首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the upper cervical spinal segments, neurons in the medial part of lamina VI give rise to uncrossed spinocerebellar axons, whereas the central cervical nucleus (CCN) and neurons in laminae VII and VIII give rise to crossed spinocerebellar axons. Using anterograde labeling with biotinylated dextran in the rat, we examined the projections of these neuronal groups to the cerebellar nuclei. Uncrossed and crossed projections were distinguished by cerebellar lesions placed on the side contralateral or ipsilateral to the tracer injections confined to the second and third cervical spinal segments (C2 and C3, respectively). Labeled terminals of uncrossed projections were seen in the middle, dorsal, and ventrolateral parts of the middle subdivision and in the ventral part of the caudomedial subdivision of the medial nucleus. In the anterior interpositus nucleus, terminals were seen in the middle of the mediolateral extent, whereas, in the posterior interpositus nucleus, they were seen in lateral and caudal parts. The terminals of crossed projections from the CCN were distributed ventrally in medial to ventrolateral parts of the middle subdivision of the medial nucleus. Some terminals were seen in the caudomedial subdivision of the medial nucleus. In the anterior interpositus nucleus, labeled terminals were seen mainly in rostromedial parts, whereas, in the posterior interpositus nucleus, they were seen in caudal and dorsal parts of the medial half. The present study suggests that the medial lamina VI group and the CCN in the upper cervical segments project to the different areas of the cerebellar nuclei and are concerned with different functions.  相似文献   

2.
Limb specific connections of the cat magnocellular red nucleus   总被引:1,自引:0,他引:1  
Afferent and efferent connections of the limb specific divisions of the cat magnocellular red nucleus (RNm) were traced using the bidirectional transport of wheatgerm agglutinin-horseradish peroxidase complex (WGA-HRP). Injection sites within forelimb or hindlimb RNm regions were identified by microelectrode recording and confirmed by the position of labeled rubrospinal terminals. Additional injections into structures that project to, or receive input from, RNm confirmed the somatotopic organization of these pathways. The forelimb region of RNm receives input from the posteriolateral part of the anterior interpositus nucleus (NIA) and the intermediate part of the posterior interpositus nucleus (NIP). The hindlimb region of RNm receives input from anteriomedial NIA and medial NIP. Terminals of NIA cells densely fill all of RNm, but terminals of NIP cells form a half shell on the medial, ventral, and posterior borders of RNm without encroaching on RNm's lateral edge or central core. Forelimb and hindlimb RNm are reciprocally connected with the caudal cuneate and gracile nuclei respectively. There is little or no input to RNm from the medial or lateral cerebellar nuclei. Forelimb RNm, which also contains a face representation, projects to the lateral reticular nucleus, cell group f of the inferior vestibular nucleus, the facial nucleus, the main sensory nucleus of the trigeminal nerve, the caudal cuneate nucleus, the parvicellular reticular formation, and cervical segments of the spinal cord. A few fibers from forelimb RNm project directly to motor neurons in the lower cervical cord. Hindlimb RNm projects to only the lateral reticular nucleus, gracile nucleus, and lower spinal segments. Forelimb and hindlimb RNm project to different regions of the lateral reticular nucleus with some overlap.  相似文献   

