首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The number of microglial cells in the supraventricular part of the corpus callosum stained with Mac-1 antibody (against CR3 antigens) and the intensity of staining were studied in both the homozygous athymic nude mouse (nu/nu) and normal BALB/c mouse (+/+). For quantitative analysis, the mean microglial cell counts (expressed in terms of packing density) from 40 μm thick immunostained sections were obtained and tested by analysis of variance. The Mac-1 positive cells in neonatal nude mice were slightly less intensely stained than those of their normal littermates. Such was not noticeable in the 13-week- and 1-year-old animals. The mean number of immunopositive microglial cells per 0.0324 mm2 was significantly less in the 5-day-old (P < 0.001) and 13-week-old (P < 0.05) nude mice when compared to normal mice of corresponding ages. The difference was insignificant in the 1-year-old nude and normal mice. The distribution of Mac-1 labelled lnicroglia in different areas of the brain of the postnatal nude and normal mouse was also examined. In the brain areas examined, e.g., the olfactory bulb, cerebral and cerebellar cortex, the number of microglia in the nude mouse was considerably reduced. The study of lectin labelled sections also showed a much smaller number of labelled microglial cells in the athymic mouse. This was especially obvious in the 5-day-old nude mouse when compared to the normal BALB/c mouse (P < 0.01). The lesser counts of microglia in athymic mice may be attributed to the lack of T lymphocytes and the thymus gland. The latter is known to produce thymic hormones especially thymosin, essential for the maturation of monocytes considered to be the precursor cells of microglia.  相似文献   

2.
The primary sources of cortical gliogenesis, either during development or after adult brain injury, remain uncertain. We previously generated Nestin‐CreER mice to fate‐map the progeny of radial glial cells (RG), a source of astrocytes and oligodendrocytes in the nervous system. Here, we show that Nestin‐CreER mice label another population of glial progenitors, namely the perinatal subventricular zone (SVZ) glioblasts, if they are crossed with stop‐floxed EGFP mice and receive tamoxifen in late embryogenesis (E16–E18). Quantification showed E18 tamoxifen‐induction labeled more perinatal SVZ glioblasts than RG and transitional RG combined in the newborn brain (54% vs. 22%). Time‐lapse microscopy showed SVZ‐glioblasts underwent complex metamorphosis and often‐reciprocal transformation into transitional RG. Surprisingly, the E10‐dosed RG progenitors produced astrocytes, but no oligodendrocytes, whereas E18‐induction fate‐mapped both astrocytes and NG2+ oligodendrocyte precursors in the postnatal brain. These results suggest that cortical oligodendrocytes mostly derive from perinatal SVZ glioblast progenitors. Further, by combining genetic fate‐mapping and BrdU‐labeling, we showed that cortical astrocytes cease proliferation soon after birth (<P10) and only undergo nonproliferative gliosis (i.e., increased GFAP expression without cell‐division) after stab‐wound injury in adult brains. By contrast, 9.7% of cortical NG2+ progenitors remained mitotic at P29, and the ratio rose to 13.8% after stab‐wound injury. Together, these results suggest NG2+ progenitors, rather than GFAP+ astrocytes, are the primary source of proliferative gliosis after adult brain injury. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
Jimpy is a shortened life-span murine mutant whose genetic disorder results in severe pathological alterations in the CNS, including hypomyelination, oligodendrocyte death and strong astroglial and microglial reaction. The knowledge of metallothionein (MT) regulation in the CNS and especially of MT presence in specific glial cell types under pathological conditions is scarce. In the present study, immunocytochemical detection of MT-I+II has been performed in spinal cord sections from 10–12- and 20–22-day-old jimpy and normal animals. The identification of MT-positive glial cells was achieved through double labeling combining MT immunocytochemistry and selective markers for oligodendrocytes, astrocytes and microglia. MT was found in glial cells and was present in the spinal cord of jimpy and normal mice at both ages, but there were remarkable differences in MT expression and in the nature of MT-positive glial cells depending on the type of mouse. The number of MT-positive cells was higher in jimpy than in normal spinal cords. This was apparent in all spinal cord areas, although it was more pronounced in white than in the gray matter and at 20–22 days than at 10–12 days. The mean number of MT-positive glia in the jimpy white matter was 1.9-fold (10–12 days) and 2.4-fold (20–22 days) higher than in the normal one. Astrocytes were the only parenchymal glial cells that were positively identified as MT-producing cells in normal animals. Interestingly, MT in the jimpy spinal cord was localized not only in astrocytes but also in microglial cells. The occurrence of MT induction in relation to reactive astrocytes and microglia, and its role in neuropathological conditions is discussed.  相似文献   

