首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpose: Tuberculosis (TB) is endemic in India and the burden of multi–drug-resistant tuberculosis (MDR-TB) is high. Early detection of MDR-TB is of primary importance in controlling the spread of TB. The microscopic observational drug susceptibility (MODS) assay has been described as a cost-effective and rapid method by which mycobacterial culture and the drug susceptibility test (DST) can be done at the same time. Materials and Methods: A total of 302 consecutive sputum samples that were received in an accredited mycobacteriology laboratory for conventional culture and DST were evaluated by the MODS assay. Results: In comparison with conventional culture on Lowenstein Jensen (LJ) media, the MODS assay showed a sensitivity of 94.12% and a specificity of 89.39% and its concordance with the DST by the proportion method on LJ media to isoniazid and rifampicin was 90.8% and 91.5%, respectively. The turnaround time for results by MODS was 9 days compared to 21 days by culture on LJ media and an additional 42 days for DST by the 1% proportion method. The cost of performing a single MODS assay was Rs. 250/–, compared to Rs. 950/– for culture and 1st line DST on LJ. Conclusion: MODS was found to be a sensitive and rapid alternative method for performing culture and DST to identify MDR-TB in resource poor settings.  相似文献   

2.
Early detection of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) is of primary importance for both patient management and infection control. Optimal methods for identifying drug-resistant Mycobacterium tuberculosis in a timely and affordable way in resource-limited settings are not yet available. This study prospectively evaluated a low-technology but rapid drug susceptibility testing method, the microscopic observation drug susceptibility assay (MODS), in the concurrent detection of M. tuberculosis and its susceptibilities to isoniazid and rifampin (two drugs defining multidrug-resistant M. tuberculosis) directly from sputum specimens. Sputum samples were collected from 262 smear-positive TB patients in Addis Ababa, Ethiopia. To undertake MODS, 100 mul of decontaminated samples was inoculated into a 24-well plate containing 1 ml of 7H9 broth with and without appropriate drugs. The assay uses an inverted-light microscope to detect characteristic mycobacterial growth in liquid culture. Of 262 smear-positive patients, MODS detected 254 (96.9%) and culture in L?wenstein-Jensen medium detected 247 (94.3%) (P = 0.016). For the 247 cultures, the sensitivity, specificity, and accuracy of MODS for detecting MDR-TB were 92.0, 99.5, and 98.8%, respectively, using the method of proportion as a reference (concordance, 98.8%; kappa value, 0.932). Results for MODS were obtained in a median time of 9 days. MODS is an optimal alternative method for identifying MDR-TB in a timely and affordable way in resource-limited settings.  相似文献   

3.
Background: The converging epidemics of HIV and tuberculosis (TB) pose one of the greatest public health challenges of our time. Rapid diagnosis of TB is essential in view of its infectious nature, high burden of cases, and emergence of drug resistance. Objective: The purpose of this present study was to evaluate the feasibility of implementing the microscopic observation drug susceptibility (MODS) assay, a novel assay for the diagnosis of TB and multi-drug-resistant tuberculosis (MDR-TB) directly from sputum specimens, in the Indian setting. Materials and Methods: This study involved a cross-sectional, blinded assessment of the MODS assay on 1036 suspected cases of pulmonary TB in HIV-positive and HIV-negative patients against the radiometric method, BD-BACTEC TB 460 system. Results: Overall, the sensitivity, specificity, positive predictive value, and negative predictive value of the MODS assay in detecting MTB among TB suspected patients were 89.1%, 99.1%, 94.2%, 95.8%, respectively. In addition, in the diagnosis of drug-resistant TB, the MODS assay was 84.2% sensitive for those specimens reporting MDR, 87% sensitivity for those specimens reporting INH mono-resistance, and 100% sensitive for specimens reporting RIF mono-resistance. The median time to detection of TB in the MODS assay versus BACTEC was 9 versus 21 days (P < 0.001). Conclusion: Costing 5 to 10 times lesser than the automated culture methods, the MODS assay has the potential clinical utility as a simple and rapid method. It could be effectively used as an alternative method for diagnosing TB and detection of MDR-TB in a timely and affordable way in resource-limited settings.  相似文献   