3.
Projections from the central cervical nucleus (CCN) to the cerebellar nuclei were examined following injections of Phaseolus vulgaris-leucoagglutinin or cholera toxin subunit B into the C1–C3 segments in the rat. Labeled axons and terminals were immunohistochemically demonstrated. Labeled spinocerebellar fibers arising from the CCN entered the cerebellum through the inferior and the superior cerebellar peduncles. Labeled mossy fiber terminals were seen in lobules I–VI, sublobule VIIb, lobules VIII and IX, and the copula pyramidis of the cerebellar cortex. Labeled axons ran toward the cerebellar cortex, through and between the medial and the interpositus nuclei, and gave off collateral axons and terminal axons to the cerebellar nuclei. The projections to the cerebellar nuclei were predominantly contralateral to the cells of origin. Labeled terminals were distributed from the medial to the ventrolateral part of the middle subdivision of the medial nucleus throughout its rostrocaudal extent. Labeled terminals were also seen in the lateral part of the medial nucleus and in the border region between the medial nucleus and the interpositus nuclei, which corresponds to the rostromedial extension of the posterior interpositus nucleus. In the anterior interpositus nucleus, labeled terminals were distributed dorsoventrally in the middle third of the mediolateral extent. They were more numerous in the rostrodorsal part of this area. Labeled terminals were distributed dorsally and caudally in the medial third of the posterior interpositus nucleus. No labeled terminals were seen in the caudomedial subdivision and the dorsolateral protuberance of the medial nucleus, the dorsolateral hump region and the lateral nucleus. The present study demonstrates that the CCN projects to specific areas of the cerebellar cortex and the medial and the interpositus nuclei. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Distributions of neurons located in the central rostral mesencephalon and caudal diencephalon that project to the upper cervical spinal cord, vestibular nuclei, or inferior olive were studied in the cat by using retrograde axonal transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). Afferent sources to all of these targets were observed in the interstitial nucleus of Cajal (INC), the region surrounding the fasciculus retroflexus (PF), and the nucleus of the fields of Forel (NFF). Three-dimensional reconstruction revealed differences in densities of cells projecting from these common areas. Spinal projecting cells were present in slightly greater numbers in the caudal two-thirds of the INC, whereas those projecting to the vestibular complex were more numerous in the rostral two-thirds of this nucleus. A relatively smaller number of olivary projecting cells were dispersed throughout the INC. Olivary afferent sources outnumber those with spinally directed or vestibularly directed axons in the PF region. In the fields of Forel, cells projecting to the vestibular nuclei or inferior olive were concentrated medially, whereas cells projecting to the spinal cord appeared both medially and laterally. Each type of afferent source was also seen in the nucleus of the posterior commissure and the posterior ventral lateral hypothalamic area. Unique sources of afferents to the inferior olive were observed in the parvicellular red nucleus (ipsilateral to the injections) and the anterior and posterior pretectal nuclei. A large number of labeled neurons was seen in the nucleus of Darkschewitsch after injections of tracer into the inferior olive, but this projection did not appear to be unique, as small numbers of labeled cells were also seen after injections into the cervical spinal cord. The Edinger-Westphal nucleus and the adjacent somatic oculomotor nucleus contained cells which projected separately to the spinal cord or the vestibular complex, and the superior colliculus contained cells which projected separately to the contralateral spinal cord or the contralateral inferior olive. In this study, it was also noted that neurons in the medial terminal nucleus of the accessory optic tract projected to the ipsilateral inferior olive or to the contralateral vestibular complex. These differences in locations and densities of cells projecting to the cervical spinal cord, vestibular complex, and inferior olive may underlie functional specializations in these areas in relation to vertical eye and head movement control and to neural systems controlling postural adjustments accompanying limb movements.  相似文献   

5.
The spinocerebellar tracts arising from the upper lumbar cord consist of the dorsal and the ventral spinocerebellar tracts (DSCT and VSCT), which ascend ipsilaterally and contralaterally, respectively. By using anterograde labeling with biotinylated dextran in the rat, this study examined whether the lumbar DSCT and the VSCT project to the cerebellar nuclei. Injections of the tracer were made unilaterally at levels between the L1 and L3 segments, with diffusion to either a rostral or a caudal segment. The injections resulted in bilateral labeling of axon terminals in the cerebellar nuclei. In the medial nucleus, labeled terminals were distributed in medial, ventral, and ventrolateral parts of the middle subdivision and ventral parts of the caudomedial subdivision. In the anterior interpositus nucleus, they were distributed in medial and dorsomedial parts throughout the rostrocaudal extent. Labeled terminals were seen within the dorsomedial crest region. In the posterior interpositus nucleus, labeled terminals were seen in the rostromedial extension, the caudomedial part, and the caudal pole. Labeled terminals were seen in the hilus and the ventral part of the lateral nucleus. Projections of the DSCT and the VSCT to these regions were confirmed after tracer injections preceded by sectioning of either tract. Both tracts projected bilaterally, but the DSCT projected mainly ipsilaterally. The present study suggests that the spinocerebellar tracts originating from the upper lumbar cord (the lumbar DSCT and the VSCT) project to specific areas of the cerebellar nuclei to transmit information about the peripheral and central events during the movement of hindlimbs.  相似文献   