4.
Whole-cell transmitter-activated currents were recorded with the patch-clamp technique from glial cells in thin frontal brain slices of the corpus callosum. In slices from 6- to 8-day-old mice, glioblasts were predominantly found, while oligodendrocytes were predominant in slices from 10- to 13-day-old mice. These developmental stages could be readily distinguished by their K+ channel pattern and their morphology and ultrastructural features. Both cell types expressed GABA and glutamate receptors in this in situ preparation. GABA responses showed similarities to those described for GABAA receptors, i.e., they were mimicked by muscimol, blocked by bicuculline, and enhanced by pentobarbital. Glutamate responses showed similarities to those of the kainate/quisqualate receptor subtype. The amplitude of GABA-activated currents recorded in oligodendrocytes was significantly smaller than that from glioblasts, while glutamate responses did not show marked differences in either cell type.  相似文献   

5.
Cell proliferation and replacement following contusive spinal cord injury   总被引:5,自引:0,他引:5  
Zai LJ  Wrathall JR 《Glia》2005,50(3):247-257
After spinal cord injury (SCI), about 50% of the oligodendrocytes and astrocytes in the residual white matter at the injury site are lost by 24 h. However, chronically after SCI, the density of oligodendrocytes is normal. Previous studies have shown that the adult rat spinal cord contains a pool of proliferating glial progenitors whose progeny could help restore cell density after injury. To study proliferation in response to injury, we performed SCI on adult female rats at the T8 level, using a standardized contusion model. Animals received bromodeoxyuridine (BrdU) injections during the first week after SCI, and were perfused within 2 h for acute studies, and at 6 weeks for chronic studies. The tissue was analyzed using immunohistochemical detection of BrdU and cell marker antigens. We demonstrate that cell proliferation in the residual white matter is increased at 1-7 days after SCI, peaking on day 3. Dividing cells include oligodendrocytes, astrocytes, microglia/macrophages, and a high proportion of NG2(+) glial precursors. By 6 weeks, some cells that had been labeled 2-4 days after SCI were still present. Double immunohistochemistry showed that while very few of these cells expressed NG2 or the microglia/macrophage marker OX42, about 50% expressed CC1 or glial fibrillary acidic protein (GFAP), markers of mature oligodendrocytes and astrocytes, respectively. The post-injury environment represented by residual white matter is thus permissive to the differentiation of glial precursors. Cells that are stimulated to divide during the first week after SCI develop chronically into mature phenotypes that replace macroglia lost after injury.  相似文献   

6.
We have isolated and characterized a unique glial-restricted precursor cell (GRP) from the embryonic spinal cord. Clonal analysis demonstrated that these cells are able to generate oligodendrocytes and two distinct type of astrocytes (type 1 and type 2) when exposed to appropriate signals in vitro. We now show that many aspects of these cells are retained in vivo. GRP cells are restricted to the glial lineage in vivo as they seem to be unable to generate neuronal phenotypes in an in vivo neurogenic environment. GRP cells survive and migrate in the neonatal and adult brain. Transplanted GRP cells differentiate into myelin-forming oligodendrocytes in a myelin-deficient background and also generate immature oligodendrocytes in the normal neonatal brain. In addition, GRP cells also consistently generated glial fibrillary protein-expressing cells in the neonatal and adult brain, a property not consistently expressed by other glial precursor cells like the O-2A/OPC cells. We suggest that the lineage restriction of GRP cells and their ability to generate both oligodendrocytes and astrocytes in vivo together with their embryonic character that allows for extensive in vitro expansion of the population makes the cell useful for clinical application.  相似文献   