4.
Drug-resistant tuberculosis (TB), especially multidrug-resistant TB (MDR-TB), is still one of the most serious threats to TB control worldwide. Early diagnosis of MDR-TB is important for effectively blocking transmission and establishing an effective protocol for chemotherapy. Genechip is a rapid diagnostic method based on molecular biology that overcomes the poor biosafety, time consumption, and other drawbacks of traditional drug sensitivity testing (DST) that can detect MDR-TB. However, the Genechip approach has not been effectively evaluated, especially in limited-resource laboratories. In this study, we evaluated the performance of Genechip for MDR-TB in 1,814 patients in four prefectural or municipal laboratories and compared its performance with that of traditional DST. The results showed that the sensitivity and specificity of Genechip were 87.56% and 97.95% for rifampin resistance and 80.34% and 95.82% for isoniazid resistance, respectively. In addition, we found that the positive grade of the sputum smears influenced the judgment of results by Genechip. The test judged only 75% of the specimens of “scanty” positive grade. However, the positive grade of the specimens showed no influence on the accuracy of Genechip. Overall, the study suggests that, in limited-resource laboratories, Genechip showed high sensitivity and specificity for rifampin and isoniazid resistance, making it a more effective, rapid, safe, and cost-beneficial method worthy of broader use in limited-resource laboratories in China.  相似文献   

5.
A low-cost method of detecting multi-drug resistant Mycobacterium tuberculosis (MDR-TB) with the possibility of quick adoption in a resource limited setting is urgently required. We conducted a study combining isoniazid and rifampicin in a single LJ medium, to detect MDR-TB strains. Combined and individual drug media showed 100% concordance for the detection of MDR-TB and susceptible strains by proportion method. Considering the results, combined isoniazid and rifampicin containing medium could be considered for use in settings where the sole detection of MDR-TB strains is justified.  相似文献   

6.

Background

Russia is a high tuberculosis (TB) burden country with a high prevalence of multidrug resistant tuberculosis (MDRTB). Molecular assays for detection of MDRTB on clinical specimens are not widely available in Russia.

Results

We performed an evaluation of the GenoType® MTBDRplus assay (HAIN Lifescience GmbH, Germany) on a total of 168 sputum specimens from individual patients at a public health laboratory in Central Russia, as a model of a middle income site in a region with high levels of drug resistance. Phenotypic drug resistance tests (DST) were performed on cultures derived from the same sputum specimens using the BACTEC 960 liquid media system. Interpretable GenoType® MTBDRplus results were obtained for 154(91.7%) specimens with readability rates significantly higher in sputum specimens graded 2+ and 3+ compared to 1+ (RR = 1.17 95%CI 1.04–1.32). The sensitivity and specificity of the assay for the detection of rifampicin (RIF) and isoniazid (INH) resistance and MDR was 96.2%, 97.4%, 97.1% and 90.7%, 83.3%, 88.9% respectively. Mutations in codon 531 of the rpoB gene and codon 315 of the katG gene dominated in RIF and INH resistant strains respectively. Disagreements between phenotypical and molecular tests results (12 samples) could be explained by the presence of rare mutations in strains circulating in Russia and simultaneous presence of resistant and sensitive bacilli in sputum specimens (heteroresistance).

