首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early olfactory preference learning in rat pups occurs when novel odors are paired with reinforcing tactile stimulation that activate the noradrenergic locus coeruleus. Pairing of odor and a noradrenergic agonist in the olfactory bulb is both necessary and sufficient for odor preference learning. This suggests the memory change occurs in the olfactory bulb. Previous electrophysiological experiments demonstrated that odor preference training induces an increase in the field excitatory postsynaptic potential to olfactory nerve input and an alteration, after training, in glomerular [14C]2- deoxyglucose uptake and in single-unit responses of principal cells. We investigate here whether, 24 h after olfactory preference training, there is an alteration in intrinsic optical signals at the glomerular level. Six-day-old rat pups were trained, as previously, for a peppermint odor preference. Trained pups and control littermates were subjected to imaging of odor-induced intrinsic optical signals 1 day after the training session. Trained pups exhibited significantly larger responses to the peppermint compared with untrained littermates previously exposed to the same odor. The response of trained pups to a control odor (amyl acetate) was, however, not significantly different from that of untrained littermates. These observations demonstrate that odor preference memory can be read-out by optical imaging techniques.  相似文献   

2.
F Okutani  F Yagi  H Kaba 《Neuroscience》1999,93(4):1297-1300
Olfactory learning in young rats correlates with neural plasticity in the olfactory bulb, and involves noradrenergic modulation of reciprocal dendrodendritic synapses between mitral cells and GABAergic granule cells. The purpose of this study was to examine, in vivo, the consequences of manipulating bulbar GABA transmission during training. In the first experiment, postnatal day 11 rat pups were trained in an olfactory associative learning task with citral odor and foot shock as the conditioned and unconditioned stimuli, respectively. The pups received continuous infusion of saline or the GABA(A) receptor agonist muscimol into the olfactory bulbs throughout a 30-min training session. The pups were then tested on postnatal day 12 for a preference for or an aversion to citral odor. Saline-infused control pups developed an aversion to citral odor. The GABA(A) receptor agonist muscimol impaired this aversive learning in a dose-dependent manner. In the second experiment, pups were exposed to the odor for 30 min while receiving continuous intrabulbar infusion of a low or high dose of the GABA(A) receptor antagonist bicuculline, without any other reinforcer. Depending on whether a low (0.2 nmol/bulb) or high (1.0 nmol/bulb) dose of bicuculline was infused, the pups showed a preference or an aversion for citral odor after infusion of low and high doses, respectively. These results indicate that disinhibition of mitral cells in the olfactory bulb is critical for olfactory learning in young rats, and suggest that the degree of disinhibition is an important determinant in acquiring either preference or aversion for the conditioned odor.  相似文献   

3.
Habituation of an orienting response in rat pups was used to study the development of the anterior commissure (AC) and its role in olfactory memory. Six- and 12-day-old pups received odor presentations to one side of their olfactory system and were tested later for habituation to additional presentations made to either the trained or untrained side. Six-day-old pups remembered only on the trained side. Twelve-day-old pups remembered when tested on either side. Transection of the AC in 12-day-old pups before, but not after, training prevented the transfer of memory. Thus, between 6 and 12 days of age, olfactory cross-projections carried in the AC mature and provide a functional substrate for transfer, at the time of training, of a form of olfactory learning.  相似文献   

4.
Developmental change in the access to olfactory memories   总被引:1,自引:0,他引:1  
Memory for a learned odor preference can be functionally confined to one side of the brain in 6-day-old rat pups by preferentially stimulating a single naris and corresponding olfactory bulb during training. We report here that this form of unilateral learning is present only during the first postnatal week; older pups show bilateral recall of unilateral olfactory experience. The maturation of bilateral learning probably depends on the postnatal growth and development of olfactory commissural fibers, because infantlike unilateral learning and memory is reinstated when these commissural fibers are sectioned before training in older pups. Section of commissural fibers after training also resulted in unilateral preferences. This latter finding indicates that the learned odor preference of older pups tested with the untrained naris open depends on access to unilaterally stored memories on the contralateral side, access provided by the newly developed commissural projections.  相似文献   