7.
Oligodendrocytes are the primary cells injured in periventricular leukomalacia (PVL), a predominant form of brain white matter lesion in preterm infants. To explore the possible linkage between white matter injury and maternal infection, purified rat O-2A progenitor (Oligodendrocyte-type 2 astrocyte progenitor) cell cultures were used as a model in studying the effects of lipopolysaccharide (LPS), an endotoxin, on survival and differentiation of oligodendrocytes and the involvement of other glial cells in the effects of LPS. O-2A progenitor cells were cultured from optic nerves of 7-day-old rat pups in a chemically defined medium (CDM). Astrocyte and microglia cell cultures were prepared from the cortex of 1-day-old rat brains in the CDM. Direct treatment of LPS (1 microg/ml) to O-2A cells had no effect on viability or differentiation of these cells. When O-2A progenitor cells were cultured in the conditioned medium obtained from either astrocyte or microglial cell cultures for 48 hr, survival rate and differentiation of O-2A cells into mature oligodendrocytes were greatly enhanced as measured by the MTT assay and immunocytochemistry. The conditioned medium obtained from astrocytes or microglia treated with LPS for 48 hr, however, failed to show such a promotional effect on viability and differentiation of O-2A cells. When 5 microg/ml LPS was used to stimulate astrocytes or microglia, the conditioned medium from these glial cell cultures caused O-2A cell injury. The overall results indicate that astrocytes and microglia may promote viability and differentiation of O-2A progenitor cells under physiological conditions, but they may also mediate cytotoxic effects of LPS on oligodendrocytes under an infectious disease biochemical environment.  相似文献   

8.
Recent studies suggest that the injured adult spinal cord responds to brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) with enhanced neuron survival and axon regeneration. Potential neurotrophin sources and cellular localization in spinal cord are largely undefined. We examined glial BDNF localization in normal cord and its temporospatial distribution after injury in vivo. We used dual immunolabeling for BDNF and glial fibrillary acidic protein (GFAP) in astrocytes, adenomatous polyposis coli tumor suppressor protein (APC) for oligodendrocytes or type III CDH receptor (OX42) for microglia/macrophages. In normal cord, small subsets of astrocytes and microglia/macrophages and most oligodendrocytes exhibited BDNF-immunoreactivity. Following injury, the number of BDNF-immunopositive astrocytes and microglia/macrophages increased dramatically at the injury site over time. Most oligodendrocytes contained BDNF 1 day and 1 week following injury, but APC-positive cells were largely absent at the injury site 6 weeks postinjury. Glial BDNF-immunolabeling was also examined 10 and 20 mm from the wound. Ten millimeters from the lesion, astrocyte and microglia/macrophage BDNF-immunolabeling resembled that at the injury at all times examined. Twenty millimeters from injury, BDNF localization in all three glial subtypes resembled controls, regardless of time postlesion. Our findings suggest that in normal adult cord, astrocytes, oligodendrocytes, and microglia/macrophages play roles in local trophin availability and in trophin-mediated injury and healing responses directly within and surrounding the wound site.  相似文献   

9.
Glial development was studied in the optic nerve of 1- to 28-day-old Jimpy mice and controls. Abnormalities were found in oligodelopment and axons were not affected. These consisted in (a) Increased numbers of glioblastic cells containing lipids and increased occurrence of glial cell death in the premyelination stage; (b) Decreased numbers of maturing oligodendrocytes (i.e. young and active oligodendrocytes) in the period of early myelination; (c) An occurrence of abnormal oligodendroglial cells containing lipids and multimembranous tubes in the period of advanced myelination. The decreased number of maturing oligodendrocytes in the premyelination stage indicates that the lack of myelin in Jimpy mice may be secondary to a disturbance in the differentiation of the oligodendroglial cell line. The occurrence of abnormal, lipid-containing glioblasts and oligodendrocytes may be an expression of a defect in metabolism leading to an abnormality in the association of myelin proteins and myelin lipids.  相似文献   

