首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In this report, the co-stimulatory signals provided by CD80(B7-1) or CD86 (B7-2) were compared to CD28 ligation by mAb.We demonstrate that while both anti-CD3 and anti-CD28 antibodiesinduced activation of phospholnositide (PI) 3-kinase, the kineticsof activation differed. Anti-CD28 produced a sustained activationof PI 3-kinase while anti-CD3 induced activation was transient.Both B7-1 and B7-2 could induce prolonged activation of PI 3-kinase.The co-stimulatory effects of B7-1 and B7-2 were dependent onCD28 cross-linking, based on complete inhibition of PI 3-kinaseactivation by CD28 antibody Fab fragments. While Jurkat T cellsco-stimulated with anti-CD3 and B7-1 or B7-2 secreted high levelsof IL-2, there were distinct effects of anti-CD28 mAb and B7-1or B7-2 on IL-2 secretion in conjunction with protein kinaseC activation. To assess functional effects of CD28 ligation,pharmacologic inhibitors of PI 3-kinase were evaluated. In Jurkatcells, efficient inhibition of PI 3-kinase activation afterB7-2 stimulation was achieved using wortmannin; however, weobserved a surprising increase in IL-2 secretion after B7 oranti-CD28 stimulation. The effect of wortmannin was concentrationdependent. Moreover, the effect was specific for receptor-mediatedactivation as wortmannin did not enhance phorbol ester pluslonomycin-induced IL-2 secretion. Another inhibitor of PI 3-kinase,LY294002, also resulted in augmentation of anti-CD28-inducedIL-2 secretion by Jurkat cells. The effects of wortmannin onIL-2 secretion were also examined in primary T cells. In markedcontrast, wortmannin resulted in a potent inhibition of anti-CD3plus B7-1 or anti-CD28-induced IL-2 secretion while phorbolester plus lonomycin-induced IL-2 secretion was wortmannin resistant.Together these observations demonstrate that signal transductionby both B7-1 and B7-2 involves PI 3-kinase, and that PI 3-kinaseor other wortmannin-sensitive targets are important for IL-2secretion. Finally, treatment of Jurkat cells with PI 3-kinaseinhibitors alone was sufficient to induce low levels of IL-2secretion. This is consistent with the notion that a wortmannin-sensitivetarget such as PI 3-kinase may down-regulate IL-2 secretionin Jurkat cells.  相似文献   

2.
To become competent killer cells, CD8(+) T cells require stimulation through signal transduction pathways associated with the T-cell receptor, costimulatory molecules such as CD28, and cytokine receptors such as the interleukin (IL)-2 receptor. We used wortmannin and LY294002, two inhibitors of phosphatidylinositol 3-kinase (PI3-K), to study the role of PI3-K in mouse cytotoxic T-lymphocyte (CTL) induction in response to mitogenic anti-CD3 antibody. Anti-CD3-induced CD8(+) T-cell proliferation and CTL development were inhibited dose dependently by both PI3-K inhibitors. IL-2 synthesis by anti-CD3-activated CD8(+) T cells was also diminished by PI3-K inhibition. PI3-K inhibition resulted in a modest decrease in anti-CD3-induced CD4(+) T-cell proliferation but failed to affect IL-2 expression by anti-CD3-activated CD4(+) T cells. PI3-K inhibition during CTL induction resulted in decreased levels of mRNAs coding for granzyme B, perforin, and Fas ligand. In addition, CTL induced in the presence of PI3-K inhibitors failed to conjugate normally with P815 target cells. Exogenous IL-2 did not reverse the effects of PI3-K inhibition on CD8(+) T-cell proliferation and CTL induction. These results support the conclusion that PI3-K activation is involved in T-cell receptor, CD28, and IL-2 receptor signaling of CD8(+) T cells. PI3-K is, therefore, an important component of multiple signal transduction pathways involved in CTL generation.  相似文献   

