首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth factor 10 (FGF10) signaling through FGF receptor 2 (FGFR2) is required for lung initiation. While studies indicate that Fgf10 and Fgfr2 are also important at later stages of lung development, their roles in early branching events remain unclear. We addressed this question through conditional inactivation of both genes in mouse subsequent to lung initiation. Inactivation of Fgf10 in lung mesenchyme resulted in smaller lobes with a reduced number of branches. Inactivation of Fgfr2 in lung epithelium resulted in disruption of lobes and small epithelial outgrowths that arose arbitrarily along the main bronchi. In both mutants, there was an increase in cell death. Also, the expression patterns of key signaling molecules implicated in branching morphogenesis were altered and a proximal lung marker was expanded distally. Our results indicate that both Fgf10 and Fgfr2 are required for a normal branching program and for proper proximal–distal patterning of the lung.Developmental Dynamics 238:1999–2013, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Aim of our study was to provide insight into the temporal and spatial expression of FGFR1, FGFR2 and CTGF during normal human lung development which may have an important impact on understanding occurrence of developmental lung anomalies. Morphological parameters were analysed using double immunofluorescence on human embryonal (6th and 7th developmental week-dw) and foetal (8th, 9th and 16th developmental week) human lung samples.FGFR1 and FGFR2 was positive during all the dw in both the epithelium and mesenchyme. The highest number of FGFR1 positive cells was observed during the 6th dw (112/mm2) and 9th dw (87/mm2) in the epithelium compared to the 7th, 8th and 16th dw (Kruskal-Wallis test, p < 0.001, p < 0.0001). The highest number of FGFR1 positive cells in the mesenchyme was observed during the 8th dw (19/mm2) and 16th dw (13/mm2) compared to the 6th, 7th, and 9th dw (Kruskal-Wallis test, p < 0.001, p < 0.0001). The number of FGFR1 positive cells in the epithelium was higher for FGFR2 compared to number of positive cells (Mann-Whitney test, p < 0.0001). FGFR2 showed the highest number in the epithelium during the 7th dw (111/mm2) and 9th dw (87/mm2) compared to 6th, 8th and 16th dw (Kruskal-Wallis test, p < 0.001, p < 0.0001, p < 0.01 respectively). The highest number of FGFR2 positive cells in the mesenchyme was observed during the 9th dw (26/mm2), compared to the 6th, 7th,8th and 16th dw (Kruskal-Wallis test, p < 0.0001), while the number of FGFR2 positive cells in the epithelium was significantly higher than in the mesenchyme (Mann-Whitney test, p < 0.0001). CTGF was negative in both epithelium and mesenchyme during all except the 16th dw in the mesenchyme where it co-localized with FGFR2.FGFR1 and FGFR2 might be essential for epithelial-mesenchymal interactions that determine epithelial branching and mesenchymal growth during early lung development. Sudden increase in FGF1 in the epithelium and FGF2 in the mesenchyme in the foetus at 9th dw could be associated with the onset of foetal breathing movements. CTGF first appear during the foetal lung development.  相似文献   

3.
The fibroblast growth factor (FGF) pathway plays an important role in epithelial-mesenchymal interactions during tooth development. Nevertheless, how the ligands, receptors, and antagonists of the FGF pathway are involved in epithelial-mesenchymal interactions remains largely unknown. Miniature pigs exhibit tooth anatomy and replacement patterns like those in humans and hence can serve as large animal models. The present study investigated the spatiotemporal expression patterns of critical genes encoding FGF ligands (FGF3, FGF4, FGF7, and FGF9), antagonists (SPRY2 and SPRY4) and receptors (FGFR1, FGFR2, and FGFR3) in the third deciduous molars of miniature pigs at the cap (embryonic day 40, E40), early bell (E50), and late bell (E60) stages. The results of in situ hybridization (ISH) with tyramide signal amplification and of qRT-PCR analysis revealed increased expression of FGF7, FGFR1, FGFR2, and SPRY4 in dental epithelium and of FGF7 and FGFR1 in mesenchyme from E40 to E50. In contrast, the results revealed decreased expression of FGF3, FGF4, FGF9, and FGFR3 in dental epithelium and of FGF4, FGF9, FGFR2, and FGFR3 in the mesenchyme from E40 to E60. Mesenchyme signals of FGF3, FGF4, FGF7, SPRY2, FGFR2, and FGFR3 were concentrated in the odontoblast layer from E50 to E60. The distinct expression patterns of these molecules indicated elaborate regulation during dental morphogenesis. Our results provide a foundation for further investigation into fine-tuning dental morphogenesis and odontogenesis by controlling interactions between dental epithelium and mesenchyme, thus promoting tooth regeneration in large mammals.  相似文献   