10.
A cellular preparation of highly enriched oligodendrocytes was obtained from adult human spinal cord by Percoll gradient centrifugation followed by either differential adhesion or fluorescence-activated cell sorting after immunostaining with an antibody against galactocerebroside (Ol). The adherent and O1-negative cell fractions were 96% microglia. The non-adherent and O1-positive fractions were 96% positive for the oligodendrocyte markers O4 and O1, 0–2% positive for glial fibrillary acidic protein, and were devoid of neuronal or microglial markers. If the oligodendrocyte fraction was co-cultured with purified dissociated rat dorsal root ganglion neurons, the oligodendrocytes adhered to the axons and their numbers increased over a 4 week period. However, myelin sheaths were not produced around axons in these cultures. In contrast, if the oligodendrocyte cell fraction was grown alone in culture for 3 weeks, the number of oligodendrocytes decreased and a layer of astrocytes developed underneath the oligodendrocytes. The oligodendrocytes could be eliminated from these cultures by subsequent passaging, thus producing cultures of pure astrocytes. The astrocytes accumulated both K+ and glutamate with kinetic properties similar to those reported for rodent astrocytes. We suggest that these astrocytes arose in part from an O4/O1-positive precursor which did not initially express glial fibrillary acidic protein. These results define a relatively simple method by which highly enriched populations of oligodendrocytes, astrocytes and microglia can be obtained from adult human spinal cord.  相似文献   

11.
The numerical densities (Nv) of astrocytes, oligodendrocytes, and microglia were measured in indvidual laminae of the striate cortex of macaque monkeys ranging in age from newborn to adult. Using measurements of cortical thickness and surface area, the total number of cells in the striate cortex of one hemisphere was derived for each glial cell type. Normal monkeys were compared at 3 months and 6 months of age to animals reared from birth with a monocular eyelid suture. No significant differences were observed between normal and monocularly deprived monkeys. The combined data from these groups, however, demonstrated several significant developmental changes. The Nv of astrocytes decreased from birth to 6 months of age and susequently increased in the adult. The greatest changes were seen in the more superficial laminae. These changes, however, were only a response to a substantial overshoot in cortical volume at six months: the total number of astrocytes in the striate cortex did not change. There was a tenfold increase in both the Nv and the total number of oligodendrocytes from birth to maturity with a corresponding increase in the density of myelinated axons. The greatest changes were observed in the deeper laminae. The total number of microglia remained relatively constant from birth to 6 months of age. There was a 55% reduction in the number of microglia in the adult, although statistical analysis indicated that this decrease was only of borderline significance. The possible relationships between these postnatal changes in glial cell numbers and the development of neuronal connectivity are discussed.  相似文献   

12.
Despite the vast abundance of glial progenitor cells in the mouse brain parenchyma, little is known about the molecular mechanisms driving their proliferation in the adult. Here we unravel a critical role of the G1 cell cycle regulator cyclin D1 in controlling cell division of glial cells in the cortical grey matter. We detect cyclin D1 expression in Olig2‐immunopositive (Olig2+) oligodendrocyte progenitor cells, as well as in Iba1+ microglia and S100β+ astrocytes in cortices of 3‐month‐old mice. Analysis of cyclin D1‐deficient mice reveals a cell and stage‐specific molecular control of cell cycle progression in the various glial lineages. While proliferation of fast dividing Olig2+ cells at early postnatal stages becomes gradually dependent on cyclin D1, this particular G1 regulator is strictly required for the slow divisions of Olig2+/NG2+ oligodendrocyte progenitors in the adult cerebral cortex. Further, we find that the population of mature oligodendrocytes is markedly reduced in the absence of cyclin D1, leading to a significant decrease in the number of myelinated axons in both the prefrontal cortex and the corpus callosum of 8‐month‐old mutant mice. In contrast, the pool of Iba1+ cells is diminished already at postnatal day 3 in the absence of cyclin D1, while the number of S100β+ astrocytes remains unchanged in the mutant. GLIA 2014;62:829–839  相似文献   

