首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Prior to loading antigenic peptides, assembled major histocompatibility complex (MHC) class I molecules associate with the transporter associated with antigen processing (TAP) in a complex which also includes calreticulin and a recently described component, tapasin. The interaction of MHC class I molecules has been characterized as occurring exclusively with the TAP1 chain of the TAP heterodimer. In contrast, as described here, in the TAP-deficient human cell line T2, MHC class I molecules interact with a transfected rat TAP2 polypeptide in addition to rat TAP1. Furthermore, this interaction with TAP2 also involves calreticulin and tapasin. An association with both TAP polypeptides would presumably further enhance the efficiency of peptide loading of MHC class I molecules by allowing more than one MHC class I allele proximity to the site of peptide supply on each TAP complex.  相似文献   

3.
Mice deficient in the gene encoding the transporter associated with antigen processing 1 (TAP1) are defective in providing major histocompatibility complex (MHC) class I molecules with cytosolic peptides. Consequently, these mice express reduced levels of MHC class I glycoproteins on the cell surface, and have reduced numbers of CD8+ T cells in the periphery. In the present study, we have addressed the diversity and specificity of the peripheral CD8+ T cell population in TAP1 -/- mice. CD8+ T cells were polyclonal with regard to T cell receptor (TCR) Vβ expression. Overall, Vβ usage in TAP1 -/- mice appeared to be very similar to that in wild-type mice, with significantly reduced levels of Vβ5.1/5.2-expressing CD8+ T cells as the only clear exception. This polyclonal population of CD8+ T cells readily mounted epitope-specific CTL responses against four out of five well-defined MHC class I-restricted peptides. In contrast to allospecific CTL, peptide-specific CTL from TAP1 -/- mice did not cross-react on cells expressing normal levels of H-2b class I. The present results demonstrate that a polyclonal CD8+ T cell repertoire, displaying both diversity and peptide specificity, is positively selected in mice devoid of a functional peptide transporter. These observations imply that TAP-dependent peptides are not absolutely required for positive selection of a functionally diverse repertoire of CD8+ T cells.  相似文献   

4.
The major histocompatibility complex (MHC)-encoded transporter associated with antigen processing (TAP) translocates peptides from the cytosol into the lumen of the endoplasmic reticulum. This step precedes the binding of peptides to MHC class I molecules and is essential for cell surface expression of the MHC class I/peptide complex. TAP has a broad sequence specificity and a preference for peptides of around 9 amino acids. To synthesize inhibitors for TAP, we studied various alterations of the peptide substrate. The results indicate that TAP is stereospecific and that peptide bonds engineered into isosteric structures can improve translocation of the peptide. Furthermore, TAP is able to translocate peptides with large side chains that correspond to a peptide of ~ 21 amino acids in extended conformation. Peptides with longer side chains compete for the peptide binding site of TAP but fail to be translocated. Therefore, they represent the first rationally designed inhibitors of TAP.  相似文献   

5.
Prior to their association with major histocompatibility complex (MHC) class I molecules, peptides generated from cytosolic antigens need to be translocated by the MHC-encoded peptide transporter (TAP) into the lumen of the endoplasmic reticulum (ER). While class I molecules possess well-known binding characteristics for peptides, the fine specificity of TAP for its peptide substrates has not been analyzed in detail. Previously, we have studied the effect of amino acid variations at the N-terminal, the C-terminal, and the penultimate residue on the efficiency of peptide translocation. Using permeabilized cells, we have shown that TAP pre-selects peptides in an allele- and species-specific manner, for which only the C-terminal residue is crucial. This finding is confirmed in the present study by using microsomes containing different TAP. The influence of amino acid substitutions at positions 2 to 7 of 9-residue model peptides on TAP-dependent peptide translocation is systematically examined. Only a few amino acid substitutions at these positions affect the efficiency of peptide translocation significantly, e.g. Pro at position 2 or 3 negatively influences transport whereas Glu at positions 6 and 7 enhances transport. The differences in translocation by the rat TAP alleles a or u, mouse TAP and human TAP are, however, minor for the peptide with internal substitutions used in this study. These results show that the C-terminal residue essentially governs the species-specific substrate specificity of TAP.  相似文献   

