17)(p11–13). The most common partial gains were from chromosome arms 8q, 13q, and 17q and the most common partial losses from chromosome arms 1p, 8p, 13p, and 17p. A correlation analysis between the karyotype and the clinicopathologic features in our total material, which consists of altogether 153 colorectal carcinomas, including 116 with an abnormal karyotype, showed a statistically significant association (P < 0.05) between the karyotype and tumor grade and site. Carcinomas with structural chromosome rearrangements were often poorly differentiated; well and moderately differentiated tumors often had only numerical aberrations or normal karyotypes. Abnormal karyotypes were more common in rectal carcinomas than in carcinomas situated higher up. Near-triploid to near-tetraploid karyotypes were more than twice as frequent in tumors of the distal colon as in those of the proximal colon and rectum. The cytogenetic data indicate that carcinomas located in the proximal colon and rectum, which often are near-diploid with simple numerical changes and cytogenetically unrelated clones, probably arise through different mechanisms than do tumors located in the distal colon, which more often have complex near-triploid to near-tetraploid karyotypes.  相似文献   

2.
Cytogenetic analysis of short-term cultures from 105 squamous cell carcinomas of the larynx (LSCC) revealed clonal chromosome aberrations in 56 tumors. Simple karyotypic changes (less than four aberrations per clone) were found in 24 cases, and the remaining 32 tumors had complex karyotypes with multiple numerical as well as unbalanced structural rearrangements. Extensive intratumor heterogeneity, in the form of multiple related subclones or unrelated clones, was observed in a large fraction of the tumors. The structural changes most often affected chromosomes 3, 1, 11, 7, 2, 15, 5, 4, 8, and 12, with rearrangements in the centromeric regions, i.e., the centromeric bands p10 and q10 and the juxtacentromeric bands p11 and q11, accounting for 43% of the total breakpoints. The most common imbalances brought about by numerical and unbalanced structural rearrangements were loss of chromosomal region 3p21-pter, chromosome arms 4p, 6q, 8p, 10p, 13p, 14p, 15p, and 17p, and gain of chromosomal regions 3q21-qter, 7q31-pter, and 8q. Among 17 recurrent aberrations identified, the most common were i(8q), hsr(11)(q13), i(3q), i(5p), and del(3)(p11). No statistically significant association was found between major karyotypic features and histological differentiation or TNM stage. The karyotypic features of the LSCC were also compared with previously published oral SCC, a subgroup of SCC that has been more extensively characterized cytogenetically. No clear-cut karyotypic differences were found between LSCC and oral SCC, with the exception that i(8q) was significantly more frequent among the latter.  相似文献   

3.
Chromosome banding analysis of 11 short-term cultured gallbladder carcinomas revealed acquired clonal aberrations in seven tumors (five primary and two metastases). Three of these had one clone, whereas the remaining four were cytogenetically heterogeneous, displaying two to seven aberrant clones. Of a total of 21 abnormal clones, 18 had highly complex karyotypes and three exhibited simple numerical deviations. Double minutes and homogeneously staining regions were observed in one and two carcinomas, respectively. To characterize the karyotypic profile of gallbladder cancer more precisely, we have combined the present findings with our three previously reported cases, thereby providing the largest cytogenetic database on this tumor type to date. A total of 287 chromosomal breakpoints were identified, 251 of which were found in the present study. Chromosome 7 was rearranged most frequently, followed by chromosomes 1, 3, 11, 6, 5, and 8. The bands preferentially involved were 1p32, 1p36, 1q32, 3p21, 6p21, 7p13, 7q11, 7q32, 19p13, 19q13, and 22q13. Nine recurrent abnormalities could, for the first time, be identified in gallbladder carcinoma: del(3)(p13), i(5)(p10), del(6)(q13), del(9)(p13), del(16)(q22), del(17)(p11), i(17)(q10), del(19)(p13), and i(21)(q10). The most common partial or whole-arm gains involved 3q, 5p, 7p, 7q, 8q, 11q, 13q, and 17q, and the most frequent partial or whole-arm losses affected 3p, 4q, 5q, 9p, 10p, 10q, 11p, 14p, 14q, 15p, 17p, 19p, 21p, 21q, and Xp. These chromosomal aberrations and imbalances provide some starting points for molecular analyses of genomic regions that may harbor genes of pathogenetic importance in gallbladder carcinogenesis. Genes Chromosomes Cancer 26:312-321, 1999.  相似文献   