13.
Pure astrocyte cultures derived from cells isolated from mature brain   总被引:1,自引:0,他引:1  
Enriched preparations of oligodendrocytes, isolated either from adult bovine brain or from 30-day-old rat brain, eventually yield cultures in MEM-15% calf serum that contain, in addition to oligodendrocytes, proliferating astrocytes and variable numbers of fibroblast-like cells. If these cultures are switched to a serum-free defined medium during the 1st week, mixed cultures containing only oligodendrocytes and astrocytes are obtained. Bovine cultures can be replated and purified by selective adhesion to yield cultures that are greater than 99% astrocytes; similar procedures were not successful with rat cultures. Cytoskeletal preparations of the purified astrocyte cultures from mature bovine brain contain both vimentin and glial fibrillary acidic protein (GFAP), but vimentin is by far the major intermediate filament protein. Thus, the intermediate filament composition of these astrocytes is similar to that of astrocytes in primary cultures obtained from neonatal rat brain. Immunofluorescent studies of these cultures at 24 hr in vitro show that there are no GFAP+ cells in cultures of either species; the bovine cultures contain greater than 95% GC+ cells; and the rat cultures contain 90% GC+ cells. After a few days in vitro flat cells appear that are vimentin+/GFAP-/GC-. In serum-free medium these cells eventually become vimentin+/GFAP+. We propose that the astrocytes that grow in these cultures arise from a population of glial precursor cells, which are present even in adult brain and are isolated together with oligodendroglia, and that they do not derive from contaminating mature astrocytes. Thus, the astrocytes in our cultures may have the same origin as astrocytes grown in culture from dissociated neonatal brain.  相似文献   

14.
In vitro cultures of various glial cell types are common systems used to model neuroinflammatory processes associated with age-dependent human neurodegenerative diseases. Even though most researchers choose to use neonatal rodent brain tissues as the source of glial cells, there are significant variations in glial cell functions that are species and age dependent. It has been established that human and swine immune systems have a number of similarities, which suggests that cultured porcine microglia and astrocytes may be good surrogates for human glial cell types. Here we describe a method that could be used to prepare more than 90% pure microglia and astrocyte cultures derived from adult porcine tissues. We demonstrate that both microglia and astrocytes derived from adult porcine brains express functional interferon-γ receptors (IFN-γ-R) and CD14. They become toxic towards SH-SY5Y neuroblastoma cells when exposed to proinflammatory mediators. Upon such stimulation with lipopolysaccharide (LPS) and interferon-γ (IFN-γ), adult porcine microglia, but not astrocytes, secrete tumor necrosis factor-α (TNF-α) while both cell types do not secrete detectable levels of nitric oxide (NO). Comparison of our experimental data with previously published studies indicates that adult porcine glial cultures have certain functional characteristics that make them similar to human glial cells. Therefore adult porcine glial cells may be a useful model system for studies of human diseases associated with adulthood and advanced age. Adult porcine tissues are relatively easy to obtain in most countries and could be used as a reliable and inexpensive source of cultured cells.  相似文献   

15.
Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disorder that is caused by a CAG expansion in the Huntingtin (HTT) gene, leading to HTT inclusion formation in the brain. The mutant huntingtin protein (mHTT) is ubiquitously expressed and therefore nuclear inclusions could be present in all brain cells. The effects of nuclear inclusion formation have been mainly studied in neurons, while the effect on glia has been comparatively disregarded. Astrocytes, microglia, and oligodendrocytes are glial cells that are essential for normal brain function and are implicated in several neurological diseases. Here we examined the number of nuclear mHTT inclusions in both neurons and various types of glia in the two brain areas that are the most affected in HD, frontal cortex, and striatum. We compared nuclear mHTT inclusion body formation in three HD mouse models that express either full‐length HTT or an N‐terminal exon1 fragment of mHTT, and we observed nuclear inclusions in neurons, astrocytes, oligodendrocytes, and microglia. When studying the frequency of cells with nuclear inclusions in mice, we found that half of the population of neurons contained nuclear inclusions at the disease end stage, whereas the proportion of GFAP‐positive astrocytes and oligodendrocytes having a nuclear inclusion was much lower, while microglia hardly showed any nuclear inclusions. Nuclear inclusions were also present in neurons and all studied glial cell types in human patient material. This is the first report to compare nuclear mHTT inclusions in glia and neurons in different HD mouse models and HD patient brains. GLIA 2016;65:50–61  相似文献   

