首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the functional consequences of targeting class II molecules to either the cell surface or to endocytic structures by expressing HLA-DR1 in human kidney cells in the presence or absence of different forms of the invariant chain (Ii). Transfectants expressing class II molecules in the absence of Ii present influenza virus efficiently and co-expression of full length Ii does not further increase antigen presentation. Chimeric Ii containing the cytoplasmic domain of the transferrin receptor (Tfr-Ii) delivers class II molecules associated with Tfr-Ii to endosomal compartments, but this does not result in efficient antigen presentation. When class II molecules are targeted to the cell surface by Ii lacking either 15 (Δ15Ii) or 23 (Δ23Ii) amino acids from the cytoplasmic domain, a fraction of free class II molecules is also observed. Whereas Δ15Ii did not affect antigen presentation by class II molecules, Δ23Ii inhibited, but did not abrogate, the response. We show that class II molecules expressed in the presence of Δ23Ii can be internalized, followed by degradation of Δ23Ii and return of free class II αβ heterodimers to the cell surface. A fraction of the resulting free class II molecules is sodium dodecyl sulfate stable, indicating that internalization and reappearance of class II molecules at the cell surface can be an alternative route for antigen presentation. In all transfectants, class II molecules were found in endocytic compartments that labeled for CD63 and resembled the multilaminar MIIC compartments found in B cell lines. Ii is not required for endosomal targeting of class II molecules. The number of class II molecules observed in the multilaminar compartments correlates with the efficiency of antigen presentation.  相似文献   

2.
T cell recognition of antigen requires that a complex form between peptides derived from the protein antigen and cell surface glycoproteins encoded by genes within the major histocompatibility complex (MHC). MHC class II molecules present both extracellular (exogenous) and internally synthesized (endogenous) antigens to the CD4 T cell subset of lymphocytes. The mechanisms of endogenous antigen presentation are the subject of this review. Isolation and amino acid sequencing of peptides bound to the class II molecule indicate that a very high proportion (70–90%) of the total peptides presented by the class II molecule are in fact derived from the pool of proteins that are synthetized within the antigen-presenting cell (APC). This type of sequence information as well as the study of model antigens has indicated that proteins expressed in a diversity of intracellular sites, including the cell surface, endoplasmic reticulum and cytosol can gain access to the class II molecule, albeit with different efficiencies. The main questions that remain to be answered are the intracellular trafficking patterns that allow colocalization of internally synthesized antigens with the class II molecule, the site(s) within the cell where peptide: class II molecule complex formation can take place and whether presentation of ‘foreign’ as well as ‘self’ antigens takes place by mechanisms that vary from one cell type to another or that vary with the metabolic state of the APC. If such variability exists, is would imply that the array of peptides displayed by class II molecules at the cell surface has similar variability, a possibility that would impact on self tolerance and autoimmunity.  相似文献   

3.
Mycobacterium tuberculosis is one of the most successful of human pathogens and has acquired the ability to establish latent or progressive infection and persist even in the presence of a fully functioning immune system. The ability of M. tuberculosis to avoid immune-mediated clearance is likely to reflect a highly evolved and coordinated program of immune evasion strategies, including some that interfere with antigen presentation to prevent or alter the quality of T-cell responses. Here, we review an extensive array of published studies supporting the view that antigen presentation pathways are targeted at many points by pathogenic mycobacteria. These studies show the multiple potential mechanisms by which M. tuberculosis may actively inhibit, subvert or otherwise modulate antigen presentation by major histocompatibility complex class I, class II and CD1 molecules. Unraveling the mechanisms by which M. tuberculosis evades or modulates antigen presentation is of critical importance for the development of more effective new vaccines based on live attenuated mycobacterial strains.  相似文献   

4.
Trypanosoma cruzi, the intracellular protozoan parasite that causes Chagas' disease, interferes with the host immune response to establish a persistent infection. In this report, we demonstrate that macrophages infected with T. cruzi are unable to effectively present antigens to CD4 T cells. The interference is due to defective antigen-presenting cell (APC) function, as antigen-independent stimulation of the T cell in the presence of infected macrophages is not affected. The defect is distal to antigen processing and is not due to decreased major histocompatibility complex (MHC) class II expression, decreased viability, defective peptide loading in the infected macrophages, nor absence of CD28 co-stimulation. There was a role for gp39:CD40 co-stimulation during antigen presentation to the T cells we studied, but the expression of CD40 on T. cruzi-infected macrophages was not decreased. Antigen-specific adhesion between macrophages and T cells was reduced by infection. Equivalent levels of the adhesion molecules lymphocyte function-associated antigen-1, intercellular adhesion molecule-1, vascular cell adhesion molecule-1 or very late antigen-4 are found on infected and uninfected APC, suggesting that reduced expression of these adhesion molecules was not responsible for the defect in antigen-specific adhesion. The defective T cell:macrophage adhesion may be due to the reduced expression of other adhesion molecules or other changes in the cell induced by infection. Interfering with MHC class II antigen presentation in infected macrophages may help T. cruzi to blunt the immune response by the host.  相似文献   