6.
The major histocompatibility complex (MHC)-encoded transporters associated with antigen processing (TAP) translocate peptides from the cytosol into the lumen of the endoplasmic reticulum (ER) where they associate with MHC class I molecules. The length of class I-binding peptides is usually 8–11 amino acids, but examples of significantly longer peptides have been described. The preferred lengths and upper and lower size limits for peptides translocated by TAP have not been determined in detail because in the currently used test systems, peptides are subject to proteolytic degradation. In the present study, three sets of individual peptides or partially randomized peptide libraries ranging between 6 and 40 residues were used that contained a radiolabeled tyrosine and a consensus sequence for ER-specific N-glycosylation at opposite ends, thus ensuring that only nondegraded peptides were monitored in the transport/glycosylation assay. For three different transporters, rat TAP1/2a, rat TAP1/2u and hTAP, the most efficient ATP-dependent transport was observed for peptides with 8–12 amino acids. Hexamers and longer peptides of up to 40 amino acids were also translocated, albeit less efficiently. For two of the three sets of peptides analyzed, rat TAP1/2a showed a less stringent length selection than rat TAP1/2u and human TAP. The superior transport of the decamer of the TNKT . Y series was not due to faster degradation or less efficient glycosylation of shorter or longer length variants. A binding assay with TAP-containing microsomes revealed a high affinity for the radiolabeled decamer (KD = 580 nM), while other length variants were clearly inferior in their binding affinities. Thus, TAP binds and preferentially translocates peptides with a length suitable for binding to MHC class I molecules, but peptides that are considerably longer may also be substrates. About 105 peptide binding sites per cell equivalent of microsomes were determined, providing an estimate for the number of TAP complexes in the ER membrane.  相似文献   

7.
The B cell line 721.174 has lost the ability to present intracellular antigens to major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTL). This phenotype results from a homozygous deletion in the MHC that includes the peptide transporter genes TAP1 and TAP2, and the proteasome subunits LMP2 and LMP7. Recent work has shown that such cells transfected with TAP genes load their class I molecules with endogenous peptides, and present several viral epitopes to class I-restricted CTL. These data implied that the LMP2 and LMP7 genes were not required for the presentation of most epitopes through class I molecules. By contrast, while confirming the previous reports, we have identified several epitopes that appear to require genes in the MHC in addition to the TAP for their presentation. Further analysis localizes the defect to proteolysis in the cytosol. In one case, presentation could be partially restored by re-expression of full-length LMP7. Control experiments with LMP7, from which the putative pro-region had been removed, failed to restore presentation, and this lack of effect correlated with failure of the shortened LMP7 to incorporate into the proteasome. These results suggest a role for LMP7 in the generation of a viral epitope, but leave open the possibility that additional genes within the .174 deletion are required for full restoration of antigen presentation.  相似文献   

8.
TAP1 -/- and β2-microglobulin (β2m) -/- mice (H-2b background) express very low levels of major histocompatibility complex (MHC) class I molecules on the cell surface. Consequently these mice have low numbers of mature CD8+ T lymphocytes. However, TAP1 -/- mice have significantly higher numbers of CD8+ T cells than β2m -/- mice. Alloreactive CD8+ cytotoxic T lymphocyte (CTL) responses were also stronger in TAP1 -/- mice than in β2m -/- mice. Alloreactive CTL generated in TAP1 -/- and β2m -/- mice cross-react with H-2b-expressing cells. Surprisingly, such cross-reactivity was stronger with alloreactive CTL from β2m -/- mice than with similar cells from TAP1 -/- mice. The β2m -/- mice also responded more strongly when primed with and tested against cells expressing normal levels of H-2b MHC class I molecules. Such H-2b-reactive CD8+ CTL from β2m -/- mice but not from TAP1 -/- mice also reacted with TAP1 -/- and TAP2-deficient RMA-S cells. In contrast, H-2b-reactive CD8+ CTL from neither β2m -/- mice nor TAP1 -/- mice killed β2m -/- cells. In line with these results, β2m -/- mice also responded when primed and tested against TAP1 -/- cells. We conclude that the reactivity of residual CD8+ T cells differs between TAP1 -/- and β2m -/- mice. The MHC class I-deficient phenotype of TAP1 -/- and β2m -/- mice is not equivalent: class I expression differs between the two mouse lines with regard to quality as well as quantity. We propose that the differences observed in numbers of CD8+ T cells, their ability to react with alloantigens and their cross-reactivity with normal H-2b class I are caused by differences in the expression of MHC class I ligands on selecting cells in the thymus.  相似文献   