Conclusion

High sensitivity, short turnaround times and the potential for screening large numbers of specimens rapidly, make the GenoType® MTBDRplus assay suitable as a first-line screening assay for drug resistant TB.  相似文献   

7.
The INNO-LiPA Rif.TB assay for the identification of Mycobacterium tuberculosis complex strains and the detection of rifampin (RIF) resistance has been evaluated with 360 smear-positive respiratory specimens from an area of high incidence of multidrug-resistant tuberculosis (MDR-TB). The sensitivity when compared to conventional identification/culture methods was 82.2%, and the specificity was 66.7%; the sensitivity and specificity were 100.0% and 96.9%, respectively, for the detection of RIF resistance. This assay has the potential to provide rapid information that is essential for the effective management of MDR-TB.  相似文献   

8.
Context: Tuberculosis (TB) is a major public health problem in India and a principal cause of death in adults, especially among the economically productive age group. India accounts for one-fifth of the global burden of TB. It is estimated that about 40% of Indian population is infected with TB bacillus. The GenoType® MTBDRplus molecular method allows rapid diagnosis of the clinical samples and detection of the most common mutations in the genes associated with rifampicin (R) and isoniazid (H) resistance. Aims: To study the drug resistance and mutational patterns in multidrug-resistant (MDR) suspects clinical strains using GenoType® MTBDRplus assay. Subjects and Methods: A total of 770 sputum samples of the MDR-TB suspects were included in this study, which were received at Intermediate Reference Laboratory, Government TB Sanatorium, Dharampur, Solan, Himachal Pradesh from the Designated Microscopy Centres of Himachal Pradesh for the culture and susceptibility testing. All the 521 Mycobacterium tuberculosis complex (MTBC) strains were subjected to GenoType® MTBDRplus (HAIN Lifescience) assay to detect molecular resistance pattern to first line anti-tubercular drugs (isoniazid and rifampicin). Results: Of 770 samples, 556 (72.20%) were from male and 214 (27.80%) were from female. Among the 521 MTBC strains, 19.76% were found to be MDR and mono-resistance to isoniazid and rifampicin was detected in 8.63% and 6.14% strains respectively. About 74.81%, 76.35% and 5.40% strains harboured known mutation in rpoB, katG and inhA genes respectively. Conclusions: In rpoB gene, the most common mutation is associated with S531 L region. The GenoType® MTBDRplus assay is a rapid test for the detection of the most common mutations in MDR-TB strains. In our study, unknown rpoB gene mutations were found in 25.18% strains that may further be detected by gene sequencing.  相似文献   

9.
Former Soviet Union countries including the Baltic States (Latvia, Lithuania, and Estonia) are hot spots for an emerging epidemic of drug resistant tuberculosis (TB). As a part of the development of a co-ordinated network of centers for diagnostic trials across Eastern Europe we conducted a retrospective multicenter analysis of the performance of the GenoType? MTBDRPlus assay for TB identification and susceptibility to isoniazid (INH) and rifampicin (RIF) in routine settings. A total of 1,045 primary samples, 1045?TB cultures derived from these specimens and 306 separate M. tuberculosis isolates tested in 2007-2010 at four participating sites (Tartu, Estonia; Riga, Latvia; Vilnius, Lithuania; and Samara, Russian Federation) were included in the analysis. The pooled sensitivity and specificity values for RIF and INH were 95.3% and 95.5%, 89.9 and 87.1%, respectively; there were no statistically significant variations in performance across sites. The proportion of multidrug resistant (MDR) strains in the collections ranged from 21.8% (in Estonia) to 55.9% (in Russia). In a routine non-trial context, the assay reliably detected both rifampicin and isoniazid resistance. The absence of statistically significant differences between sites suggested that the comparable performance obtained using these assays has helped demonstrate the formation of a successful diagnostic trial network.  相似文献   

10.
The characteristics of loop-mediated isothermal amplification (LAMP) make it a promising platform for the molecular detection of tuberculosis (TB) in developing countries. Here, we report on the first clinical evaluation of LAMP for the detection of pulmonary TB in microscopy centers in Peru, Bangladesh, and Tanzania to determine its operational applicability in such settings. A prototype LAMP assay with simplified manual DNA extraction was evaluated for accuracy and ease of use. The sensitivity of LAMP in smear- and culture-positive sputum specimens was 97.7% (173/177 specimens; 95% confidence interval [CI], 95.5 to 99.9%), and the sensitivity in smear-negative, culture-positive specimens was 48.8% (21/43 specimens; CI, 33.9 to 63.7%). The specificity in culture-negative samples was 99% (500/505 specimens; CI, 98.1 to 99.9%). The average hands-on time for testing six samples and two controls was 54 min, similar to that of sputum smear microscopy. The optimal amplification time was 40 min. No indeterminate results were reported, and the interreader variability was 0.4%. Despite the use of a single room without biosafety cabinets for all procedures, no DNA contamination was observed. The assay was robust, with high end-point stability and low rates of test failure. Technicians with no prior molecular experience easily performed the assay after 1 week of training, and opportunities for further simplification of the assay were identified.  相似文献   