5.
To identify the intracellular site(s) of formation of an endogenous class II/peptide complex in a human B cell line, we employed kinetic pulse-chase labeling experiments followed by subcellular fractionation by Percoll density gradient centrifugation and immunogold labeling on ultrathin cryosections. For direct demonstration of assembly of such complexes, we used the monoclonal antibody YAe, which detects an endogenous complex of the mouse class II molecule I-Ab with a 17-amino acid peptide derived from the α chain of HLA-DR (DRα52–68). We show that in human B lymphocytes, these class II/peptide complexes assemble and transiently accumulate in major histocompatibility complex class II-enriched compartments before reaching the cell surface.  相似文献   

6.
The endogenous major histocompatibility complex (MHC) class II presentation pathway allows biosynthesized, intracellular antigens access for presentation to MHC class II-restricted T cells. This pathway has been well documented in B cells and fibroblasts, but may not be universally available in all antigen-presenting cell types. This study compares the ability of different antigen-presenting cells, expressing endogenous C5 protein (fifth component of mouse complement) as a result of transfection, to present their biosynthesized C5 to MHC class II-restricted T cells. B cells and fibroblasts expressing C5 were able to present several epitopes of this protein with MHC class II molecules, whereas macrophages were unable to do so, but readily presented C5 from an extracellular source. However, macrophage presentation of endogenous C5 could be achieved when they were treated with low doses of the lysosomotropic agent ammonium chloride. In the presence of an inhibitor of autophagy, presentation of endogenous C5 was abrogated, indicating that biosynthesized C5 is shuttled into lysosomal compartments for degradation before making contact with MHC class II molecules. Taken together, this suggests that proteolytic activity in lysosomes of macrophages may be excessive, compared with fibroblasts and B cells, and destroys epitopes of the C5 protein before they can gain access to MHC class II molecules. Thus, there are inherent differences in presentation pathways between antigen-presenting cell types; this could reflect their specialized functions within the immune system with macrophages focussing preferentially on internalization, degradation, and presentation of extracellular material.  相似文献   

7.
The heat shock response is a universal and highly conserved cellular response to stress. We describe here the effect of elevated temperature on the capacity of B cells to present antigen. Heat shock markedly affects the ability of these cells to process and present tetanus toxin to class II-restricted T cell clones. Inhibition of antigen presentation is due neither to a modification of antigen capture nor to a variation of major histocompatibility complex (MHC) class II molecule synthesis and cell surface expression. Stressed and nonstressed B cells are able to present peptides loaded at the cell surface with the same efficiency. Nevertheless, heat shock leads to an increase of antigen peptide generation in subcellular compartments; an enhancement of cathepsin B activity is also observed. These data suggest that such a stress induces a failure in the intracellular peptide loading onto MHC class II molecules.  相似文献   

8.
Dendritic cells expanded from mouse bone marrow (BMDC) with granulocyte/macrophage-colony-stimulating factor have potent T cell-stimulatory properties both in vitro and in vivo. This has been well documented for major histocompatibility complex (MHC) class II-restricted responses, and more recently using peptide-loaded and protein-pulsed DC for CD8 responses following adoptive transfer in mice. An unresolved question concerns the capacity of BMDC to present exogenous antigen on MHC class I molecules, an unconventional mode of MHC class I loading for which there is now considerable evidence, particularly in macrophages. Here, we show that BMDC exhibit high levels of macropinocytosis driven by constitutive membrane ruffling activity. Up to one-third of actively ruffling and macropinocytosing BMDC transferred pinocytosed horseradish peroxidase into the cytosol following a 15-min pulse, suggesting that they might be capable of presenting exogenous soluble antigen on MHC class I molecules. We show that BMDC presented exogenous ovalbumin to a T cell hybridoma more effectively, more rapidly, and at lower exogenous antigen concentrations than BM macrophages on a cell-for-cell basis. Presentation was TAP dependent, brefeldin A sensitive, and blocked by inhibitors of proteasomal processing, demonstrating use of the classical MHC class I pathway. Although effective presentation of exogenous antigen by BMDC occurred in the absence of agents which stimulate macropinocytosis, treatment with phorbol myristate acetate (PMA) enhanced both pinocytosis and MHC class I presentation by BMDC. Finally, PMA-stimulated BMDC exposed to exogenous ovalbumin in vitro were able to prime an antigen-specific cytotoxic T lymphocyte response following adoptive transfer in vivo.  相似文献   