3.
T lymphocyte activation requires at least two signals, one via the antigen-specific T cell receptor and a second via the surface molecule CD28 which provides signals critical to interleukin-2 (IL-2) production and T cell proliferation. We have previously shown (Ward S. G., Westwick J., Hall N. and Sansom D. M. Eur. J. Immunol. 1993. 23: 2572) that CD28 stimulates phosphoinositide (PI) 3-kinase activity, indicating that D-3 phosphoinositides may act as mediators of CD28-induced T cell costimulation. Here, we report that immunoprecipitation of CD28 molecules from Jurkat cells stimulated with the CD28-ligand B7, results in a ligand-dependent association of CD28 with PI 3-kinase. This association correlates with the appearance of PI 3-kinase enzymatic activity in CD28 immunoprecipitates and the formation of D-3 phosphoinositides. Consistent with the hypothesis that D-3 phosphoinositides are important mediators of CD28 signaling, treatment of T cells with the PI 3-kinase inhibitor wortmannin, inhibited both T cell proliferation and production of IL-2, but not the response of T cells to exogenous IL-2. Hence, abrogation of PI 3-kinase activity by wortmannin, appears sufficient to disrupt the costimulatory pathway utilized by CD28, indicating a central role for this enzyme in the CD28 signaling pathway.  相似文献   

4.
The biological basis for the pleiotropic activity of extracellular human immunodeficiency virus (HIV)-1 Tat protein on lymphoid T cell survival is not well understood. We have here demonstrated that the addition in culture of 0.1–10 nM Tat protein to 36-h serum-starved lymphoblastoid Jurkat T cells rapidly stimulates the catalytic activity of phosphatidylinositol 3-kinase (PI 3-K). The peak of activation was observed 30 min after Tat addition. Extracellular Tat also stimulated the catalytic activity of the Akt/PKB kinase, a major target of PI 3-K lipid products. Pretreatment of serum-starved Jurkat cells with 100 nM wortmannin (WT) or 10 μM LY294002, two unrelated pharmacological inhibitors of PI 3-K, markedly suppressed the catalytic activity of both PI 3-K and Akt/PKB in Jurkat cells. Moreover, at low concentrations (0.1–1 nM), extracellular Tat showed a small but reproducible protection of Jurkat cells from apoptosis induced by serum deprivation (p < 0.05), while the combination of Tat plus 100 nM WT significantly (p < 0.05) increased the percentage of apoptosis with respect to cells left untreated or treated with Tat alone. Taken together, these data suggest that the anti-apoptotic activity of low concentrations of Tat protein on Jurkat cells is mediated by a PI 3-kinase/Akt pathway.  相似文献   

5.
CD28/B7 interactions have been demonstrated to provide a co-stimulatory signal for the generation of CD8+ cytotoxic T lymphocytes in the absence of CD4+ T helper cells. The CD28 signals required for induction of cytotoxicity have yet to be described. To investigate further the biochemical signaling pathways associated with CD28-dependent cytotoxicity, we have studied the human thymic leukemia cell line, YT. YT cells kill B7+ targets in a non-major histocompatibility complex (MHC)-restricted, CD28-dependent manner. CD28 ligation on the surface of YT cells caused a rapid increase in the tyrosine phosphorylation of four major cellular substrates with masses estimated to be 110, 95, 85, and 44 kDa. The 110 and 85 kDa substrates were identified as the catalytic and regulatory subunits, respectively, of phosphatidylinositol 3-kinase (PI3-K). Engagement of CD28 caused the rapid receptor association and activation of PI3-K but did not activate phospholipase Cγ. CD28-induced tyrosine phosphorylation and PI3-K activation was independent of p56lck protein tyrosine kinase (PTK) activity (previously reported to be associated with CD28) and was insensitive to inhibition by the PTK inhibitor herbimycin A. Two structurally and mechanistically dissimilar inhibitors of PI3-K, wortmannin and 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) also failed to block CD28-dependent tyrosine phosphorylation events or the association of PI3-K with the CD28 receptor. However, both drugs inhibited CD28-dependent cytotoxicity and CD28 receptor associated PI3-K activity with IC50 values similar to the reported IC50 values for PI3-K inhibition. Although herbimycin A did not significantly block the observed CD28-dependent tyrosine phosphorylation or PI3-K activation, herbimycin did block CD28-dependent cytotoxicity in a dose-dependent manner. These data support a role for PI3-K activation in the CD28-dependent initiation of cytotoxic effector function and suggest that a herbimycin sensitive step(s) is either CD28-independent, resides within a PI3-K-independent CD28 signaling pathway, or is downstream of CD28-dependent PI3-K activation.  相似文献   