6.
Neurons descending from the midbrain to the spinal cord in the monkey were identified with the retrograde horseradish peroxidase technique. Beginning in the caudal midbrain and extending anteriorly beneath the superior colliculus, large numbers of neurons of the nucleus cuneiformis and lateral central gray were found to project ipsilaterally to the spinal cord. In the posterolateral superior colliculus, neurons of the intermediate and deep layers, stratum griseum intermediale and stratum griseum profundum, were found to give rise to contralateral projections to the upper cervical spinal segments. An ipsilateral tectospinal projection from the anteromedial part of the collicus may also exist. In the red nucleus, neurons of the magnocellular division were shown to give rise to a somatotopically organized projection to the upper cervical cord and spinal enlargements. No neurons of the parvocellular red nucleus were labeled from the spinal cord. In the anterior midbrain, neurons of the interstitial nucleus of Cajal, nucleus of Darkschewitsch, and the adjacent dorsomedial and ventromedial midbrain tegmentum were found to give rise to an extensive ipsilateral descending spinal projection. Neurons located in various midline nuclei including the supratrochlear nucleus, oculomotor nucleus, Edinger-Westphal nucleus, and the ventral part of the central gray were also labeled from the spinal cord. These findings indicate that the primate midbrain is the origin of an extensive system of descending spinal pathways, some of which are likely to be involved in mediating descending influences involved in complex motor and sensory behavior.  相似文献   

7.
The projections of primary afferents from rostral cervical segments to the brainstem and the spinal cord of the rat were investigated by using anterograde and transganglionic transport techniques. Projections from whole spinal ganglia were compared with those from single nerves carrying only exteroceptive or proprioceptive fibers. Injections of horseradish peroxidase (HRP) or wheat germ agglutinin-horseradish peroxidase conjugate (WGA-HRP) were performed into dorsal root ganglia C2, C3, and C4. Free HRP was applied to the cut dorsal rami C2 and C3, greater occipital nerve, sternomastoid nerve, and to the C1/2 anastomosis, which contains afferents from suboccipital muscles and the atlanto-occipital joint. WGA-HRP injections into ganglia C7 and L5 were performed for comparative purposes. Injections of WGA-HRP or free HRP into rostral cervical dorsal root ganglia and HRP application to C2 and C3 dorsal rami produced labeling in dorsal and ventral horns at the level of entrance, the central cervical nucleus, and in external and main cuneate nuclei. From axons ascending to pontine and descending to upper thoracic spinal levels, medial collaterals were distributed to medial and descending vestibular, perihypoglossal and solitary nuclei, and the intermediate zone and Clarke's nucleus dorsalis in the spinal cord. Lateral collaterals projected mainly to the trigeminal subnucleus interpolaris and to lateral spinal laminae IV and V. Results from HRP application to single peripheral nerves indicated that medial collaterals were almost exclusively proprioceptive, whereas lateral collaterals were largely exteroceptive with a contribution from suboccipital proprioceptive fibers. WGA-HRP injections into dorsal root ganglia C7 and L5 failed to produce significant labeling within vestibular and periphypoglossal nuclei, although they demonstrated classical projection sites within the brainstem and spinal cord. The consistent collateralisation pattern of rostral cervical afferents along their whole rostrocaudal course enables them to contact a variety of precerebellar, vestibulospinal, and preoculomotor neurons. These connections reflect the well-known significance of proprioceptive neck afferents for the control of posture, head position, and eye movements.  相似文献   