9.
The heterodimeric transporter associated with antigen processing (TAP1/TAP2) translocates peptides from the cytosol into the endoplasmic reticulum where loading of major histocompatibility complex class I molecules takes place. TAP transporters from different species are known to exhibit distinct transport specificities with regard to the C-terminal amino acid (aa) of peptides. Thus, human TAP (hTAP), and rat TAP (rTAP) containing the rTAP2a allele are rather promiscuous, whereas mouse TAP (mTAP), and rTAP containing the rTAP2u allele are restrictive and select against peptides with C-terminal small polar/hydrophobic or positively charged aa. The structural basis for this selectivity is not clear. To assess the relative contribution of the TAP1 and TAP2 subunits to transport specificity, we have constructed and analyzed interspecies TAP hybrids and point mutants of hTAP2 expressed in Sf9 insect cells and in TAP-deficient T2 cells. Transport assays with 20 C-terminal variants of the peptide RYWA-NATRSX showed that: first, transport specificity with regard to C-terminal aa is mainly influenced by TAP2, but TAP1 can also contribute. Second, the selective transport of peptides with C-terminal positively charged aa is critically controlled by the amino-terminal region (1–361) on the TAP2 chain, while transport of peptides with C-terminal small polar/hydrophobic aa is determined by residues located within as well as outside the region 1–361. Third, a single point mutation in hTAP2 (374A → D) resulted in a drastic alteration of the transport pattern. These results indicate that both TAP1 and TAP2 contribute to efficient peptide transport and that single point mutations in hTAP2 are able to alter the peptide transport specificity. This opens the possibility that naturally occurring mutations in one of the hTAP subunits may alter epitope selection in vivo.  相似文献   

10.
Anchor residues in peptides determine the specificity of binding to major histocompatibility complex class I molecules through interactions of their side chains with pockets in the peptide-binding groove. We have compared the kinetics of association of a Sendai virus nucleoprotein-derived peptide (FAPGNYPAL, termed SV9) with H-2Kb class I molecules, and the same peptide iodinated on the anchor residue tyrosine (125I-SV9). Even though the association rates were too rapid for direct measurements, competition studies indicated that they were similar for SV9 and 125I-SV9. To measure the binding of non-radioactive SV9 directly, SV9 was tritiated (3H-SV9). 3H-SV9 remained stably associated with H-2Kb molecules, whereas 125I-SV9 dissociated in a temperature-dependent fashion. Thus, modifications on anchor residues do not necessarilly have to affect the specificity and association kinetics of peptide binding to class I molecules but can affect the stability of the resulting class I-peptide interaction. The dissociation of peptides with modified and, more generally, suboptimal anchor residue side chains may explain the presence of empty class I molecules and free class I heavy chains at the cell surface.  相似文献   

11.
Dendritic cells expanded from mouse bone marrow (BMDC) with granulocyte/macrophage-colony-stimulating factor have potent T cell-stimulatory properties both in vitro and in vivo. This has been well documented for major histocompatibility complex (MHC) class II-restricted responses, and more recently using peptide-loaded and protein-pulsed DC for CD8 responses following adoptive transfer in mice. An unresolved question concerns the capacity of BMDC to present exogenous antigen on MHC class I molecules, an unconventional mode of MHC class I loading for which there is now considerable evidence, particularly in macrophages. Here, we show that BMDC exhibit high levels of macropinocytosis driven by constitutive membrane ruffling activity. Up to one-third of actively ruffling and macropinocytosing BMDC transferred pinocytosed horseradish peroxidase into the cytosol following a 15-min pulse, suggesting that they might be capable of presenting exogenous soluble antigen on MHC class I molecules. We show that BMDC presented exogenous ovalbumin to a T cell hybridoma more effectively, more rapidly, and at lower exogenous antigen concentrations than BM macrophages on a cell-for-cell basis. Presentation was TAP dependent, brefeldin A sensitive, and blocked by inhibitors of proteasomal processing, demonstrating use of the classical MHC class I pathway. Although effective presentation of exogenous antigen by BMDC occurred in the absence of agents which stimulate macropinocytosis, treatment with phorbol myristate acetate (PMA) enhanced both pinocytosis and MHC class I presentation by BMDC. Finally, PMA-stimulated BMDC exposed to exogenous ovalbumin in vitro were able to prime an antigen-specific cytotoxic T lymphocyte response following adoptive transfer in vivo.  相似文献   