4.
Twenty-nine nonendocrine pancreatic carcinomas (20 primary tumors and nine metastases) were studied by chromosome banding after short-term culture. Acquired clonal aberrations were found in 25 tumors and a detailed analysis of these revealed extensive cytogenetic intratumor heterogeneity. Apart from six carcinomas with one clone only, 19 tumors displayed from two to 58 clones, bringing the total number of clones to 230. Karyotypically related clones, signifying evolutionary variation, were found in 16 tumors, whereas unrelated clones were present in nine, the latter finding probably reflecting a distinct pathogenetic mechanism. The cytogenetic profile of pancreatic carcinoma was characterized by multiple numerical and structural changes. In total, more than 500 abnormal chromosomes, including rings, markers, homogeneously stained regions, and double minutes, altogether displaying 608 breakpoints, were detected. This complexity and heterogeneity notwithstanding, a nonrandom karyotypic pattern can be discerned in pancreatic cancer. Chromosomes 1, 3, 6, 7, 8, 11, 12, 17, and 19 and bands 1q12, 1q21, 3q11, 6p21, 6q21, 7q11, 7q22, 7q32, 11q13, 13cen, 14cen, 17q11, 17q21, and 19q13 were most frequently involved in structural rearrangements. A total of 19 recurrent unbalanced structural changes were identified, 11 of which were not reported previously: del(1)(q11), del(3)(p11), i(3)(q10), del(4)(q25), del(11)(p13), dup(11)(q13q23), i(12)(p10), der(13;15)(q10;q10), del(18)(q12), del(18)(q21), and i(19)(q10). The main karyotypic imbalances were entire-copy losses of chromosomes 18, Y, and 21, gains of chromosomes 7, 2, and 20, partial or whole-arm losses of 1p, 3p, 6q, 8p, 9p, 15q, 17p, 18q, 19p, and 20p, and partial or whole-arm gains of 1q, 3q, 5p, 6p, 7q, 8q, 11q, 12p, 17q, 19q, and 20q. In general, the karyotypic pattern of pancreatic carcinoma fits the multistep carcinogenesis concept. The observed cytogenetic heterogeneity appears to reflect a multitude of interchangeable but oncogenetically equivalent events, and the nonrandomness of the chromosomal alterations underscores the preferential pathways involved in tumor initiation and progression. Genes Chromosomes Cancer 23:81–99, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Uterine leiomyoma cytogenetics   总被引:4,自引:0,他引:4  
Uterine leiomyoma--a benign smooth muscle tumor--has recently been found to contain tumor-specific chromosome aberrations. Although only normal karyotypes were detected in 50 to 80% of cytogenetically investigated tumors, 104 leiomyomas with karyotypic aberrations have already been reported. At least four cytogenetically abnormal subgroups have been identified thus far, characterized by rearrangements of 6p, del(7)(q21.2q31.2), +12, and t(12;14)(q14-15;q23-24). The remaining abnormal tumors have had various nonrecurrent anomalies. Secondary karyotypic rearrangements, sometimes including ring chromosomes, have been found in one-third and reflect clonal evolution. Occasional leiomyomas have contained multiple numerical and structural rearrangements. Though benign, these cytogenetically grossly aberrant tumors often displayed more atypical histological features than are usually seen in leiomyoma. Multiple leiomyomas have been investigated from 69 patients, with detection of chromosome anomalies in at least two separate tumors from the same uterus in ten cases. In half of these patients unrelated aberrations were found in different leiomyomas from the same uterus. On other occasions the aberrations were identical, indicating that although some uterine leiomyomas originate independently, others may develop by intra-myometrial spreading from a common neoplastic clone. Some common features are discernible between the karyotypic pictures of uterine leiomyoma and angioleiomyoma; rearrangements of 6p, 13q, and 21q have been described in both tumor types. The cytogenetic similarities so far detected between leiomyoma and the malignant muscle tumors--leiomyosarcoma and rhabdomyosarcoma--are few and may be fortuitous. The cytogenetic profiles of leiomyoma and lipoma are strikingly similar; both tumor types have nonrandom rearrangements of 12q13-15, t(12;14) in leiomyoma and t(3;12) in lipoma, as well as variant rearrangements of the same 12q segment. Both also have cytogenetic subgroups characterized by changes in 6p and ring chromosomes. Finally, karyotypic similarities exists also between leiomyoma and pleomorphic adenoma of the salivary gland, which includes a subset of tumors with anomalies of 12q13-15, and with myxoid liposarcoma, which has t(12;16)(q13;p11) as a tumor-specific rearrangement.  相似文献   