11.
Increase in multidrug-resistant M. tuberculosis (MDR-TB) has become a great cause of concern and rifampicin resistance is considered to be a good predictor of MDR-TB in many parts of the world. Its rapid detection will allow alteration in treatment regimens in time to reduce the spread of the disease. Detection of rifampicin resistance by phage assay is a useful tool as mycobacteriophages are specific for M. tuberculosis complex and detect viable cells only. In our study, we analyzed 85 samples for rifampicin resistance using a novel mycobacteriophage based test (Phage assay) and radiometric BACTEC 460 TB. Of the 85 samples, 70 (82.35%) were resistant and 12 (14.10%) were sensitive by both methods. Our study yielded a sensitivity and specificity of 100% and 80% respectively. A good correlation was observed with conventional LJ proportion method. We conclude that phage assay allows determination of rifampicin resistance within 48 hours from culture, reducing the time taken to define susceptibility results by BACTEC 460 TB and LJ proportion method (5-7 days and 6-8 weeks respectively).  相似文献   

12.
There is an urgent need for new tools to improve our ability to diagnose tuberculosis (TB) and multidrug-resistant TB (MDR-TB) in resource-poor settings. In a retrospective analysis undertaken in a region with a high incidence of TB, we evaluated the performance of the microscopic observation drug susceptibility assay (MODS), a novel assay developed in Perú which uses an inverted light microscope and culture in Middlebrook 7H9 broth to detect mycobacterial growth. MODS detected 94.0% of 1,908 positive sputum cultures, whereas Lowenstein-Jensen (LJ) culture detected only 86.9% (P < 0.001). The median time to culture positivity was 8 days (compared to 16 days for the same 208 samples by LJ culture; P < 0.001, Wilcoxon signed rank test). The results obtained by direct susceptibility testing using MODS demonstrated excellent concordance for isoniazid and rifampin and the detection of multidrug resistance with those obtained by indirect colorimetric methods: the microplate Alamar Blue assay (MABA) and the tetrazolium microplate assay (TEMA) (agreement, 95, 98, and 94%; kappa values, 0.8, 0.7, and 0.7, respectively). The concordance of the susceptibility testing results for ethambutol and streptomycin was poor. MODS is a novel assay which can detect the organisms responsible for TB and MDR-TB directly from sputum inexpensively, rapidly, and effectively. A comprehensive prospective evaluation of MODS is under way in Perú, and independent validation in nonresearch laboratories should be undertaken at the earliest opportunity.  相似文献   

13.
Background: Isoniazid (INH) and rifampicin (Rif) are the key first-line antituberculosis drugs, and resistance to these drugs i.e., multi-drug-resistant tuberculosis (MDR-TB), is likely to result in treatment failure and poor clinical outcomes. India has the highest burden of TB and MDR-TB in the world, disproportionately high even for India’s population. The GenoType® MTBDRplus molecular method allows rapid detection of Rif and INH resistance. Aim: The present study was done to compare the performance of line probe assay test (GenoType® MTBDRplus) with solid culture method for an early diagnosis of MDR-TB. Methods: Totally 1503 sputum samples of MDR-TB suspects were subjected to fluorescent microscopy. Decontamination was done by N-acetyl-L-cysteine and sodium hydroxide method. Fluorescent microscopy-positive samples were subjected to GenoType® MTBDRplus (HAIN Lifescience) assay. Sixty-two random samples were compared with phenotypic drug susceptibility testing (DST) (1% proportion method) using solid culture method by Lowenstein–Jensen media. Results: The sensitivity, specificity, positive predictive value and negative predictive value for detection of resistance to Rif were 94.74%, 95.35%, 90% and 97.62% and to INH were 92.00%, 91.89%, 88.46% and 94.44%, respectively, in comparison with the phenotypic DST. Conclusion: GenoType® MTBDRplus has good sensitivity and specificity in detecting MDR-TB cases with a significantly lesser turnaround time as compared to conventional DST method and simultaneous detection of Rif and INH resistance. This technique saves several weeks of time required for culture and DST.  相似文献   