8.
Spinocerebellar projections from the cervical enlargement originate from neurons in the medial part of lamina VI and the central part of lamina VII. In the present study, the topographic projections of the cervical enlargement to the cerebellar nuclei were examined by anterograde tracing with biotinylated dextran in the rat. Following injections of the tracer into the spinal cord at levels between the C5 and T1 segments, anterogradely labeled axons and terminals were immunohistochemically demonstrated in the cerebellar nuclei. Unilateral injections revealed that projections are bilateral, but predominantly ipsilateral, to the cells of origin. Labeled axons entered the medial nucleus from its rostrodorsal and rostromedial aspects. Labeled terminals were distributed to dorsal and medial parts of the middle subdivision at its rostral levels and to medial parts of the caudomedial subdivision of the medial nucleus. Most axons terminated in the middle subdivision. Single axons were seen to course rostrocaudally in the medial nucleus and give off terminal axons to both subdivisions. A few labeled terminals were seen in the dorsolateral protuberance of the medial nucleus, and in the anterior interpositus and the posterior interpositus nuclei. No labeled terminals were seen in the lateral cerebellar nucleus. The present study demonstrates that spinocerebellar neurons in laminae VI and VII of the cervical enlargement project to dorsomedial areas of the medial nucleus at rostral levels, bilaterally but predominantly ipsilaterally. It is suggested that these areas specifically receive cutaneous and muscular input related to the forelimb movement. J. Comp. Neurol. 377:251–261, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
The distribution of spinal projections neurons was studied in the cerebellar nuclei of the cat following injections of horseradish peroxidase (HRP) into the cervical, thoracic and lumbar cord. HRP-positive (labeled) neurons were found in the medial (fastigial) and the posterior interpositus nuclei on the side contralateral to the cervical injections, being most numerous in cases with injections between the C2 and the C3 segments.In the medial nucleus (M) labeled neurons were distributed in the central to the caudal portions, and there was a conspicuous group of labeled small neurons extending from the ventolateral part to the intermediate zone between the M and the anterior interpositus nucleus. With an increasing number of medium-sized neurons, this neuronal group persisted caudally in a similar position, ventromedial to the posterior interpositus nucleus (IP). Labeled large neurons were seen in the medial third of the IP. In the two cases labeled neurons of medium and small sizes were equal iin number, and the neurons of the IP constituted about 10% of the total number of the spinal projection neurons. The present study suggests that the neurons of the M and the IP, including those of the intermediate group located between the two, project the bulk of the crossed descending fibers as far caudally as the C2 and the C3 segments.  相似文献   

10.
Neurons in the pontomedullary tegmentum have been proposed as a final common pathway subserving descending inhibition in the dorsal column nuclei. To investigate the anatomical substrate for these descending effects, brainstem projections to the cuneate nucleus of rats were studied with injections of lectin-conjugated horseradish peroxidase. In rats with iontophoretic tracer injections in this nucleus, many labeled neurons were detected near the injection site, especially ventral and caudal to it. Intrinsic reciprocal projections were observed after injections in caudal, middle, or rostral levels of the cuneate nucleus. Neurons were labeled in the red nucleus, in agreement with previous anatomical studies, and also in the trigeminal, vestibular, and cochlear nuclei. An ipsilateral dorsomedial group of neurons was labeled in the upper cervical segments and scattered neurons were also labeled bilaterally near the central canal. Sparse retrograde labeling in the tegmentum was focused in the lateral paragigantocellular nucleus and caudal raphe. Consistent with the retrograde experiments, anterograde labeling after pressure injections of lectin-conjugated horseradish peroxidase in the pontomedullary tegmentum was very sparse within the dorsal column nuclei; labeling was dense, however, in the region immediately ventral to these nuclei. These results confirm previous work indicating that the activity of cuneate neurons is modulated by brainstem sensory nuclei. However, it appears that direct projections to the cuneate nucleus from pontine and rostral medullary regions are sparser than previously suggested. The last link of a polysynaptic descending inhibitory pathway may include GABAergic neurons immediately adjacent to the dorsal column nuclei and/or intrinsic to these nuclei.  相似文献   