6.
Chromosome rearrangements in two uterine sarcomas   总被引:4,自引:0,他引:4  
Cytogenetic analysis of short-term cultures from two uterine sarcomas revealed clonal chromosome abnormalities in both cases. A locally recurrent mixed mesodermal tumor had the karyotype 61,XX,+2,+3,+del(5)(q11),+6,+7,+del(7)(q32),+8,+8,+8,+10, -11,-11,+der(11)t(1;11)(q12;p15),+der(11)t(1;11)(q12;p15),+der(11)t(1;11)(q12;p15),+del(12)(q14q21),+13,+15,del(17)(q23),+20. The other tumor, a lung metastasis from a uterine leiomyosarcoma, had several karyotypically abnormal clones. Two of them consisted of highly aberrant cells with modal chromosome numbers of 82 and 153, respectively, but because of insufficient quality the complex anomalies could not be identified. Various chromosomal changes that included translocations, deletions, insertions, and numerical rearrangements (always with extra chromosome 7 material) were identified in pseudo- or near-diploid cells, resulting in nine additional cytogenetically abnormal clones.  相似文献   

7.
The pattern of clonal karyotypic evolution in breast carcinomas carrying an i(1q) or a der(1;16)(q10;p10) as the primary chromosome abnormality was assessed in a series of 42 tumors, including 8 described here for the first time, with either or both (3 tumors) of them defining cytogenetic features. Evidence of clonal evolution was seen in somewhat more than half of all cases in both subgroups. The secondarily acquired aberrations appeared to be nonrandom in distribution. This was especially so for structural rearrangements of 11q leading to loss of material from this arm, which were clearly more common in both subgroups than in karyotypically abnormal breast carcinomas in general. Other deviations from random were less certain but seemed to include the frequent occurrence of +20 in tumors with i(1q) and +7 in tumors with der(1;16)(q10;p10). That differences were observed between i(1q) carcinomas and der(1;16)(q10;p10) carcinomas with regard to their patterns of clonal evolution hints that the pathogenetic effect of the primary change in these two situations may be more than the mere gain of an extra copy of 1q.  相似文献   

8.
Cytogenetic analysis was performed on primary cultures of 21 squamous cell carcinomas of the esophagus (SCCE). Seven cases exhibited mosaic clonal chromosome abnormalities distributed as follows: two contained tetraploid cell populations, one with t(3;7)(p21;q11); two showed loss of the Y chromosome, one with double minutes; single cases demonstrated der(11)t(4;11)(q?27;q23); add(1)(p35) and del(4)(p12); and del(7)(p13), del(7)(q22q34), and der(11)t(7;11)(p?15;p?13). The remaining 14 cases had apparently normal karyotypes, possibly derived from stromal elements. These results demonstrate numerical abnormalities and the multiple occurrence of rearrangements involving chromosomes 7 and 11 in SCCE.  相似文献   