5.
1. Neonatal rat pups were classically conditioned to an odor stimulus from postnatal day 1 (PN1) to PN18. Tactile stimulation (stroking) was used as the unconditioned stimulus. On PN19, mitral/tufted cell single-unit responses to the conditioned odor were examined in both conditioned and control pups. Recordings were made from mitral/tufted cells in two regions of the olfactory bulb: 1) an area typically associated with focal [14C]2-deoxyglucose (2-DG) uptake in response to the conditioned odor and 2) an area distant from focal 2-DG uptake to the conditioned odor. Animals were anesthetized with urethane and were naturally respiring during the single-unit recording procedure. 2. Changes in mitral/tufted cell firing rate in response to odors in both bulbar regions and all training groups were classified as either excitatory, suppressive, or no response. This response classification was used to compare response patterns to the conditioned odor between bulbar regions and training groups. 3. Classical conditioning selectively modified the response patterns of mitral/tufted cells to the conditioned odor when those cells were associated with regions of focal 2-DG uptake for that odor. Mitral/tufted cells demonstrated significantly more suppressive and fewer excitatory responses to the conditioned odor than cells in control pups. Response patterns to a novel odor were not similarly modified. 4. Response patterns of mitral/tufted cells distant from the focal region of 2-DG uptake to the conditioned odor were not modified by conditioning compared with control pups. 5. The difference in response pattern between cells in the 2-DG focus and cells distant to the 2-DG focus was apparent within 500 ms of the stimulus onset. Given the respiratory rate of these pups (2 Hz), these data suggest that the modified response pattern occurred on the first inhalation of the learned odor. 6. These data demonstrate that both spatial and temporal patterns of olfactory bulb output neuron activity are used in the coding of olfactory information in the bulb. Furthermore, these spatial/temporal response patterns can be modified by early learning.  相似文献   

6.
Following olfactory classical conditioning, infant rats exhibit a preference for the conditioned odor and exhibit enhanced uptake of focal 14C 2-deoxyglucose (2-DG) within the olfactory bulb. The present experiments assessed the role of respiration on the expression of the enhanced 2-DG uptake response. Pups were conditioned from postnatal day (PN) 1-18 with an olfactory stimulus paired with a reinforcing tactile stimulus which mimics maternal contact (Odor-Stroke). Control pups received odor only or tactile stimulation only. On PN 19, pups received 1 of 3 tests: 1) a two-odor choice test, 2) an odor/2-DG test with normal respiration allowed, or 3) an odor/2-DG test with respiration experimentally controlled. The results indicated that: 1) Odor-Stroke pups learned the conditioned odor preference, 2) Odor-Stroke, normally respiring pups exhibited enhanced olfactory bulb 2-DG uptake when compared to control pups. No difference in respiration rate was detected between groups in normally respiring pups. 3) Odor Stroke pups whose breathing was experimentally controlled exhibited enhanced olfactory bulb 2-DG uptake when compared to control pups with an identical number of respirations. Together, these results demonstrate that modified respiration during testing is not required for the expression of a modified olfactory bulb response to learned attractive odors. Therefore, the data suggest that the olfactory system itself is modified by early learning.  相似文献   

7.
The olfactory memory acquired during the early postnatal period is known to be maintained for a long period, however, its neural mechanism remains to be clarified. In the present study, we examined the effect of olfactory conditioning during the early postnatal period on neurogenesis in the olfactory bulb of rats. Using the bromodeoxyuridine-pulse chase method, we found that the olfactory conditioning, which was a paired presentation of citral odor (conditioned stimulus) and foot shock (unconditioned stimulus) in rat pups on postnatal day 11, stimulated the proliferation of neural stem/progenitor cells in the anterior subventricular zone (aSVZ), but not in the olfactory bulb, at 24 h after the conditioning. However, the number of newborn cells in the olfactory bulb was increased at 2 weeks, but not 8 weeks, after such conditioning. Neither the exposure of a citral odor alone nor foot shock alone affected the proliferation of neural stem/progenitor cells in the aSVZ at 24 h after and the number of newborn cells in the olfactory bulb at 2 weeks after. The majority of newborn cells in the olfactory bulb of either the conditioned rats or the unconditioned rats expressed the neural marker NeuN, thus indicating that the olfactory conditioning stimulated neurogenesis in the olfactory bulb. These results suggest that olfactory conditioning during the early postnatal period temporally stimulates neurogenesis in the olfactory bulb of rats.  相似文献   

8.
These experiments examined the sufficiency of pairing an odor with either intrabulbar activation of noradrenergic beta-receptors or pharmacological stimulation of the locus coeruleus to support learned odor preferences in Postnatal Day 6-7 rat pups. The results showed that pups exposed to odor paired with beta-receptor activation limited to the olfactory bulb (isoproterenol, 50 microM) displayed a conditioned approach response on subsequent exposure to that odor. Furthermore, putative stimulation of the locus coeruleus (2 microM idazoxan or 2 mM acetylcholine) paired with odor produced a subsequent preference for that odor. The effects of locus coeruleus stimulation could be blocked by a pretraining injection of the beta-receptor antagonist propranolol (20 mg/kg). Together these results suggest that convergence of odor input with norepinephrine release from the locus coeruleus terminals within the olfactory bulb is sufficient to support olfactory learning.  相似文献   