16.
To study qualitative and quantitative changes in the glial cell population of young postnatal dogs, the cervical spinal cords of 20 beagle pups, ranging in age from 1 to 28 days, were prepared for light and electron microscopy. Glial cells in the lateral corticospinal tract were classified and quantified directly on the electron microscope. Quantification was performed by means of a stereological method designed to correct for sampling bias, and glia were classified according to morphological criteria as immature glial cell precursors, light and dark oligodendrocytes, astrocytes, and microglia. Glial cell precursors, which include undifferentiated glioblasts, oligodendroblasts, and astroblasts, predominated in the first few days after birth, constituting 43% of the glial cell population, and then declined to less than 5% by 28 days. Light and dark oligodendrocytes differed morphologically in their electron density and the appearance of their organelles. Light oligodendrocytes increased slightly prior to myelination, and then declined, whereas dark oligodendrocytes continued to increase throughout the 4-week period and became the predominant cell type at 28 days (66%). In contrast to the oligodendroglial population, the sizes of the astroglial and microglial cell populations were relatively stable. This study shows that the population of immature glial cell precursors, abundant at birth in the lateral corticospinal tract, appear to be differentiating primarily into oligodendroglia, because this population exhibits a rapid increase in size, and relatively little change occurs in the astrocyte population. The trends in glial cell development in the dog are similar to those reported for rodents, although there may be some variation in the maturation and activity of oligodendrocytes.  相似文献   

17.
Can oligodendrocytes attached to myelin proliferate?   总被引:3,自引:0,他引:3  
The uptake of thymidine by oligodendrocytes in the brains of adult mice was examined after the induction of cortical traumatic lesions in an attempt to determine whether mature oligodendrocytes actively attached to myelin sheaths were capable of proliferating. In view of the great difficulty in visualizing the connection between a given oligodendrocyte and a myelin sheath even in the normal adult animal, the neuropil was made edematous in the traumatized animals in order to separate out the components and to study the oligodendrocyte processes. Uptake of tritiated thymidine was found in oligodendrocytes, as well as in endothelial cells, astrocytes, and microglia. The percentage of labeled oligodendrocytes appeared low in relation to the total number of the oligodendrocytes. In addition, in a few labeled cells, cytoplasmic processes could be seen extending to and apparently forming the myelin sheath. The possibility that a differentiated cell still attached to myelin may at the same time be able to proliferate is of great significance in understanding the potential for remyelination and recovery, in the adult, because it would imply that any oligodendrocyte is a candidate for proliferation, rather than only uncommitted or immature glial cells, which may be limited in the mature brain.  相似文献   