12.
Epidermal Langerhans cells (LC) are major histocompatibility complex (MHC) class II (Ia)-positive dendritic cells that act as potent antigen-presenting or accessory cells for primary and secondary T cell-dependent immune responses. Recent studies have disclosed that the morphological, functional, and phenotypic characteristics of LC are variably and drastically modulated by external stimuli both in vivo and in vitro. However, little is known of the biological significance of diverse cytokines in regulating the surface molecules of LC. To determine the regulatory properties of ICAM-1, Ia, and MHC class I (H-2K) molecules in LC, we have examined the effects of interleukin (IL)-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-10, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) on the expression of these molecules. Among the cytokines examined, IFN-γ markedly and reproducibly up-regulates the expression of H-2K, but not ICAM-1, in Ia+ LC in a time- and dose-dependent manner. TNF-α consistently up-regulates the expression of ICAM-1, but not H-2K, in a time- and dose-dependent manner. IL-10 slightly but reproducibly inhibits the expression of ICAM-1, but not H-2K, in a time- and dose-dependent manner. IL-10 potently inhibits the TNF-α-induced ICAM-1 up-regulation, but not the IFN-γ-induced H-2K up-regulation. Moreover, no cytokine consistently affects the Ia expression of LC. In addition, slight enhancing effects have been observed on H-2K expression by IL-4, and on ICAM-1 expression by IL-1α, IL-1β, or GM-CSF. The present data suggest that the selective regulation is operative in a certain cell surface moiety of LC by various cytokines. These results further facilitate our understanding of immunobiology of LC.  相似文献   

13.
We have previously described the induction of murine CD8+ major histocompatibility complex (MHC) class I-restricted cytotoxic T cells (CTL) recognizing the 20-amino acid repeat region of the human mucin 1 (MUC1) variable number of tandem repeats region (VNTR), a mucin greatly increased in expression in breast cancer and proposed as a target for immunotherapy. In that study, CTL could detect MUC1 peptides associated with the MHC of all nine strains examined, and we now report the different epitopes presented by five different MHC class I molecules. The epitopes were defined in CTL assays using peptide-pulsed phytohemagglutinin blasts or MHC class I-transfected L cells as targets; in addition, peptide binding assays and T cell proliferation studies were performed. Within the 20-amino acid VNTR, nine potential epitopes could be defined. The epitopes for the four MHC class I molecules [Kb (three epitopes), Dd, Ld and Kk] were closely related, all containing the amino acids PDTRPAP. For Db, three epitopes were identified, all containing APGSTAP. Most of the epitopes did not contain a consensus motif for the particular MHC class I allele, and bound with low ‘affinity’, compared with known high-affinity peptides. CD8+ T cell proliferation also occurred to the same MHC class I-presented epitopes. Finally, when conventional anchor residues were introduced into the peptides, peptide binding increased, whereas CTL recognition was either retained (Kb) or lost (Db) depending on the epitope.  相似文献   

14.
Hypersensitivity pneumonitis (HP) is a lung inflammatory disease caused by the inhalation of a variety of antigens. Previous studies support the role of the major histocompatibility complex (MHC) class II genes in the susceptibility to develop HP. However, the putative role of other MHC loci has not been elucidated. Transporters associated with antigen processing (TAP) genes are located within the MHC class II region and play an important role transporting peptides across the endoplasmic reticulum membrane for MHC class I molecules assembly. The distribution of single nucleotide polymorphisms (SNPs) in TAP1 genes was analyzed in 73 hypersensitivity pneumonitis (HP) patients and 58 normal subjects. We found a significant association of the allele Gly-637 (GGC) (p=0.00004, OR=27.30, CI=3.87-548.04) and the genotypes Asp-637/Gly-637 (p=0.01, OR=16.0, CI=2.19-631.21), Pro-661/Pro-661 (p=0.006, OR=11.30, CI=2.28-75.77) with HP. A significant decrease in the frequency of the allele Pro-661 (CCA) (p=0.008, OR=0.06, CI=0-0.45), the genotype Asp-637/Asp-637 (p=0.01, OR=0.17, 95% CI=0.05-0.58) and the haplotype [Val-333 (GTC), Val-458 (GTG), Gly-637 (GGC), Pro-661 (CCA)] was detected in HP patients compared with controls (p=0.002, OR=0.07, CI=0.0-0.57). These findings suggest that TAP1 gene polymorphisms are related to HP risk, and highlight the importance of the MHC in the development of this disease.  相似文献   