6.
The interaction of CD28 with its counter-receptor, B7, induces a cosignal in T cells required to prevent clonal anergy and to promote antigen-dependent interleukin-2 production. The molecular basis of the CD28 cosignal is not well understood but involves the activation of protein tyrosine kinase(s) (PTK). In this report we demonstrate that CD28 cross-linking on Jurkat T leukemic cells causes the activation of at least two PTK pathways. A CD28-induced, p56lck kinase-independent pathway causes tyrosine-phosphorylation of a 110-kDa substrate while recruitment of p56lck kinase activity is apparently required for CD28-induced tyrosine-phosphorylation of 97- and 68-kDa substrates as well as CD28-induced increases in intracellular calcium. The tyrosine phosphorylation of p110, but not p97 or p68, correlated with CD28 calcium-independent costimulatory activity. The pp110 molecule was tentatively identified as the catalytic subunit of phosphoinositide (PI)-3 kinase based upon its coimmunoprecipitation with the p85 regulatory subunit of PI-3 kinase. PI-3 kinase protein and catalytic activity were found complexed with the CD28 receptor if the receptor was “activated” by cross-linking on the surface of intact cells prior to detergent solubilization. The kinetics of association of PI-3 kinase with the “activated” CD28 receptor was rapid, occurring within 30 s of receptor cross-linking and was stable for at least 30 min. Analysis of the CD28 cytoplasmic peptide sequence revealed a putative PI-3 kinase src homology 2 binding motif and CD28 tyrosine phosphorylation site, DYMNM. Tyrosine phosphorylation of CD28 was detected in pervanadate-treated Jurkat B2.7 cells, but not untreated cells. Pervanadate-induced tyrosine phosphorylation of CD28 correlated with receptor association of PI-3 kinase in the absence of CD28 cross-linking, suggesting that CD28 association with PI-3 kinase uses a tyrosine phosphorylation-dependent mechanism. These data provide a model for CD28 signal transduction and support a role for PI-3 kinase in mediating the CD28 calcium-independent, cyclosporin A-insensitive costimulatory signal.  相似文献   

7.
CD28 is a 44-kDa homodimer present on T cells providing an important costimulatory signal for T cell proliferation, cytokine production and cytokine receptor expression. CD28 activation is mediated by interaction with its counter-receptors, B7.1/CD80 and B7.2/B70/CD86. The biochemical basis of these costimulatory signals are still poorly understood, particularly in resting T cells. However, various biochemical pathways such as tyrosine phosphorylation, phospholipase C, sphingomyelinase and phosphatidylinositol 3-kinase (PI3-K) activation have been reported to play a role in CD28 signaling in tumor T cell lines and CD28-transfected cells or pre-activated T cells. In addition, recent reports propose that CD28-B7.1 and B7.2 interaction could be involved in the production of Th1 and Th2 cytokines, respectively, but the putative biochemical basis for these different functions is still unknown. We have analyzed the functional and molecular consequences of CD28 activation by B7.1 and B7.2 in human resting T cells. We demonstrate in this report that both CD28-B7.1 and CD28-B7.2 interactions induce the association of PI3-K to CD28 in the CD4 subpopulation, whereas it was barely detectable in CD8 cells. This association involves the binding of the src homology domain 2 (SH2) of p85 to tyrosine-phosphorylated CD28 and does not require pre-activation by CD3-T cell receptor. Worthmannin, a specific inhibitor of PI3-K enzymatic activity within the nanomolar range also inhibits the interleukin-2 production induced by costimulation mediated by either the B7.1- and B7.2-transfected cells or CD28 monoclonal antibodies. The only slight difference between B7.1 and B7.2 costimulation is the IC50 of wortmannin being 25 and 110 nM, respectively, which could suggest differences in their activation of the T cell PI3-K.  相似文献   