11.
Brain stem projections to the facial nucleus of the rat   总被引:1,自引:0,他引:1  
Horseradish peroxidase was injected into the medial and lateral columns of the facial nucleus of the rat. Following medial injections, cells were labelled by retrograde transport in the ipsilateral spinal trigeminal nucleus (caudalis) both medial vestibular nuclei, contralateral midbrain reticular formation and nucleus of the lateral lemniscus. The periaqueductal grey, interstitial nucleus and nucleus of Darkschewitch were also labelled ipsilaterally. Injections into the lateral column of the facial nucleus labelled the spinal trigeminal nucleus (oralis) and parabrachial nuclei ipsilaterally and the Darkschewitch and red nuclei contralaterally.  相似文献   

12.
Splanchnic afferent projections to the spinal cord and gracile nucleus were labeled following the application of HRP to the central cut end of the major splanchnic nerve. Labeled afferent fibers were detected in the ipsilateral dorsal column, in Lissauer's tract (LT), in laminae 1, 5, 7, and 10, and in the dorsal gray commissure at T1-T13 levels of the spinal cord. Afferent projections were not identified in laminae 2-4. Collaterals from LT projected ventrally along the lateral and medial margins of the dorsal horn (called lateral and medial pathways, respectively). Afferents in the lateral pathway formed small bundles, spaced rostrocaudally at intervals of 300-1,000 microns, which passed medially at the base of the dorsal horn into laminae 5, 7, and 10 and to the contralateral spinal cord. Some afferents in the lateral pathway projected to the intermediolateral nucleus where labeled sympathetic preganglionic neurons were located. Afferents in the medial pathway entered the lateral aspect of the dorsal column and projected as a group near the midline rostrally to the medulla. The dorsal column pathway terminated in the ventral gracile nucleus in four or five clusters, each occupying a region ranging in size from 0.01-0.1 mm3 and separated in the rostrocaudal axis by distances of 400-800 microns. These clusters were concentrated in the middle and caudal portions of the nucleus below the obex. A comparison of the present results with those from earlier experiments on the central projections of afferent fibers from the heart, kidney, and pelvic organs demonstrates a consistent pattern of visceral afferent termination in the thoracolumbar and sacral segments of the spinal cord. This is not unexpected, since visceral afferent pathways to different organs perform similar functions, such as the transmission of nociceptive information and the initiation of autonomic reflexes.  相似文献   