9.
10.
11.
The mitogen-activated protein kinase/extracellular-signal regulated kinase (MAPK/ERK) cascade is an important contributor to synaptic plasticity that underlies learning and memory. ERK activation by the MAPK/ERK kinase (MEK) leading to cyclic-AMP response element binding protein (CREB) phosphorylation is implicated in the formation of long-term memory. We have demonstrated that CREB phosphorylation in the olfactory bulb (OB) is important for aversive olfactory learning in young rats, yet whether MAPK/ERK functions as an upstream regulator are necessary for this olfactory learning remains to be determined. Therefore, we addressed this issue using behavioral and Western blot analyses. The MEK inhibitor PD98059 was continuously infused into the OB of postnatal day 11 rat pups during a 30-min training session regarding the pairing of citral odor and foot shock. On the following day, the time spent in the part of the apparatus where the odor was present was measured as an index of odor aversion. PD98059 impaired olfactory learning in a dose-dependent manner without affecting memory retention 1 h after training. We further tested whether odor-shock training leads to MAPK/ERK activation in the OB and defines the time course of the activation. Phosphorylated ERKs (P-ERKs) 1 and 2 were significantly increased for 60 min after the training without changes in total ERKs 1 and 2. By contrast, intrabulbar infusion of PD98059 during the training significantly reduced P-ERKs 1 and 2 as well as phosphorylated CREB without any effects on the total ERKs or CREB. Taken together with the previous findings, these results indicate that the MAPK/ERK-CREB pathway is required for the long-term, but not the short-term, facilitation process of aversive olfactory learning in young rats.  相似文献   

12.
Neural correlates of conditioned odor avoidance in infant rats   总被引:1,自引:0,他引:1  
Newborn rat pups can learn to either approach or avoid odor cues through associative conditioning. The present results demonstrate that preference conditioning and avoidance conditioning both modify olfactory bulb responses (focal 2-deoxyglucose uptake and mitral-tufted cell single unit responses) to the conditioned odor. Despite opposing behavioral responses to the conditioned odor, however, olfactory bulb neural responses did not detectably differ between learned odor cues signaling approach and those signaling avoidance. Control pups exhibited neither the behavioral nor neural changes. Furthermore, both the behavioral and neural changes to these odor cues could be extinguished. These results suggest that the olfactory bulb in neonates may code learned odor importance, but specific information attached to that importance may require processing in other brain regions.  相似文献   

13.
The olfactory bulb is critically involved in early olfactory learning. In this study, we examined the effect of intrabulbar infusion of ritanserin, a 5-hydroxytryptamine(2) (5-HT(2)) receptor antagonist on a one-trial aversive olfactory learning in young rats. Ritanserin, a 5-HT(2) receptor antagonist, was continuously infused into the olfactory bulb of postnatal day-11 (PND 11) rat pups during a 30-min training session of pairing citral odor and foot shock. On the following day, the time spent in the part of the apparatus where the odor was present was measured as an index of odor aversion. Consistent with a previous study on olfactory preference learning, 1 nM ritanserin, but not 10 nM, blocked the olfactory aversive learning. We further examined the ability of 10 nM ritanserin to induce olfactory learning in the absence of the unconditioned stimulus foot shock. Pups that received intrabulbar infusion of 10 nM ritanserin in the presence of citral odor developed an aversion to the odor without foot shock. Since ritanserin has been shown to have an affinity for dopamine receptors, we examined the effect of dopamine antagonists on the ritanserin-induced aversive olfactory learning. Co-infusion of the dopamine D(1) receptor antagonist (+/-)-SKF-83566 with ritanserin dose-dependently prevented induced learning. In contrast, the D(2) receptor antagonist spiperone was without effect. These results extend the previous finding on the role of bulbar 5-HT(2) receptors in early olfactory learning and suggest that high concentration of ritanserin facilitates aversive olfactory learning through D(1) receptors in the olfactory bulb.  相似文献   