14.
The aim of this study was to evaluate a pyrosequencing method for the detection of Mycobacterium tuberculosis isolates resistant to rifampin and isoniazid using both clinical strains and clinical samples, comparing the results with those of the Bactec 460TB and GenoType MTBDRplus assays. In comparison to Bactec 460TB as the gold standard, the sensitivity of pyrosequencing for detecting isoniazid and rifampin resistance was 76.9% and 97.2%, respectively, for clinical strains, and the specificity was 97.2 and 97.9%, respectively. For clinical specimens, the sensitivity and specificity for both drugs were 85.7% and 100%, respectively. The overall concordance between pyrosequencing and the GenoType MTBDRplus assay for clinical strains was 99.1%, and for clinical samples, it was 98.2%. Pyrosequencing is a valuable tool for rifampin and isoniazid resistance detection.  相似文献   

15.
Multidrug resistance to Mycobacterium tuberculosis in a tertiary hospital   总被引:1,自引:0,他引:1  
OBJECTIVE: The magnitude of drug-resistant Mycobacterium tuberculosis infection (MDR-TB) in Nigeria, the most populous country in sub-Saharan Africa, is largely unknown. This information would assist policymakers to develop intervention strategies against tuberculosis (TB) in the country. MATERIALS AND METHODS: This is a one-year laboratory-based study. Specimens from suspected new TB patients sent to the TB laboratory of the Department of Medical Microbiology, University College Hospital Ibadan, Nigeria from May 1, 2005 to April 27, 2006 were processed and analyzed. The specimens were stained with Ziehl-Neelsen (Z-N) reagents and cultured on Lowenstein-Jensen medium, incubated at 37 degrees C for 6-8 weeks. Isolates were confirmed as MDR-TB by Z-N reactions and biochemical methods. Drug susceptibility to streptomycin, ethambutol, rifampicin and isoniazid was done using Bactec 460 TB radiometric method. RESULTS: Of the 1,120 specimens processed, 80 (7.1%) were smear positive, while 56 (5.0%) were culture positive, even though the association was not statistically significant (p > 0.05). Culture contamination rate was 8.8%. Thirty (53.6%) of the culture positive isolates were resistant to both isoniazid and rifampicin, while 26 (46.4%) were susceptible. About half--53.3%--of the resistant isolates were from the antiretroviral clinic, while 10 (33.4%) were from peripheral centers. CONCLUSION: This study shows that MDR-TB is emerging in Nigeria. Further studies on MDR-TB are urgently needed in the country to ascertain the magnitude of the problem and to proffer solutions to it.  相似文献   

16.
Objectives and methodsThe Xpert® MTB/RIF assay (Cepheid, Sunnyvale, CA, USA) has been in routine use in Odessa Oblast, a region with the highest tuberculosis (TB) incidence in Ukraine, since 2013. We assessed the performance of the assay in routine settings and evaluated its effect on treatment outcomes.ResultsThe sensitivity of Xpert for TB detection was 93.7% (1165/1243) and 69.5% (448/645) for smear-positive and smear-negative sputum specimens, respectively, and its sensitivity for rifampicin resistance was 93.4% (1212/1298). Median time to TB detection using the Xpert assay was 0 days. Treatment initiation within 1 week increased the proportion of successful outcomes (60.1% versus 25.9%, RR = 1.86, 95%CI = 1.46–2.42), but the introduction of Xpert MTB/RIF has not led to a significant improvement in treatment outcomes (57.2% versus 46.2%; RR = 0.93, 95%CI = 0.77–1.12).ConclusionPerformance characteristics of the Xpert assay demonstrated during its routine implementation in an area of high TB and drug-resistant TB incidence in Ukraine were in line with those demonstrated in similar settings elsewhere. Rollout of rapid molecular testing may lead to better treatment results provided that it is implemented in conjunction with other programmatic improvements.  相似文献   