13.
The projections of the nucleus of the solitary tract (NST) were studied by autoradiographic anterograde fiber-tracing and horseradish peroxidase (HRP) retrograde cell-labeling. Tritiated proline and leucine were deposited in electrophysiologically identified regions of NST. Injections of NST at levels caudal to where the vagus enters the nucleus, from which responses were evoked by stimulation of cranial nerves IX and X, revealed topographically organized bilateral projections to, most prominently, the ventrolateral medullary reticular formation which contains neurons of the ambiguus complex, and to the lateral and medial parabrachial nuclei, including a small portion of the medially adjacent central gray substance. Labeled fibers in the ventrolateral reticular formation were present from the nucleus retroambigualis rostralward to the retrofacial nucleus, with the densest concentration located over the nucleus ambiguus proper. The parabrachial projection was confirmed using HRP and shown to originate from cells in the medial subdivision of NST. Due to the problem of fibers en passant, it was not possible to interpret conclusively the cell-labeling seen around the solitary tract after HRP injections made in the region of the nucleus ambiguus. Labeled fibers were also traced from caudal NST to the dorsal motor nucleus of the vagus, but their origin could not be determined with certainty. Other labeled axons, traced to circumscribed parts of the inferior olivary complex and via the contralateral medial lemniscus to VPL of the thalamus, were shown in HRP experiments to originate from the dorsal column nuclei rather than NST. No labeled fibers were traced into the spinal cord, nor were any cells labeled in NST after large HRP deposits in upper cervical segments. Isotope deposits at levels of NST rostral to the entrance of the vagus, from which responses were evoked by rapid stimulation of the tongue, revealed an ipsilateral projection which ascends as a component of the central tegmental tract to the parvicellular part of the ventral posteromedial thalamic nucleus (VPMpc). After small HRP deposits in VPMpc, labeled cells in NST were restricted to the rostral part of the lateral subdivision. No labeled axons were traced from rostral NST to the ambiguus complex or parabrachial area. Injections of 3H-amino acids at intermediate levels of NST resulted in fiber-labeling in VPMpc, the parabrachial area, and the ambiguus complex.  相似文献   

14.
The projection from the vestibular and perihypoglossal nuclei to the spinal trigeminal and lateral reticular nuclei has been studied in cats where the wheat germ agglutinin-horseradish peroxidase complex has been used as a retrograde tracer. All injections were made at the level of the caudal pole of the inferior olive. The medial and descending vestibular, and the perihypoglossal nuclei were found to project to the spinal trigeminal nucleus. The projection to the lateral reticular nucleus reaches its medial-most part only, and originates in the lateral vestibular nucleus. The lateral part of the reticular formation also appears to be the target for some vestibular efferent fibres, mainly from the descending vestibular nucleus. The retrogradely labelled cells within the medial and descending vestibular nuclei are of all sizes and distributed throughout their entire territory. Certain observations furthermore indicate that the fibres reaching the lateral reticular nucleus are collaterals only from the vestibulospinal tract. The projections are bilateral. The observations confirm and extend previous observations on the afferent projections to the spinal trigeminal and lateral reticular nuclei.  相似文献   

15.
The topographic organization of afferent projections from the deep cerebellar nuclei, medulla oblongata and spinal cord to the paramedian reticular nucleus (PRN) of the cat was studied using the horseradish peroxidase (HRP) method of retrograde labelling. Discrete placements of HRP within each of the dorsal (dPRN) and ventral (vPRN) regions of the PRN showed some segregation of input. The deep cerebellar nuclei project in a predominantly contralateral fashion upon the PRN. A small but significant ipsilateral fastigial afferent component is also present. The fastigial and dentate nuclei contribute the majority of fibers to the dPRN whereas the interposed nucleus provides very little. The vPRN receives a relatively uniform input from all 3 cerebellar nuclei. Both lateral vestibular nuclei contribute the majority of fibers from the vestibular nuclear complex largely from their dorsal division. Additional input arises from bilateral medial and inferior vestibular nuclei. The vPRN receives relatively more fibers from the inferior vestibular nuclei than does the dPRN while inputs from the medial vestibular nuclei are comparably sparse. The PRN receives bilateral projections from the nucleus intercalatus (of Staderini). A significant projection to the contralateral PRN occurs from the ventrolateral subnucleus of the solitary complex and its immediate vicinity. Additional sources of medullary afferent input include the lateral, gigantocellular and magnocellular tegmental fields, the contralateral PRN and the raphe nuclei. Sites of origin of spinal afferents to the dPRN are bilaterally distributed mainly within Rexed's laminae VII and VIII of the cervical cord whereas those to the vPRN are confined largely to the medial portion of the contralateral lamina VI in the C1 segment. A few labelled cells are found in the thoracolumbar cord with those to the vPRN being more caudal. These data provide the neuroanatomical substrate for a better understanding of the functional role of the PRN in mediating cardiovascular responses appropriate to postural changes.  相似文献   