14.
The role protein phosphatase 2B (calcineurin, CaN) plays in learning and memory has received a significant amount of attention due to its promotion of the dephosphorylation of 3′-5′-cyclic AMP response element binding protein (CREB). Researchers have ascertained that overexpression of CaN is associated with memory retention deficits [Foster TC, Sharrow KM, Masse JR, Norris CM, Kumar A (2001) Calcineurin links Ca2+ dysregulation with brain aging. J Neurosci 21:4066–4073; Mansuy IM, Mayford M, Jacob B, Kandel ER, Bach ME (1998) Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92:39–49], while CaN inhibition enhances learning and memory [Gerdjikov TV, Beninger RJ (2005) Differential effects of calcineurin inhibition and protein kinase A activation on nucleus accumbens amphetamine-produced conditioned place preference in rats. Eur J Neurosci 22:697–705; Ikegami S, Inokuchi K (2000) Antisense DNA against calcineurin facilitates memory in contextual fear conditioning by lowering the threshold for hippocampal long-term potentiation induction. Neuroscience 98:637–646]. The present study hypothesized that infusion of a CaN inhibitor (FK506) bilaterally into the olfactory bulbs of postnatal day 6 Sprague Dawley rat pups would prolong the duration of a conditioned odor preference and retard cyclic AMP response element binding protein dephosphorylation. A 2 mg/kg s.c. injection of isoproterenol (ISO, β-adrenoceptor agonist) was paired with a 10 min exposure to peppermint and subsequently an infusion of FK506. Immunohistochemistry for phosphorylated 3′-5′-cyclic AMP response element binding protein (pCREB) revealed that unilateral infusion of FK506 resulted in an amplification of phosphorylated CREB in the olfactory bulb 40 min after training compared with saline-infused bulbs. Pups infused bilaterally with FK506 maintained a learned preference for peppermint 48, 72 and 96 h after training. CaN inhibition also modified the conventional inverted U curve obtained when ISO is used to replace stroking, as the unconditioned stimulus. When pups were infused with FK506, learning occurred with sub- and supra-optimal doses of ISO indicating that CaN overcomes non-optimal effects ISO may have on learning. We demonstrate that CaN inhibition can extend the duration of conditioned olfactory memory and may provide a target for memory prolongation that is superior to even phosphodiesterase inhibition observed in previous studies.  相似文献   

15.
To support nipple attachment and huddling, rat pups must learn to approach and prefer maternal odor. Similar to other altricial species, rat pups have a sensitive period for learning this odor preference, which ends around postnatal day (PN) 10 and coincides with the emergence of walking. One characteristic of this sensitive period is that an odor paired with moderate shock elicits an odor preference. After PN10, this behavioral training produces an odor aversion, although pain threshold remains unchanged. Recently, we demonstrated that the endogenous opioid system might be a key element in the acquisition of the shock-induced odor preference during the sensitive period since antagonism of this system disrupts odor preference learning. In older pups, acquisition of a shock-induced odor aversion was unaffected by opioid system manipulation. The purpose of these experiments was to further elucidate the role of opioids in infant olfactory learning through assessment of memory consolidation and expression during and after the sensitive period. In Experiment 1, we demonstrate that naltrexone (NTX), a nonspecific opioid antagonist, given immediately following odor-shock conditioning during the sensitive period, blocks odor preference formation and yields an odor aversion. However, the same treatment does not disrupt consolidation of an odor aversion in older pups. In Experiment 2, we demonstrate that during the sensitive period, NTX disrupts expression of the shock-induced odor preference, but not the learned odor aversion in older pups. Results using this model of attachment suggest that opioids have an important role in the acquisition, consolidation, and expression of early olfactory preferences. Furthermore, since prenatal drug exposure is known to alter the endogenous opioid system, these results highlight the capacity of prenatal opiate exposure to disrupt early infant learning and attachment.  相似文献   

16.
Electrode arrays (8 × 8, 3.5 × 3.5 mm) were implanted epidurally on the olfactory bulbs of rabbits for EEG recording. The rabbits were trained to give a conditioned response to a warning odor paired with an electric shock. EEGs were recorded and edited, and representative ERG bursts with odor and preceding the odor were selected for measurement. Each burst was displayed in a contour map of amplitude. The contour maps revealed active EEG foci in the bulb with size, shape and location unique to each rabbit. Changes in shape and location took place only during familiarization and during training, when a warning odor was paired with the aversive stimulus. The EEG spatial patterns did not change when visual or auditory stimuli were used as CS. EEG spatial patterns did not reflect conformal mapping of odor stimulus to neural activity response, but were determined by state variables of the animal related to olfactory conditioning history. The implications for human EEG are briefly discussed.  相似文献   