9.
The activation of CD8+ T cell responses is commonplace during infection with a number of nonviral pathogens. Consequently, there has been much interest in the pathways of presentation of such exogenous antigens for major histocompatibility complex class I-restricted recognition. We had previously shown that Leishmania promastigotes transfected with the ovalbumin (OVA) gene could efficiently target OVA to the parasitophorous vacuole (PV), with subsequent recognition by class II-restricted T cells. We now report the results of studies aimed at evaluating the PV as a route of entry into the exogenous class I pathway. Bone marrow-derived macrophages can present soluble OVA (albeit at high concentrations) to the OVA257–264-specific T cell hybridoma 13.13. In contrast, infection with OVA-transfected Leishmania promastigotes failed to result in the stimulation of this hybridoma. This appeared unrelated to variables such as antigen concentration, parasite survival, and macrophage activation status. These results prompted an analysis of the effects of promastigotes on class I peptide binding using RMA-S cells and OVA257–264. Our data indicate that the major surface protease of Leishmania, gp63, inhibits this interaction by virtue of its endopeptidase activity against the OVA257–264 peptide. The data suggest that this activity, if maintained within the PV, would result in loss of the OVA257–264 epitope. Although we can therefore draw no conclusions from these studies regarding the efficiency of the PV as a site of entry of antigen into the exogenous class I pathway, we have identified a further means by which parasites may manipulate the immune repertoire of their host.  相似文献   

10.
Dendritic cells (DC) efficiently take up antigens by macropinocytosis and mannose receptor-mediated endocytosis. Here we show that endocytosis of mannose receptor-antigen complexes takes place via small coated vesicles, while non-mannosylated antigens were mainly present in larger vesicles. Shortly after internalization the mannose receptor and its ligand appeared in the larger vesicles. Within 10 min, the mannosylated and non-mannosylated antigens co-localized with typical markers for major histocompatibility complex class II-enriched compartments and lysosomes. In contrast, the mannose receptor appeared not to reach these compartments, suggesting that it releases its ligand in an earlier endosomal structure. Moreover, we demonstrate that mannosylation of protein antigen and peptides resulted in a 200–10 000-fold enhanced potency to stimulate HLA class II-restricted peptide-specific T cell clones compared to non-mannosylated peptides. Our results indicate that mannosylation of antigen leads to selective targeting and subsequent superior presentation by DC which may be applicable in vaccine design.  相似文献   

11.
Peptides binding to a particular class II major histocompatibility complex (MHC) molecule can inhibit the activation of T cells by other peptides binding to the same molecule, a phenomenon termed class II MHC blockade. All class II-binding peptides exert MHC blockade in vivo in depot form with adjuvant, and some also retain their blocking properties in soluble form. We demonstrate here that soluble peptides, when used at doses causing short-term MHC blockade, can also induce long-term antigen-specific T cell tolerance to themselves. The tolerogenicity of soluble peptides correlates with their antigenicity in adjuvant, but it is not necessarily related to their capacity to act as class II blockers in vivo. The tolerant state is manifested in a decreased production of both T helper cell 1 (Th1)-type and Th2-type lymphokines, and it cannot be reversed by interleukin-2. Once T cells are primed with a peptide in complete Freund's adjuvant, they are resistant to tolerization with the same peptide applied in soluble form. Tolerance induction is partially impaired in B cell-deficient μMT−/− mice, suggesting a role for B cell antigen presentation in this process. The results suggest that the potential immunogenicity of class II MHC blockers could be circumvented by choosing a tolerogenic mode of application.  相似文献   