16.
The distribution of cells in the rostral medial mesencephalon and caudal diencephalon which project to the vestibular complex was mapped in the cat by using retrograde axonal transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). Subsequent experiments using anterograde transport of WGA-HRP clarified the position of the terminations of the mesodiencephalic-derived afferents in the vestibular complex. After large injections which involved the entire vestibular complex, retrogradely labeled cells were seen in both the ipsilateral and contralateral interstitial nucleus of Cajal (INC) and were more numerous in its rostral pole. Labeled cells also occurred in the perifascicular region, both immediately adjacent to the fasciculus retroflexus and rostroventral to it. Fusiform midline cells of the Edinger-Westphal nucleus were also labeled, as well as a number of cells in the adjacent somatic portion of the oculomotor complex (OMC). Another group of labeled cells was observed within the contralateral medial terminal nucleus of the accessory optic tract (MTN) and in the posterior hypothalamic nucleus. Injections limited to subregions of the vestibular complex resulted in similar but slightly varying distributions and numbers of retrogradely labeled cells. After injections covering the caudal half of the medial vestibular nucleus (MVN) and descending vestibular nucleus (DVN), labeled cells in the INC and tegmentum dorsal to it were especially prominent, but none was seen in the MTN or OMC. Injections placed in the rostral MVN, lateral vestibular nucleus, y group, and superior vestibular nucleus resulted in a distribution of labeled cells similar to that seen following global vestibular injections, but these cells were fewer in number. After an injection confined to the y group, a small number of retrogradely labeled cells were seen in the rostral pole of the INC and immediately ventral to the fasciculus retroflexus. Projections from the rostral medial mesencephalon and caudal diencephalon to the MVN, DVN, and y group were confirmed by using anterograde transport of WGA-HRP. Direct projections from the INC-perifascicular regions and somatic neurons of the OMC to the caudal vestibular complex could play a role in eye-head coordination. Those projections from the rostral INC and MTN to the rostral vestibular complex may play a role in vertical eye movements and responses to visual stimuli which move in the vertical plane.  相似文献   

17.
Amygdaloid and pontine projections to the feline ventromedial nucleus of the hypothalamus (HVM) were studied with retrograde transport of horseradish peroxidase (HRP) and anterograde transport of tritiated amino acids. Following injections of HRP into HVM, amygdaloid neurons were labeled in the ipsilateral cortical and medial nuclei and the ventral portion of the parvocellular part of the basal nucleus. In experiments in which HRP was injected into the tuberal hypothalamus following stria terminalis lesions, it was determined that amygdaloid neurons projecting to HVM by way of the stria terminalis were located in the cortical and medial nuclei while those projecting through another route, presumably the ventral amygdalofugal pathway, were found in the rostral part of the medial nucleus and the parvocellular basal nucleus. Following HRP injection into lateral hypothalamus at the level of HVM, labeled neurons were seen in the magnocellular basal nucleus. After preoptic injections, neurons containing the HRP reaction product were in cortical and medial nuclei and magnocellular and parvocellular parts of the basal nucleus. In addition to cells in the amygdala, rostral pontine neurons were labeled after HRP injections into HVM. The cells were located ipsilateral to the injection, mostly in the dorsal nucleus of the lateral lemniscus, lateral and dorsolateral to the brachium conjunctivum. The pontine cells labeled following HVM injections of HRP were different from those labeled following lateral hypothalamic and preoptic region injections. The pontine projection to HVM was confirmed using axoplasmic transport autoradiography. A mixture of tritiated leucine and tritiated proline was injected into the lateral pontine region labeled after HRP injections into HVM. Labeled axons ascending in the medial forebrain bundle terminated throughout the rostro-caudal extent of HVM.  相似文献   