17.
We assessed the neurochemical basis of olfactory learning induced by presentations of odor and moderate shock in infant rats. Paradoxically, shock conditioning produces an odor preference in 8-day-olds, but an odor aversion in 12-day-olds. Studies have demonstrated the importance of opioids in early olfactory learning; their specific role remains undefined. In this study, postnatal Days 8 and 12 pups were systemically injected with naltrexone, a nonspecific opioid antagonist, or saline and received either paired or backward presentations of odor-moderate shock or odor-only presentations. Blocking the opioid system during conditioning disrupted acquisition of the Day 8 odor preference, but not the Day 12 odor aversion. Additional Day 8 pups were given naltrexone posttraining. Naltrexone not only blocked consolidation of an odor preference but also yielded an odor aversion. These results suggest that the opioid system has a critical role in both olfactory learning and consolidation of odor preferences during the sensitive period.  相似文献   

18.
The effect of moderate exposure to ethanol during late gestation was studied in terms of its interaction with moderate exposure during nursing from an intoxicated dam. A further issue was whether behavioral effects of ethanol, especially the enhanced ethanol intake known to occur after moderate ethanol prenatally or during nursing, depend upon teratological effects that may include death of neurons in the main olfactory bulb (MOB). During gestational days 17-20 rats were given 0, 1 or 2 g/kg ethanol doses intragastrically (i.g.). After parturition these dams were given a dose of 2.5 g/kg ethanol i.g. each day and allowed to perform regular nursing activities. During postnatal days (PDs) 15 and 16, ethanol intake of pups was assessed along with aspects of their general activity. In a second experiment pups given the same prenatal treatment as above were tested for blood ethanol concentration (BEC) in response to an ethanol challenge on PD6. A third experiment (Experiment 2b) assessed stereologically the number of cells in the granular cell layer of the MOB on PD7, as a function of analogous pre- and postnatal ethanol exposures. Results revealed that ethanol intake during the third postnatal week was increased by prenatal as well as postnatal ethanol exposure, with a few interesting qualifications. For instance, pups given 1 g/kg prenatally did not have increased ethanol intake unless they also had experienced ethanol during nursing. There were no effects of ethanol on either BECs or conventional teratology (cell number). This increases the viability of an explanation of the effects of prenatal and early postnatal ethanol on later ethanol intake in terms of learning and memory.  相似文献   

19.
The stability of olfactory preferences for artificial odors was studied in young spiny mouse pups (Acomys cahirinus). Subjects aged between 2 and 20 days were exposed to the odor of either cinnamon or cumin for 1.5 hr. The durability of preferences for the familiar versus novel odor was subsequently monitored in a three-choice preference test. The results suggest the existence of a sensitive phase for learning odor characteristics, through simple exposure, between Days 2 and 18 of the pups' postnatal life. The sensitive phase proved not be an “on-off” process, but the strongest effect of exposure to odors took place at about Days 4 and 6. However, the duration of preference for exposed odors was dependent on later experience with the odors during retests. The results point to an unusual plasticity in rapid learning of odors through simple exposure in precocial young spiny mice. © 1993 Johan Wiley & Sons, Inc.  相似文献   

20.
Prenatal stress (PS) and early postnatal environment may alter maternal care. Infant rats learn to identify their mother through the association between maternal care and familiar odors. Female Wistar rats were exposed to restraint stress for 30 min, 4 sessions per day, in the last 7 days of pregnancy. At birth, pups were cross-fostered and assigned to the following groups: prenatal non-stressed mothers raising non-stressed pups (NS:NS), prenatal stressed mothers raising non-stressed pups (S:NS), prenatal non-stressed mothers raising stressed pups (NS:S), prenatal stressed mothers raising stressed pups (S:S). Maternal behaviors were assessed during 6 postpartum days. On postnatal day (PND) 7, the behavior of male and female pups was analyzed in the odor preference test; and noradrenaline (NA) activity in olfactory bulb (OB) was measured. The results showed that restraint stress increased plasma levels of corticosterone on gestational day 15. After parturition, PS reduced maternal care, decreasing licking the pups and increasing frequency outside the nest. Female pups from the NS:S, S:NS, S:S groups and male pups from the S:S group showed no nest odor preference. Thus, at day 7, female pups that were submitted to perinatal interventions showed more impairment in the nest odor preference test than male pups. No changes were detected in the NA activity in the OB. In conclusion, repeated restraint stress during the last week of gestation reduces maternal care and reduces preference for a familiar odor in rat pups in a sex-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号