18.
Bu J  Akhtar N  Nishiyama A 《Glia》2001,34(4):296-310
Cells that express the NG2 proteoglycan (NG2+ cells) constitute a large glial population in the normal mature rodent brain. They can differentiate into oligodendrocytes but are distinct from mature oligodendrocytes, astrocytes, microglia, and neurons. Changes in NG2+ cells were examined in kainic acid-induced excitotoxic lesions of the hippocampus, and the relationship between NG2+ cells and reactive astrocytes and microglia was investigated between 1 and 90 days after lesioning. Two types of reactive NG2+ cells with altered morphology and increased NG2 immunoreactivity were observed in the lesion. Early changes, consisting of an increase in NG2 immunoreactivity and the number of processes, were apparent 24 h after lesioning and persisted through 3 months. These cells were distinct from reactive astrocytes or activated microglia/macrophages. A second type of reactive NG2+ cells appeared 2 weeks after injection, following an influx of macrophages. They had large, round cell bodies with short processes and expressed the microglia/macrophage antigens OX42 and ED1. Single cells coexpressing NG2 and macrophage/microglial antigens could be isolated from the lesion. The number of NG2+/OX42+ cells gradually declined and disappeared by 3 months after injection. They did not express glial fibrillary acidic protein or the alpha receptor for platelet-derived growth factor, indicating that they are distinct from astrocytes or oligodendrocyte progenitor cells. Cells that coexpressed NG2 and OX42 were never observed in hippocampal slice cultures treated with kainic acid, suggesting that NG2+/OX42+ cells are not derived from endogenous resident brain cells. These findings demonstrate that NG2 expression is transiently upregulated on activated macrophages/microglia that appear during the chronic stage in an excitotoxic lesion in the adult CNS.  相似文献   

19.
To find out whether glial cells proliferate in the corpus callosum of adult mice, two series of experiments were carried out. The first one made use of 9-month-old "aged" male mice. Some of them were given 3H-thymidine as a 2-hour pulse to examine which cells became labeled and, therefore, had the ability to divide. Others were sacrificed after a continuous infusion of 3H-thymidine for 30 days to examine whether the label would then appear in different cells. In other aged animals, the 30-day infusion was followed by 60 or 180 days without 3H-thymidine to determine whether cells retained or lost their label with time. A second series of experiments was carried out in 4-month old "young adult" male mice to seek confirmation of the main conclusions. Following the 3H-thymidine pulse given to aged mice, only immature glial cells were labeled. After a 30-day infusion, 12.1% astrocytes and 1.1% oligodendrocytes were labeled, so that the net daily addition rate of astrocytes averaged 0.4% and of oligodendrocytes, 0.04%. In young adult mice, the rate after a 7-day infusion averaged 0.9% for astrocytes and 0.08% for oligodendrocytes. However, when the 30-day infusion into aged mice was followed by 60 and 180 days without 3H-thymidine, the labeled astrocytes decreased to 5.3% and 0%, respectively, whereas the number of labeled oligodendrocytes did not change significantly. The interpretation of the results is that the immature cells present in the corpus callosum of mice continue dividing throughout life and their progeny give rise to astrocytes and oligodendrocytes. In the case of astrocytes, the production of new cells occurs in parallel with a loss, so that the astrocyte population turns over. In the case of oligodendrocytes, there is a small production of new, apparently stable cells.  相似文献   

20.
There is some controversy in the literature whether carbonic anhydrase occurs in astrocytes, as well as in oligodendrocytes and myelin, in the mammalian brain. In the present study this issue was addressed by double immunostaining for carbonic anhydrase and two astrocytic "markers" in the brains of normal mice and two dysmyelinating mutants, jimpy and shiverer. In the brains of young mice, carbonic anhydrase and glutamine synthetase were colocalized in astrocytes in the cortical gray matter. In gray matter of the adult mouse brain, it was possible to immunostain both carbonic anhydrase and glial fibrillary acidic protein (GFAP) in the same cells. However, in contrast to the findings in gray matter, in and near subcortical white matter carbonic anhydrase could be detected only in oligodendrocytes and myelinated fibers. In the brains of jimpy mice, virtually all the carbonic-anhydrase-positive cells were also GFAP positive, even in regions normally occupied by white matter. In the brains of young and adult shiverer mice, carbonic anhydrase was localized in astrocytes in the gray matter, but in and near the tracts normally occupied by white matter carbonic anhydrase could be detected only in oligodendrocytes and their abundant processes. The findings confirmed the oligodendrocyte-myelin unit to be the primary locus of carbonic anhydrase in the normal mouse brain and showed the astrocytes in gray matter normally to be a secondary locus of carbonic anhydrase. The immunostaining in the jimpy mouse brain suggested further that reactive astrocytes, in particular, might be rich in carbonic anhydrase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号