12.
13.
The role of major histocompatibility complex (MHC) class I and class II molecules in natural killer (NK) cell-mediated rejection of allogeneic, semi-syngeneic and MHC-matched bone marrow grafts was investigated. The use of β2-microglobulin (β2m) -/- and β2m +/- mice as bone marrow donors to MHC-mismatched recipients allowed an analysis of whether the presence of semi-syngeneic and allogeneic MHC class I gene products would be triggering, protective or neutral, in relation to NK cell-mediated rejection. Loss of β2m did not allow H-2b bone marrow cells to escape from NK cell-mediated rejection in allogeneic (BALB/c) or semi-allogeneic (H-2Dd transgenic C57BL/6) mice. On the contrary, it led to stronger rejection, as reflected by the inability of a larger bone marrow cell inoculum to overcome rejection by the H-2-mismatched recipients. In H-2-matched recipients, loss of β2m in the graft led to a switch from engraftment to rejection. At the recipient level, loss of β2m led to loss of the capability to reject H-2-matched β2m-deficient as well as allogeneic grafts. When MHC class II-deficient mice were used as donors, the response was the same as that against donors of normal MHC phenotype: allogeneic and semi-syngeneic grafts were rejected by NK cells, while syngeneic grafts were accepted. These data suggest a model in which allogeneic class I molecules on the target cell offer partial protection, while certain syngeneic class I molecules give full protection from NK cell-mediated rejection of bone marrow cells. There was no evidence for a role of MHC class II molecules in this system.  相似文献   

14.
In this study we have investigated the expression of major histocompatibility complex (MHC) class II molecules on T cells from various lymphoid compartments in the sheep. Monoclonal antibodies which react specifically with sheep MHC class II molecules homologous to the human DQ and DR molecules have been characterized. These antibodies have been used, together with the monoclonal antibodies specific for sheep CD4-, CD8- and T19-positiveT cells, to quantitate DQ and DR expression on T cell subsets in adult and fetal peripheral blood, afferent lymph, lymph node and efferent lymph. The results show that expression of class II by T cells depends on the age of the animal and the physiological location of the T cell. In fetal blood there is no expression of class II on CD8+ or T19+ cells and very low expression on CD4+ T cells. In adult peripheral blood and efferent lymph a significant proportion of cells express DR but not DQ. A very different situation is found in afferent lymph and the peripheral lymph node: in afferent lymph the majority of T cells in all three subsets express both DQ and DR molecules; in the lymph node over 50% of T cells express DR and 30 % are DQ+. These results suggest that within all T cell subsets there is a progression from DQ? DR? to DQ?DR+ and DQ+DR+ which correlates with physiological stages of T cell differentiation in vivo.  相似文献   

15.
Although eosinophils are inflammatory cells, there is increasing attention on their immunomodulatory roles. For example, murine eosinophils can present antigen to CD4+ T helper (Th) cells, but it remains unclear whether human eosinophils also have this ability. This study determined whether human eosinophils present a range of antigens, including allergens, to activate Th cells, and characterized their expression of MHC class II and co‐stimulatory molecules required for effective presentation. Human peripheral blood eosinophils purified from non‐allergic donors were pulsed with the antigens house dust mite extract (HDM), Timothy Grass extract (TG) or Mycobacterium tuberculosis purified protein derivative (PPD), before co‐culture with autologous CD4+ Th cells. Proliferative and cytokine responses were measured, with eosinophil expression of HLA‐DR/DP/DQ and the co‐stimulatory molecules CD40, CD80 and CD86 determined by flow cytometry. Eosinophils pulsed with HDM, TG or PPD drove Th cell proliferation, with the response strength dependent on antigen concentration. The cytokine responses varied with donor and antigen, and were not biased towards any particular Th subset, often including combinations of pro‐ and anti‐inflammatory cytokines. Eosinophils up‐regulated surface expression of HLA‐DR/DP/DQ, CD80, CD86 and CD40 in culture, increases that were sustained over 5 days when incubated with antigens, including HDM, or the major allergens it contains, Der p I or Der p II. Human eosinophils can, therefore, act as effective antigen‐presenting cells to stimulate varied Th cell responses against a panel of antigens including HDM, TG or PPD, an ability that may help to determine the development of allergic disease.  相似文献   

16.
Complexes of major histocompatibility complex (MHC) class II molecules containing invariant chain (Ii)-derived peptides, known as class II-associated invariant chain peptides (CLIP), are expressed at high levels in presentation-deficient mutant cells. Expression of these complexes in mutant and wild-type antigen-presenting cells suggests that they represent an essential intermediate in the MHC class II antigen-presenting pathway. We have generated a monoclonal antibody, 30-2, which is specific for these complexes. Using this antibody, we have found quantitative differences in CLIP: MHC class II surface expression in mutant and wild-type cells. Our experiments also show that CLIP: MHC class II complexes are preferentially expressed on the cell surface similar to total mature MHC class II molecules. These complexes are found to accumulate in the endosomal compartment in the process of endosomal Ii degradation. Analysis of the fine specificity of the antibody indicates that these complexes have Ii peptide bound to the peptide-binding groove.  相似文献   