15.
The role of major histocompatibility complex (MHC) class I and class II molecules in natural killer (NK) cell-mediated rejection of allogeneic, semi-syngeneic and MHC-matched bone marrow grafts was investigated. The use of β2-microglobulin (β2m) -/- and β2m +/- mice as bone marrow donors to MHC-mismatched recipients allowed an analysis of whether the presence of semi-syngeneic and allogeneic MHC class I gene products would be triggering, protective or neutral, in relation to NK cell-mediated rejection. Loss of β2m did not allow H-2b bone marrow cells to escape from NK cell-mediated rejection in allogeneic (BALB/c) or semi-allogeneic (H-2Dd transgenic C57BL/6) mice. On the contrary, it led to stronger rejection, as reflected by the inability of a larger bone marrow cell inoculum to overcome rejection by the H-2-mismatched recipients. In H-2-matched recipients, loss of β2m in the graft led to a switch from engraftment to rejection. At the recipient level, loss of β2m led to loss of the capability to reject H-2-matched β2m-deficient as well as allogeneic grafts. When MHC class II-deficient mice were used as donors, the response was the same as that against donors of normal MHC phenotype: allogeneic and semi-syngeneic grafts were rejected by NK cells, while syngeneic grafts were accepted. These data suggest a model in which allogeneic class I molecules on the target cell offer partial protection, while certain syngeneic class I molecules give full protection from NK cell-mediated rejection of bone marrow cells. There was no evidence for a role of MHC class II molecules in this system.  相似文献   

16.
Abstract: A single human leukocyte antigen (HLA) class II allele, DQB1 * 0301 , is strongly associated with melanoma, and the HLA-DR locus provides the telomeric boundary for melanoma susceptibility in the HLA class II region of chromosome 6. However, the centromeric boundary is unknown. This study was designed to determine whether the adjacent upstream transporter associated with antigen processing (TAP) locus, TAP2 , constitutes the centromeric boundary of disease susceptibility in melanoma. Molecular oligotyping of TAP2 genes was performed for 36 Caucasian patients with melanoma and for 32 Caucasian control individuals by both amplification refractory mutation system (ARMS) polymerase chain reaction (PCR) and PCR-sequence-specific oligonucleotide (SSO) typing. TAP2 allele frequencies in the melanoma patients were compared to those in non-melanoma Caucasian control populations, and to HLA-DQ allele frequencies determined by molecular oligotyping. While HLA-DQB1 * 0301 was more common in this group of 36 melanoma patients compared to a group of 200 controls (56 percent vs. 27 percent, Bonferoni-corrected chi-square p=0.01), no significant differences were observed in TAP2 allele frequencies between melanoma patients and controls. The TAP2 locus represents the centromeric boundary of disease susceptibility for melanoma in the class II region of chromosome 6p. These results support an etiologic role for HLA-DQB1 * 0301 in melanoma susceptibility.  相似文献   

17.
Human papillomavirus (HPV) DNA encoding the oncogenic proteins E6 and E7 is usually retained in cervical carcinomas, implicating these proteins as potential target antigens for immune recognition in this virally associated tumor. We have characterized endogenously processed peptides eluted from major histocompatibility complex class I molecules in cells infected with a recombinant vaccinia expressing the HPV-16 E6 oncoprotein. The reverse-phase chromatography profile of peptides eluted from isolated HLA-A0201 molecules in cells expressing the E6 oncoprotein differs from that of cells not expressing E6. Sequential Edman degradation of novel peaks found in the peptide profiles from cells expressing HPV-16 E6 led to the identification of a naturally processed HLA-A0201-restricted E6 peptide of sequence KLPQLCTEL. This approach has allowed the identification of a viral peptide which is processed and presented by cells expressing the E6 oncoprotein and is a likely target for cytotoxic T lymphocyte recognition in HLA-A0201-positive patients.  相似文献   