9.
Cytogenetic analysis of short-term cultured 44 basal cell carcinomas (BCC) revealed clonal karyotypic abnormalities in 38 tumors. Relatively complex karyotypes (at least four structural and/or numerical changes per clone) with unbalanced structural as well as numerical aberrations were found in eight (approximately 21%) of the BCC, while the remaining BCC (79%) had simple karyotypes (1 to 3 aberrations per clone). Numerical changes only were found in 16 tumors, 15 BCC displayed both numerical and structural aberrations, and the remaining 7 BCC showed only structural aberrations. Extensive intratumoral heterogeneity, in the form of cytogenetically unrelated clones, was found in 21 tumors, whereas related subclones were present in 10 tumors. In order to obtain an overall karyotypic picture in BCC, the findings of our previously published 25 BCC have been reviewed. Our combined data indicate that BCC are characterized by nonrandom karyotypic patterns. A large subset of BCC is characterized by nonrandom numerical changes, notably, +18, +X, +7, and +9. Structural rearrangements often affect chromosomes 1, 4, 2, 3, 9, 7, 16, and 17. A number of chromosomal bands are frequently involved, including 9q22, 1p32, 1p22, 1q11, 1q21, 2q11, 4q21, 4q31, 1p36, 2q37, 3q13, 7q11, 11p15, 16p13, 16q24, 17q21, and 20q13. When the genomic imbalance is assessed, it has been shown that several chromosome segments are repeatedly involved in losses, namely loss of the distal part of 6q, 13q, 4q, 1q, 8q, and 9p. A correlation analysis between the karyotypic patterns and the clinico-histopathologic parameters has been undertaken in the 44 BCC of the present series. The cytogenetic patterns show a significant correlation with tumor status (P=.025), that is, that cytogenetically more complex tumors are also those clinically the most aggressive. Also, the frequency of cytogenetically unrelated clones is significantly higher in recurrent BCC than that in primary lesions (P=.05). No clear-cut association has been found between the karyotypic patterns and histologic subtypes or tumor sites.  相似文献   

10.
Male breast cancer is uncommon; so far, only 10 cases with chromosome banding analysis have been published. We report the cytogenetic findings of two invasive breast cancers in two Caucasian men lacking a history of familial breast cancer and more than 70 years of age. Both had ductal carcinomas with lymphangiosis carcinomatosa and positive lymph nodes at diagnosis. Strong expression of estrogen receptor, weak expression of progesterone receptor, and lack of expression of androgen receptor by both tumors were demonstrated by immunohistochemistry, as well as lack of expression of p53 and C-ERB-B-2. The karyotypes were 45 approximately 46,XY,-Y[4],-7[2],+8[2],t(8;12)(q21;q24)[3], del(9)(q22)[3],del(11)(p11p14)[5],del(18)(q21)[7], t(19;20)(p10;q10)[8] [cp13] and 61 approximately 69,XXXY,-Y[3], del(2)(p21)[4],del(3)(p22q26)[3],-4,-4[5],+5,+5[5], dic(5;11)(p14;q23)[3],del(6)(q23)[4],del(8)(p21)[3],-9[4],-11[4],+ i(12)(p10)[4],-16[3],del(17)([13)[5],del(18)(q21)[4],+19[5], +20[4][cp7], respectively. Although the available data on male breast cancer are still very limited, our findings confirm that gain of an X chromosome, loss of the Y chromosome, gain of chromosome 5, and loss of material from chromosomes 17 and 18 are nonrandom aberrations in male breast cancer. Trisomy 8, characteristic of ductal carcinomas, was found in one case.  相似文献   

11.
Clonal karyotypic abnormalities were detected in short-term cell cultures from six phyllodes tumors of the breast. Whereas all five benign tumors had simple chromosomal changes, the highly malignant one had a near-triploid stemline, indicating that karyotypic complexity is a marker of malignancy in phyllodes tumors. Interstitial deletions of the short arm of chromosome 3, del(3)(p12p14) and del(3) (p21p23), were the only aberrations in two benign tumors. Cytogenetic polyclonality was detected in three benign tumors: two had cytogenetically unrelated clones, whereas the third had three different, karyotypically related cell populations as evidence of clonal evolution. The finding of clonal chromosome abnormalities in both the epithelial and connective tissue components of the phyllodes tumors indicates that they are genuinely biphasic, that is, that both components are part of the neoplastic parenchyma.  相似文献   

12.
Karyotype analyses of renal cell adenoma in one patient and bilateral renal cell carcinomas (RCC) in another unrelated patient have been performed. Both patients belonged to families with von Hippel-Lindau disease (vHL). In the adenoma, we found a clonal del(3)(p13p21) and a small clone of two cells with an additional del(14)(q13). This result indicates that the same region that is often deleted in RCC may also be deleted in a renal cortical adenoma. This finding may facilitate the localization of a tentative renal cell adenoma/carcinoma tumor suppressor locus. In the tumors from the patient with bilateral carcinomas we found a clonal del(4)(p14) on one side and on the other a del(4)(p14) together with del(14)(q13). In this case, there was no detectable 3p defect in the tumors. This result raises the question whether an alternative/additional locus on chromosome 4p may be involved in the RCC/vHL syndrome. Constitutional karyotypes were in both cases normal.  相似文献   