8.
The regulation of early and late events of T cell activation via the CD28 molecule has been investigated, using as an indicator system the differentiated leukemic T cell line Jurkat. Both CD3 and CD28 mAbs induced an increase in (Ca2+)i in Jurkat cells, although with different kinetics, the latter being slower than the former. CD28-mediated (Ca2+)i mobilization was highly sensitive to cholera toxin (ID50 25 ng/ml, vs 300 ng/ml for CD3 stimulation). The inhibitory action of cholera toxin was neither merely due to the increase in intracellular cAMP concentrations, nor to decrease in cell surface expression of the CD28 molecule. To evaluate the effects of cholera toxin on late events of Jurkat cell activation induced by CD28 and CD3 mAbs, the action of cholera toxin and cAMP and CD3- and CD28-mediated IL-2 secretion was analyzed. CD3-induced IL-2 secretion was highly sensitive to cholera toxin (ID less than 5 ng/ml); on the other hand, CD28-induced IL-2 secretion was poorly sensitive to cholera toxin, in sharp contrast to (Ca2+)i mobilization. On the basis of these data, it is hypothesized that the CD28 pathway could be associated with at least two distinct transduction mechanisms, one responsible for the (Ca2+)i rise in Jurkat cells and highly sensitive to cholera toxin, and the other, whose second messenger is unknown, resistant to cholera toxin and responsible for IL-2 secretion.  相似文献   

9.
The relationship between activation-dependent changes in beta1 integrin conformation, T cell adhesion to immobilized fibronectin, and T cell migration in vitro was analyzed in this study. Stimulation of Jurkat T cells and peripheral T cells with Mn(2+), the activating beta1 integrin-specific monoclonal antibody (mAb) TS2 /16, CD2, or CD28 stimulation led to increased adhesion, soluble fibronectin (FN) binding and expression of the activation epitope defined by the beta1 integrin mAb HUTS-21. Phorbol 12-myristate 13-acetate treatment increased adhesion, but not soluble FN binding or HUTS-21 epitope expression. In peripheral T cells, CD3 or CD7 stimulation also led to increased adhesion, soluble FN binding and HUTS-21 epitope expression. Soluble FN blocked peripheral T cell adhesion induced by Mn(2+) or TS2/16, but had no effect on adhesion induced by the other integrin-activating signals. In contrast, migration induced by TS2/16, CD2, CD3, CD7 or CD28 stimulation was blocked by excess soluble FN. Phosphoinositide 3-OH kinase (PI 3-K) inhibitors blocked receptor-mediated increases in cell adhesion, but not soluble FN binding or HUTS-21 expression. Migration was similarly unaffected by PI 3-K inhibitors, with the exception of CD7- and CD28-induced migration, which was specifically blocked by LY294,002. These results suggest that activation-dependent changes in beta1 integrin conformation are PI 3-K-independent and are involved in T cell migration but not adhesion.  相似文献   