17.
The increasing burden of drug-resistant tuberculosis (TB) poses an escalating threat to national TB control programs. To assist appropriate treatment for TB patients, accurate and rapid detection of drug resistance is critical. The GeneChip test is a novel molecular tool for the diagnosis of TB drug resistance. Performance-related data on GeneChip are limited, and evaluation in new and previously treated TB cases has never been performed. We evaluated the diagnostic performance of GeneChip in detecting resistance to rifampin (RMP) and isoniazid (INH) and in detecting multidrug-resistant tuberculosis (MDR-TB) in comparison with standard drug susceptibility testing (DST) and compared the results in a group of previously treated and newly detected TB patients in an urban area in southeastern China. One thousand one hundred seventy-three (83.8%) new cases and 227 (16.2%) previously treated cases were collected between January 2011 and September 2013. The GeneChip showed a specificity of 97.8% and a sensitivity of 94.8% for detection of RMP resistance and 97.3% and 70.9%, respectively, for INH resistance in new cases. For previously treated cases, the overall sensitivity, specificity, and agreement rate are 94.6%, 91.3%, and 92.1%, respectively, for detection of RMP resistance and 69.7%, 95.4%, and 86.8%, respectively, for INH resistance. The sensitivity and specificity of MDR-TB were 81.8% and 99.0% in new cases and 77.8% and 93.4% in previously treated cases, respectively. The GeneChip system provides a simple, rapid, reliable, and accurate clinical assay for the detection of TB drug resistance, and it is a potentially important diagnostic tool in a high-prevalence area.  相似文献   

18.
This PhD thesis is based on 5 studies conducted in the period 2006-2010 during my employment at the International Reference Laboratory of Mycobacteriology, Statens Serum Institut. The overall aim was to assess tuberculosis (TB) treatment in Denmark with specific focus on the risk of relapse of TB disease, and to analyse treatment outcome of patients with multidrug-resistant (MDR) or isoniazid-resistant TB. The project established the need for rapid methods to detect resistance and follow-up of treatment. A rapid method to detect drug resistance was optimised and evaluated for use directly in clinical specimens. The studies were based on data from the Mycobacterial registry in the period 1992-2007, which included the results from microscopy, culture, drug-susceptibility and restriction fragment length polymorphism (RFLP). Information on dates of death/emigration were taken from the CPR-registry and treatment from surveillance data and patient records. The rate of recurrent TB was found to be low in Denmark, during 13.5 years of follow-up. Relapse accounted for 1.3% of the recurrent cases and reinfection was rare, only in 0.5% cases. The relapse hazard increased up to four years after diagnosis. Cavitary disease was associated with relapse as opposed to reinfection and may need prolonged treatment and closer monitoring. The incidence of MDR-TB and isoniazid resistance was confirmed to be low. Successful short- and long-term treatment outcome of MDR-TB and isoniazid-resistant TB was high. High- and low-level isoniazid resistance did not affect treatment outcome. A multiplex PCR hybridization mutation analysis, that simultaneously detects the most frequent rpoB and katG gene mutations conferring rifampin and high-level isoniazid resistance, was optimized for direct use and evaluated in smear-positive specimens as opposed to slow conventional drug-susceptibility testing (DST). The second-generation rifampin and isoniazid resistance mutation assay additionally included detection of mutations within the inhA gene conferring low-level isoniazid resistance. This assay was found to be rapid (< 48 h) and easy to perform in isolates and clinical specimens. A high concordance between mutation and conventional DST results was found for rifampin, while results varied for isoniazid . The mutation analysis identified all MDR-TB cases and the majority of isoniazid-resistant cases in Denmark. Standard 6-month multiple anti-TB drug therapy is necessary to treat drug-susceptible TB. Drug-resistant TB often requires therapy adjustments and extended treatment. MDR-TB particularly poses therapeutic challenges. Rapid detection of resistance mutations directly in smear-positive patient specimens may improve MDR-TB patient treatment, although the impact on isoniazid-resistant TB treatment outcome remains to be determined. The mutation assay is a rapid supplement to the gold standard conventional DST in high-income countries such as Denmark, while in low-income countries it can be used for preliminary DST. The assay may be applied to smear-positive samples from patients suspected of treatment failure, recurrent TB, drug-resistant TB exposure or originating from countries with high levels of DR. The new extended mutation assay has proved to be a useful tool, which has now been included in the World Health Organization's policy to combat and prevent new cases of MDR and extensively drug-resistant TB.  相似文献   