17.
Peptides derived from endogenous and exogenous antigens compete for binding and presentation via class II molecules. Studies with mutant B cell lines defective in exogenous antigen presentation suggest that HLA-DM molecules facilitate the interaction of foreign peptides and class II molecules. In contrast, presentation of self antigens is not strictly dependent upon HLA-DM, as demonstrated by the ability of these mutant cells to activate T cells specific for endogenous antigens. Two distinct classes of DM-negative cells, T2 cells generated by in vitro mutagenesis and lines derived from bare lymphocyte syndrome (BLS) patients, were able to present epitopes derived from self proteins. Transfection of DM genes into the mutant cells enhanced the presentation of some, but not all, endogenous antigens, suggesting that formation of select endogenous peptide/class II complexes is not dependent upon DM. The efficiency of endogenous antigen presentation in the absence of DM was also dependent on the mutant antigen-presenting cell studied, as the TxB hybrid T2 presented greater amounts of self peptides compared to cells from BLS patients. Thus, additional genes, aside from DM, may regulate the pathway for endogenous antigen presentation.  相似文献   

18.
Two soluble invariant chain (Ii) peptides with overlapping sequences had contrasting effects on the presentation of antigenic peptides by murine Ad, Ak, Ed, and Ek major histocompatibility complex (MHC) class II molecules. Naturally produced class II-associated invariant chain peptides human (h)Ii81–104/murine (m)Ii80–103 inhibited antigen presentation on these MHC class II alleles in a manner consistent with competitive inhibition. The Ii-4 peptides hIi77–92/mIi76–91 enhanced presentation of antigenic peptides on I-E class II alleles by promoting the exchange of peptides at the cell surface. Treatment of antigenpresenting cells (APC) with Ii-4 before the addition of antigenic peptide greatly enhanced subsequent T cell responses, while treatment of APC with Ii–4 after antigenic peptide binding decreased subsequent T cell responses. The hIi81–104 and mIi80–103 peptides inhibited T cell responses in both types of assays. The binding of biotinylated antigenic peptide to MHC class II-transfected L cells, as measured by flow cytometry, was inhibited by mIi80-103 and enhanced by mIi-4. Segments of Ii fragments remaining associated with MHC class II, or released Ii peptides, appear to regulate the formation of stable antigenic peptide/MHC class II complexes either positively or negatively through interactions at or near the antigenic peptide binding site. These findings open a pathway for the design of novel therapeutics based on the structure and function of natural and rationally designed fragments of Ii.  相似文献   

19.
This study characterizes antigen-induced phenotypic and functional aspects of major histocompatibility complex (MHC) class II expression on recirculating T cells in efferent lymph. In vivo secondary, but not primary challenge is associated with both kinetic and phenotypic alterations in class II expression by T cells. All three major T cell subsets, CD4+, CD8+ and T19+ (γδ T cell receptor), show an approximate four fold increase in the level of MHC class II expression during secondary responses. No changes in B cell expression of class II were seen. Resting efferent lymph T cells are predominantly either class II? or DR+DQ? but this changes to DR+DQ+ after antigenic challenge. The antigen-presenting function of these class II+ T cells was investigated at daily intervals after in vivo antigenic challenge. T cells from non-activated lymph nodes could not induce proliferation of antigen-specific T cells with soluble antigen but were weakly stimulatory in allo-mixed lymphocyte reaction (MLR) at high (> 2:1) stimulator cell ratios. Activated T cells isolated during secondary in vivo responses, and expressing increased quantities of MHC class II, were positive stimulator cells in the MLR. In contrast these cells could not present soluble antigen or trypsin-digested antigen to the T cell lines. In the MLR assays, the relative stimulation by class II+ T cells correlates with the levels of class II expression. We conclude from these experiments that both quantitative and qualitative changes in MHC class II, induced on T cells under physiological conditions, play a role in the regulation of the immune response in vivo but that that role is not simply one of presentation of soluble antigen.  相似文献   

20.
Antigen-specific and major histocompatibility complex (MHC)-restricted recognition by the T cell receptor involves multiple structural contacts over a large molecular surface area. Using a human T cell clone specific for a rubella viral peptide restricted by subsets of HLA DR4 molecules, we identified structurally diverse combinations of peptide-MHC complexes which were functionally equivalent for T cell recognition. Presentation of the rubella-derived peptide on DR4 molecules with an E-74 polymorphism triggered T cell recognition, as did presentation of a single amino acid-substituted peptide in the context of the DR4 molecule which lacked the E-74 site. Peptide binding and molecular modeling analysis indicates the structural and functional complementarity of T cell recognition for a specific amino acid side chain, whether contributed by the peptide or by the MHC molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号