10.
Tumour necrosis factor-alpha (TNF-alpha) is a proinflammatory cytokine produced by several cell types, including T cells upon antigen stimulation. Its production is crucial for the development of an early defence against many pathogens, but its beneficial effects are dependent on the strength and duration of its expression. In this paper we present evidence indicating that serum increases translational efficiency of TNF-alpha in human peripheral blood mononuclear cells stimulated with superantigen. The increase in translation of TNF-alpha due to serum could be inhibited by the phosphatidylinositol (PI) 3-K inhibitors, wortmannin and LY294002, suggesting that PI 3-K is involved in the translational control of TNF-alpha by serum. Similarly to primary T cells, stimulation of Jurkat T cells with superantigen led to TNF-alpha secretion and this was up-regulated by serum. Transfection of Jurkat cells with a constitutively active form of PI 3-Kalpha increased the production of TNF-alpha in cells stimulated with superantigen. Additionally, we used the specific inhibitors targeting ERK kinase and p38 mitogen-activated protein kinase (MAPK), potentially downstream of PI 3-kinase, PD98059 and SB203580. Differently from with PI 3-K inhibitors, the accumulation of TNF-alpha mRNA was inhibited by PD98059 or SB203580. These results suggest that, in T cells, activation of PI 3-K is an important step in controlling TNF-alpha protein synthesis in response to growth factors.  相似文献   

11.
IL-2 is known to play a critical role in regulating T lymphocyte proliferation. We show here that IL-2 also provokes an instantaneous and sustained membrane ruffling in cloned human or murine T cells as well as in lectin-activated peripheral blood lymphocytes. In the IL-2-induced lamellipodia, tubulin is depolymerized whereas actin is strongly polymerized, forming caps. IL-2-induced membrane ruffling is protein kinase C (PKC) independent, as judged by the absence of effects of bisindolylmaleimide, an efficient inhibitor of all PKC isoforms. The formation of lamellipodia by IL-2 is blocked by wortmannin and LY294002, two inhibitors of phosphoinositide 3-kinase (PI3-kinase). Moreover, expression in murine T cells of an inactive form of PI3-kinase inhibits IL-2-induced membrane ruffling, whereas expression of a constitutively active p110 increases the basal membrane ruffling. Rac is also involved in IL-2-induced membrane ruffling since an inactive form of Rac (N17rac) blocks the IL-2-induced lamellipodia, whereas the constitutive form of Rac (Val12rac) can also lead to membrane ruffling. In the signaling cascade, Rac is downstream of PI3-kinase since constitutive membrane ruffling in Val12rac cells is insensitive to wortmannin. Thus, through a signaling cascade involving PI3-kinase and Rac, IL-2 can induce profound alterations of the T cell cytoskeleton, a phenomenon which might be of importance for T cell physiology.  相似文献   

12.
In addition to the antigen-specific stimulus delivered by the TCR, T cells under most circumstances require a co-stimulatory signal for complete activation. CD28 can provide this signal, and the importance of CD28-mediated co-stimulation has been well documented both in vitro and in vivo, but the intracellular pathways downstream of CD28 are less well characterized. So far, maximal co-stimulation of IL-2 production has been attributed to tyrosine-based signaling motifs, either including the first cytoplasmic tyrosine residue that binds phosphatidylinositol 3'-kinase (PI3-K), or the third tyrosine residue. Here we describe results of the expression of murine CD28 receptor mutants in a CD28-deficient murine T cell hybridoma, A1.1. We show that in A1.1 cells co-stimulation of IL-2 production is independent of CD28 cytoplasmic tyrosine residues, since a mutant lacking all four cytoplasmic tyrosines is still able to induce a full co-stimulatory response. Using truncation mutants, this activity can be attributed to amino acids 183 to 194, a sequence containing a conserved diproline motif that may recruit SH3 domains of other signaling molecules like Grb2. Thus we have identified a novel pathway for CD28-mediated co-stimulation of IL-2 production that is independent of PI3-K activity and phosphotyrosine-based signaling motifs.  相似文献   