13.
Interstitial deletions of the short arm of chromosome 3 were found in short-term cultures of five breast carcinomas (of 41 breast cancers with clonal aberrations analyzed by us during the same period). They were the only clonal structural change in three tumors; in the remaining two, the clone with 3p– coexisted with seemingly unrelated clones that had other structural and numerical aberrations. The deletions were identical, del(3)(p12p14), in four cases. The fifth tumor seemed to have a smaller deletion, interpreted as del(3)(p13p14). Our findings constitute karyotypic evidence that 3p deletions are relatively common in breast carcinomas and concur with the molecular genetic detection of loss of heterozygosity in this chromosome arm. The fact that the deletions were found as solitary changes indicates that loss of genetic information from 3p loci is an early, possibly primary, event in tumorigenesis. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Clonal chromosomal abnormalities were characterized in nine cell lines established from squamous cell carcinomas of the head and neck. Aneuploidy was a common feature; one cell line was near-diploid, three were near-triploid, four were near-tetraploid, and one cell line showed extensive variation in chromosome numbers. Consistent numerical abnormalities included loss of the sex chromosomes in six cell lines, losses of chromosomes 2 and 21 in six and five cell lines, respectively, and gain of chromosome 20 in five cell lines. Recurrent structural rearrangements included del(10)(q22-q26) (seven cell lines), i(5)(p10) (six cell lines), i(8)(q10) (six cell lines), add(19)(q13) (six cell lines), del(4)(q21-q31.3) (five cell lines), i(3)(q10) (four cell lines), del(12)(p11.1-p12) (four cell lines), and add (18)(q21-q23) (four cell lines). Other changes were noted in lower frequencies. Loss of specific regions on chromosomes 2, 3p, 4q, 5q, 8p, 10q, 12p, 18q, 19q, and 21 suggests that they may represent sites of putative tumor suppressor genes, loss of which may play a role in the pathogenesis of squamous cell carcinomas of the head and neck. Alternatively, gain of chromosomal region 3q, 5p, and 8q due to isochromosome formation suggests that more than one mechanism is involved in malignant transformation. Cytogenetic evidence of gene amplification was found in two cell lines; as an hsr(11)(q 13) in one and as dmins in the other. The clonal karyotypes of four cell lines were compared with those of their respective primary tumors. In all cell lines, clonal evolution had occurred, with loss of some rearrangements present in the primary tumors or the gain of additional abnormalities.  相似文献   

15.
Giemsa-banded chromosomal analysis of two unilateral retinoblastoma tumors from unrelated patients with normal constitutional chromosomes revealed near-diploid karyotypes with multiple structural rearrangements. The two tumors shared aberrations of trisomy 1q, monosomy 16 and 17, and 21p+. Other aberrations were unique to each tumor. One tumor expressed a del(13) and trisomy 6p.  相似文献   

16.
Samples from 34 primary transitional cell carcinomas (TCCs) of the bladder were short-term-cultured and processed for cytogenetic analysis after G-banding of the chromosomes. Clonal chromosome abnormalities were detected in 27 tumors and normal karyotypes in 3, and the cultures from 4 tumors failed to grow. Losses of genetic material were more common than gains, indicating that loss of tumor suppressor genes may be of major importance in TCC pathogenesis. There was no clonal heterogeneity within individual tumors, consonant with the view that TCCs are monoclonal in origin. The most striking finding was the involvement of chromosome 9 in 92% of the informative cases, as numerical loss of one chromosome copy in 15 cases, but as structural rearrangement in 8. The changes in chromosome 9 always led to loss of material; from 9p, from 9q, or of the entire chromosome. A total of 16 recurrent, unbalanced structural rearrangements were seen, of which del(1)(p11), add(3)(q21), add(5)(q11), del(6)(q13), add(7)(q11), add(11)(p11), i(13)(q10), del(14)(q24), and i(17)(q10) are described here for the first time. The karyotypic imbalances were dominated by losses of the entire or parts of chromosome arms 1p, 9p, 9q, 11p, 13p, and 17p, loss of an entire copy of chromosomes 9, 14, 16, 18, and the Y chromosome, and gains of chromosome arms 1q and 13q and of chromosomes 7 and 20. The chromosome bands and centomeric breakpoints preferentially involved in structural rearrangements were 1q12, 2q11, 5q11, 8q24, 9p13, 9q13, 9q22, 11p11, and 13p10. Rearrangements of 17p and the formation of an i(5)(p10) were associated with more aggressive tumor phenotypes. There was also a general correlation between the tumors' grade/stage and karyotypic complexity, indicating that progressive accumulation of acquired genetic alterations is the driving force behind multistep bladder TCC carcinogenesis.  相似文献   