18.
Neck sensory information is important for control of head and body movements in all vertebrates. Neuroanatomic tracing methods were used to study the pathways of neck afferent systems. Both the projection of primary afferent fibers and of secondary afferent pathways to brainstem and cerebellum were investigated with the anterograde transport of dextran amines as tracers (biotinylated dextran amine and tetramethyl rhodamine dextran amine). For comparison, the projections of spinocerebellar systems of wing and leg were studied also. Complementary experiments using retrograde tracers (Fast Blue, tetramethyl rhodamine dextran amine, rhodamine isothiocyanate) injected into the cerebellum served to corroborate the results of the anterograde tracing experiments. Primary neck afferent fibers terminated in the spinal gray substance with dense terminal fields in laminae I to V of the dorsal horn and lamina IX of the ventral horn as well as in the marginal nuclei located at the lateral border of the spinal cord. In the brainstem, dense terminal fields were seen in deep layers of the medullary dorsal horn, in the external cuneate nucleus, and in group x. Secondary neck afferents arising from ventral horn cells showed a significant projection to the descending and medial vestibular nuclei and to the medial cerebellar nucleus. Terminals were found both in the anterior and the posterior cerebellum. A quantitative evaluation disclosed that most terminals of neck afferents distributed in lobules II-IV of the anterior cerebellum and lobule IX of the posterior cerebellum. With injections aimed at spinocerebellar neurons located into the cervical and lumbosacral enlargements, no projections were found in the vestibular or deep cerebellar nuclei. Projections from the cervical enlargement were concentrated in lobules III-V and those from the lumbosacral enlargement in lobules III-VI. This points to a rostrocaudal somatotopic representation of neck, wing, and leg in the anterior cerebellum. The results of the retrograde tracing experiments support such a somatotopic organization.  相似文献   

19.
Perikarya and central endings of muscle afferents of the sternomastoid nerve of the rat were investigated using the horseradish peroxidase (HRP) method in its modification by Mesulam. Application of an aqueous solution of HRP to the cut sternomastoid nerve was followed by heavy labeling of cell bodies in ipsilateral spinal ganglia C3 and C4. In addition, a number of peripheral and central processes of spinal ganglion cells clearly showed reaction product. Labeled structures in the spinal cord and medulla oblongata were regarded as axons and/or terminals of sternomastoid nerve primary afferents because the motor root to this nerve had been interrupted before the application of HRP.Analysis of serial sections and mapping of all labeled nervous structures in the CNS revealed many stained axons and terminals in the medial parts of dorsal and ventral horns as well as in the medial part of zona intermedia in the segments C1–C3. Clearly labeled zones were also seen in the central and lateral areas of the ventral horn. These zones correspond to the location of the motor nuclei for the sternomastoid and infrahyal muscles, partly also for the longus colli and splenius capitis muscles. The labeled area in the zona intermedia includes the field of the nucleus cervicalis centralis, which was shown by other authors to receive input from primary afferents of the neck region as well as from vestibular nuclei via fasciculus longitudinalis medialis, and which in turn sends many fibers into the cerebellum. Label was also found in many axons of the fasciculus cuneatus and in terminals spreading over the whole nucleus cuneatus lateralis. Here, close relations of those terminals to perikarya were seen. Only weak labeling was found in laminae I–III of the upper three spinal cord segments.  相似文献   

20.
Horseradish peroxidase (HRP) was iontophoresed into the caudal part of the dorsal nucleus of the raphe (DNR) in cats. Labeled neurons with HRP were recognized in the medial and the superior vestibular nucleus. Electrical stimulation of the medial or the superior vestibular nucleus elicited orthodromic evoked potentials and unitary responses in the caudal part of the DNR. These projections may be involved in eye movement control. In addition, labeled neurons were located in the magnocellular division of the alaminar spinal trigeminal nucleus. This projection may be a part of the pathway conveying somatosensory inputs from the face to the cerebellar flocculus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号