13.
14.
Signaling by the CD28 T cell costimulatory receptor is known to involve recruitment and activation of phosphatidylinositol 3-kinase (PI3-kinase) which is dependent upon phosphorylation of tyrosine 173 of the CD28 cytoplasmic tail, present in a YMNM motif. However, whether this phosphorylation is required for CD28 costimulation and whether or not phosphorylation of any of the other three tyrosines of the CD28 cytoplasmic tail (tyrosines 188, 191 and 200) is also important for CD28 induced responses is unclear. To address this we examined the ability of chimeric receptors, consisting of the extracellular plus transmembrane membrane domain of human CD8α linked to different mutated human CD28 cytoplasmic tails, to induce IL-2 secretion in Jurkat T leukemia cells in the presence of PMA and ionomycin. A receptor in which tyrosine 173 of the CD28 tail was mutated to phenylalanine was able to induce IL-2. By contrast, receptors which contained single tyrosine 188, 191 or 200 to phenylalanine substitutions were unable to induce IL-2. These results imply that in this system phosphorylation of tyrosine 173 and hence activation of PI3-kinase is not required for CD28 induced IL-2 secretion. Further, they imply that phosphorylation of each of tyrosines 188, 191 and 200 is necessary for this response. Despite an apparent requirement for phosphorylation of all three of these tyrosines, however, receptors which contain tyrosine only at positions 191 or 200 and a truncated receptor which does not contain tyrosine 200 induce normal IL-2. These last findings, therefore, illustrate the complexity of CD28 mediated activation signals.  相似文献   

15.
The phosphatidylinositol phosphatase gene PTEN is a dual specific phosphatase acting on phospho amino acids but also on three phosphorylated inositol phospholipids. Present results demonstrate that PTEN is inducible by costimulatory signals in human CD4(+) T cells. PTEN expression was up-regulated on RNA and protein level in freshly isolated human CD4(+) T cells following stimulation with CD28 or CD2. In contrast, PTEN expression was high but remained CD28 and CD2 unresponsive in lymphoma cells. Intracellular staining revealed PTEN expression in CD4(+) T cell populations stimulated with anti-CD28 or anti-CD28 / anti-CD3. Stimulation with anti-CD3 alone did not induce PTEN expression. Inhibition of PTEN expression by antisense oligonucleotides in CD4(+) T cells stimulated with non-mitogenic anti-CD28 resulted in massively increased proliferation, which was sensitive to the phosphatidylinositol 3-kinase (PI3 K) inhibitor wortmannin. Although CD28 and CD2 induce PI3 K signal transduction, wortmannin did not block PTEN up-regulation by CD28 or CD2 indicating that PTEN gene expression is PI3 K independent. These results demonstrate that PTEN negatively controls costimulatory signals by antagonizing PI3 K activity in the absence of TCR engagement.  相似文献   

16.
17.
The Galβ(1–3)GalNAc-binding lectin jacalin is known to specifically induce the proliferation of human CD4+ T lymphocytes in the presence of autologous monocytes and to interact with the CD4 molecule and block HIV-1 infection of CD4+ cells. We further show that jacalin-induced proliferation is characterized by an unusual pattern of T cell activation and cytokine production by human peripheral blood mononuclear cells (PBMC). A cognate interaction between T cells and monocytes was critical for jacalin-induced proliferation, and human recombinant interleukin (IL)-1 and IL-6 did not replace the co-stimulatory activity of monocytes. Blocking studies using monoclonal antibodies (mAb) point out the possible importance of two molecular pathways of interaction, the CD2/LFA-3 and LFA-1/ICAM-1 pathways. One out of two anti-CD4 mAb abolished jacalin responsiveness. Jacalin induced interferon-γ and high IL-6 secretion, mostly by monocytes, and no detectable IL-2 synthesis or secretion by PBMC. In contrast, jacalin-stimulated Jurkat T cells secreted IL-2. CD3? Jurkat cell variants failed to secrete IL-2, suggesting the involvement of the T cell receptor/CD3 complex pathway in jacalin signaling. IL-2 secretion by CD4? Jurkat variant cells was delayed and lowered. In addition to CD4, jacalin interacts with the CD5 molecule. Jacalin-CD4 interaction and the proliferation of PBMC, as well as IL-2 secretion by Jurkat cells were inhibited by specific jacalin-competitive sugars.  相似文献   