19.
The rapid diagnosis of tuberculosis (TB) and the detection of drug-resistant Mycobacterium tuberculosis strains are critical for successful public health interventions. Therefore, TB diagnosis requires the availability of diagnostic tools that allow the rapid detection of M. tuberculosis and drug resistance in clinical samples. Here, we performed a multicenter study to evaluate the performance of the Seegene Anyplex MTB/NTM MDR-TB assay, a new molecular method based on a multiplex real-time PCR system, for detection of Mycobacterium tuberculosis complex (MTBC), nontuberculous mycobacteria (NTM), and genetic determinants of drug resistance. In total, the results for 755 samples (534 pulmonary and 221 extrapulmonary samples) were compared with the results of smears and cultures. For pulmonary specimens, the sensitivities of the Anyplex assay and acid-fast bacillus smear testing were 86.4% and 75.0%, respectively, and the specificities were 99% and 99.4%. For extrapulmonary specimens, the sensitivities of the Anyplex assay and acid-fast bacillus smear testing were 83.3% and 50.0%, respectively, and the specificities of both were 100%. The negative and positive predictive values of the Anyplex assay for pulmonary specimens were 97% and 100%, respectively, and those for extrapulmonary specimens were 84.6% and 100%. The sensitivities of the Anyplex assay for detecting isoniazid resistance in MTBC strains from pulmonary and extrapulmonary specimens were 83.3% and 50%, respectively, while the specificities were 100% for both specimen types. These results demonstrate that the Anyplex MTB/NTM MDR-TB assay is an efficient and rapid method for the diagnosis of pulmonary and extrapulmonary TB and the detection of isoniazid resistance.  相似文献   

20.
In Iran, patients showing rifampicin (RIF) resistance detected by the Xpert® MTB/RIF assay are considered as candidates for multidrug-resistant tuberculosis (MDR-TB) treatment. Despite the fact that RIF resistance has been used as a proxy for MDR-TB, little is known about the proportion of isoniazid (INH) resistance patterns in RIF-resistant TB. We systematically searched MEDLINE, Embase, and other databases up to March 2017 for studies addressing the proportion of INH resistance patterns in RIF-resistant TB in Iran. The data were pooled using a random effects model. Heterogeneity was assessed using Cochran’s Q and I2 statistics. A total of 11 articles met the eligibility criteria. Data analysis demonstrated that 33.3% of RIF-resistant isolates from new TB cases and 14.8% of RIF-resistant isolates from previously treated cases did not display resistance to INH. The relatively high proportion of INH susceptibility among isolates with RIF resistance indicated that RIF resistance may no longer predict MDR-TB in Iran. Therefore, the detection of RIF resistance by the Xpert MTB/RIF assay will require complementary detection of INH resistance by other drug susceptibility testing (DST) methods in order to establish the diagnosis of MDR-TB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号