18.
The activation of CD8+ T cell responses is commonplace during infection with a number of nonviral pathogens. Consequently, there has been much interest in the pathways of presentation of such exogenous antigens for major histocompatibility complex class I-restricted recognition. We had previously shown that Leishmania promastigotes transfected with the ovalbumin (OVA) gene could efficiently target OVA to the parasitophorous vacuole (PV), with subsequent recognition by class II-restricted T cells. We now report the results of studies aimed at evaluating the PV as a route of entry into the exogenous class I pathway. Bone marrow-derived macrophages can present soluble OVA (albeit at high concentrations) to the OVA257–264-specific T cell hybridoma 13.13. In contrast, infection with OVA-transfected Leishmania promastigotes failed to result in the stimulation of this hybridoma. This appeared unrelated to variables such as antigen concentration, parasite survival, and macrophage activation status. These results prompted an analysis of the effects of promastigotes on class I peptide binding using RMA-S cells and OVA257–264. Our data indicate that the major surface protease of Leishmania, gp63, inhibits this interaction by virtue of its endopeptidase activity against the OVA257–264 peptide. The data suggest that this activity, if maintained within the PV, would result in loss of the OVA257–264 epitope. Although we can therefore draw no conclusions from these studies regarding the efficiency of the PV as a site of entry of antigen into the exogenous class I pathway, we have identified a further means by which parasites may manipulate the immune repertoire of their host.  相似文献   

19.
In this study we have investigated the expression of major histocompatibility complex (MHC) class II molecules on T cells from various lymphoid compartments in the sheep. Monoclonal antibodies which react specifically with sheep MHC class II molecules homologous to the human DQ and DR molecules have been characterized. These antibodies have been used, together with the monoclonal antibodies specific for sheep CD4-, CD8- and T19-positiveT cells, to quantitate DQ and DR expression on T cell subsets in adult and fetal peripheral blood, afferent lymph, lymph node and efferent lymph. The results show that expression of class II by T cells depends on the age of the animal and the physiological location of the T cell. In fetal blood there is no expression of class II on CD8+ or T19+ cells and very low expression on CD4+ T cells. In adult peripheral blood and efferent lymph a significant proportion of cells express DR but not DQ. A very different situation is found in afferent lymph and the peripheral lymph node: in afferent lymph the majority of T cells in all three subsets express both DQ and DR molecules; in the lymph node over 50% of T cells express DR and 30 % are DQ+. These results suggest that within all T cell subsets there is a progression from DQ? DR? to DQ?DR+ and DQ+DR+ which correlates with physiological stages of T cell differentiation in vivo.  相似文献   

20.
The murine antigen-processing-defective mutant cell line RMA-S is leaky in the presentation of certain endogenously synthesized minor histocompatibility and viral antigens to major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTL). The viral antigens include influenza virus nucleoprotein, vesicular stomatitis virus (VSV) nucleocapsid and Rauscher murine leukemia virus (MuLV) antigen. Here we demonstrate Sendai virus antigen presentation by the HAM2 (murine TAP2, transporter associated with antigen presentation type 2)-defective RMA-S cell line and compare antigen presentation after restoration of the defect by murine TAP1/2 gene transfection. Kinetic studies revealed that RMA-S cells required 2-3 h longer incubation and approximately 10 times higher doses of Sendai virus to reach the same level of killing as the RMA parental line. After transfection of RMA-S cells with the murine TAP1/2 gene, Sendai virus antigen presentation was restored to levels of the RMA wild-type line with regard to time of virus infection and dose of virus needed for sensitizing target cells. The presentation of Sendai virus antigen in RMA-S cells was sensitive to brefeldin A (BFA), suggesting that the presentation was mediated via the endogenous pathway. Our findings comfirmed leakiness of antigen presentation in RMA-S cells and extended it to Sendai virus. The results underscored the role for intact expression of the TAP 1/2 molecules for efficient MHC class I-mediated antigen presentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号