17.
Unrelated clonal chromosomal aberrations in carcinomas of the oral cavity   总被引:1,自引:0,他引:1  
Short-term cultures from 12 oral squamous cell carcinomas were cytogenetically investigated. A normal karyotype was found in 3 tumors, 2 of which had many nonclonal changes. Clonal chromosome abnormalities were detected in the remaining 9 cases, in 6 of them in the form of 2 or 3 abnormal clones. In 5 cases the different clones were cytogenetically unrelated, suggesting a multiclonal origin. Numerous additional nonclonal changes were present in 4 of the 9 tumors with clonal aberrations. None of the structural aberrations, clonal or nonclonal, were found in more than one case; nor did any of the rearrangements correspond to cancer-associated aberrations known from other tumors. The aberration breakpoints of the present series and of previously reported tongue cancer clustered to bands 1p32, 1p22, 1p11, 1q21, 1q23, 1q25, 1q32, 1q42, 1q44, 2q31, 3p11, 4q35, 7p22, 11p15, 11q13, 12q24, and 17q25.  相似文献   

18.
Cytogenetic analysis of short-term cultures from a case of monostotic fibrous dysplasia in a 14-year-old girl revealed multiple clonal structural rearrangements with evidence of clonal evolution. The karyotype was 46,XX,del(3)(q27),add(10)(q22), add(12)(p13)/46,idem,t(3;8)(p21;q13),add(10)(q26),der(15)del(15)(q15q22)ins(15;?)(q15;?)/46,idem,-X, + 2,t(3;8),add(10),der(15). The finding of clonal structural aberrations suggests that fibrous dysplasia is a neoplastic lesion which develops as the result of somatic mutations.  相似文献   

19.
Clonal chromosome abnormalities in two liposarcomas   总被引:4,自引:0,他引:4  
Two liposarcomas were analyzed with chromosome banding technique. The sole chromosomal abnormality in one of the tumors, a mixed type (myxoid and round cell) liposarcoma, was t(12;16)(q13;p11), a rearrangement previously reported to be associated with myxoid liposarcoma. The other tumor, a pleomorphic liposarcoma, displayed massive numerical rearrangements (modal chromosome number 94-112), and numerous, mostly unidentifiable, marker chromosomes. The following clonal structural aberrations were recognized: del(1)(p22), del(1)(q23), t(7;?)(p22;?), i(17q), and t(19;?)(q13;?).  相似文献   

20.
Chromosome banding analysis of primary tumors and axillary lymph node metastases from 10 breast cancer patients revealed abnormal karyotypes in all samples with cytogenetic similarities between the primary tumor and the metastasis in all informative pairs. Although karyotypically unrelated clones were also found in the lymph node samples, they were less numerous than in the primary tumors, indicating that there was more genetic heterogeneity among the neoplastic cells in the primary than in the secondary tumors. On the other hand, some of the clones had become more complex in the metastases as a result of clonal evolution, and by and large these metastatic breast cancer cases had more karyotypic anomalies than do unselected primary breast carcinomas. Among the aberrations occurring more frequently, and that consequently may predispose to disease spread, were losses of chromosomes 17 and 22 and homogeneously staining regions, a cytogenetic sign of gene amplification. Genes Chromosomes Cancer 22:122–129, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号