18.
The role of the basal activity of the serine/threonine protein kinase, protein kinase C (PKC) in the regulation of anti-CD95-induced apoptosis in Jurkat T cells was investigated. The PKC-specific inhibitor GF 109203X and the proposed cPKC-specific inhibitor Go 6976, in a concentration-dependent manner, increased the percentage of cells undergoing apoptosis induced by anti-CD95 mAb as demonstrated by propidium iodide (PI) staining, TUNEL assay and DNA fragmentation by gel electrophoresis. Furthermore, Go 6976 and GF 109203X abrogated phorbol myristate acetate-induced inhibition of anti-CD95-induced apoptosis. To examine the molecular mechanism by which PKC modulates anti-CD95-induced apoptosis, the effects of Go 6976 on known effector and regulatory molecules of cell death were studied. Increased recruitment of cells undergoing apoptosis was associated with enhanced anti-CD95-induced proteolytic cleavage of the most receptor-proximal cysteine protease caspase-8, subsequent cleavage and activation of the machinery protease caspase-3, and cleavage of the caspase substrates DNA-dependent protein kinase catalytic subunit, poly-(ADP-ribose) polymerase and lamin B1. CD95 and FADD protein levels in Jurkat T cells were not altered by Go 6976 treatment. In addition, Go 6976 did not alter protein levels and subcellular distribution of the anti-apoptotic molecules Bcl-2 and Bcl-xL. These data suggest indirectly that basal PKC activity acts at an early stage in the anti-CD95-induced caspase pathway to attenuate subsequent activation of downstream effector molecules and associated apoptosis in Jurkat T cells.   相似文献   

19.
20.
It is reported that antimycotic agents are effective for the treatment of patients with atopic dermatitis (AD). We studied in vitro effects of antimycotics on T helper-1 and T helper-2 cytokine production in anti-CD3 plus anti-CD28-stimulated T cells from AD patients and normal donors. The amounts of interleukin-4 (IL-4) and IL-5 secreted by anti-CD3/CD28-stimulated T cells were higher in AD patients than in normal donors. Azole derivatives, ketoconazole, itraconazole, miconazole and non-azole terbinafine hydrochloride and tolnaftate reduced IL-4 and IL-5 secretion without altering that of IFN-gamma and IL-2 in anti-CD3/CD28-stimulated T cells from both AD patients and normal donors. The azole derivatives were more inhibitory than non-azole antimycotics. These antimycotics reduced the anti-CD3/CD28-induced mRNA expression and promoter activities for IL-4 and IL-5. The cAMP analogue dibutyryl cAMP reversed the inhibitory effects of the antimycotics on IL-4 and IL-5 secretion, mRNA expression, and promoter activities. Anti-CD3/CD28 transiently (< or = 5 min) increased intracellular cAMP in T cells, and the increase was greater in AD patients than in normal donors. The increase of cAMP by anti-CD3/CD28 correlated with IL-4 and IL-5 secretion by anti-CD3/CD28. The transient cAMP increase was suppressed by antimycotics, and azole derivatives were more suppressive than non-azoles. Azole derivatives inhibited the activity of cAMP-synthesizing adenylate cyclase while terbinafine hydrochloride and tolnaftate enhanced the activity of cAMP-hydrolyzing cyclic nucleotide phosphodiesterase in AD and normal T cells. These results suggest that the antimycotics may suppress IL-4 and IL-5 production by reducing cAMP signal, and strengthen the concept of their potential use for the suppression of T helper-2-mediated allergic reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号