4.
Background: Early lung morphogenesis is driven by tissue interactions. Signals from the lung mesenchyme drive epithelial morphogenesis, but which individual mesenchymal cell types are influencing early epithelial branching and differentiation remains unclear. It has been shown that endothelial cells are involved in epithelial repair and regeneration in the adult lung, and they may also play a role in driving early lung epithelial branching. These data, in combination with evidence that endothelial cells influence early morphogenetic events in the liver and pancreas, led us to hypothesize that endothelial cells are necessary for early lung epithelial branching. Results: We blocked vascular endothelial growth factor (VEGF) signaling in embryonic day (E) 12.5 lung explants with three different VEGF receptor inhibitors (SU5416, Ki8751, and KRN633) and found that in all cases the epithelium was able to branch despite the loss of endothelial cells. Furthermore, we found that distal lung mesenchyme depleted of endothelial cells retained its ability to induce terminal branching when recombined with isolated distal lung epithelium (LgE). Additionally, isolated E12.5 primary mouse lung endothelial cells, or human lung microvascular endothelial cells (HMVEC‐L), were not able to induce branching when recombined with LgE. Conclusions: Our observations support the conclusion that endothelial cells are not required for early lung branching. Developmental Dynamics 244:553–563, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
Lung morphogenesis and differentiation require interaction between the epithelium and mesenchyme, which is mediated by diffusible molecules such as fibroblast growth factors (FGFs), bone morphogenetic protein 4 (BMP4), and Shh. We have used mesenchyme-free culture to study the effects of these molecules on lung epithelial differentiation. We have tested the individual abilities of FGF1, FGF2, FGF7, FGF9, FGF10, and FGF18, as well as BMP4 and Shh to promote growth and specify distal lung differentiation in mouse tracheal epithelium. The different FGFs exhibited distinct abilities to induce epithelial growth and the expression of the distal lung epithelial marker, surfactant protein C (SP-C), although all FGFs were able to induce expression of BMP4. Tracheal epithelium treated with FGF10 showed little growth and failed to express SP-C as measured by whole-mount in situ hybridization and quantitative real-time polymerase chain reaction. FGF1 treatment resulted in the strongest induction of SP-C. Treatment with BMP4 inhibited epithelial growth and differentiation and antagonized the stimulatory effects of FGF1. In contrast, inhibition of endogenous BMP4 signaling with Noggin protein did not inhibit growth or expression of SP-C but did increase the expression of the proximal lung markers CCSP and HFH4. Expression of Shh was not affected by any of the conditions tested. These results suggest that BMP4 does not signal epithelial cells to adopt a distal fate but may regulate the expansion of proximal epithelial cells in the lung.  相似文献   

6.
7.
In mammalian lungs, airway smooth muscle cells (airway SMCs) are present in the proximal lung adjacent to bronchi and bronchioles, but are absent in the distal lung adjacent to terminal sacs that expand during gas exchange. Evidence suggests that this distribution is essential for the formation of a functional respiratory tree, but the underlying genetic mechanism has not been elucidated. In this study, we test the hypothesis that fibroblast growth factor 9 (Fgf9) signaling is essential to restrict SMC differentiation to the proximal lung. We show that loss of Fgf9 or conditional inactivation of Fgf receptors (Fgfr) 1 and 2 in mouse lung mesenchyme results in ectopic SMCs. Our data support a model where FGF9 maintains a SMC progenitor population by suppressing differentiation and promoting growth. This model also represents our findings on the genetic relationship between FGF9 and sonic hedgehog (SHH) in the establishment of airway SMC pattern. Developmental Dynamics 238:123–137, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
Fibroblast growth factor 9 (FGF9) is essential for lung development and is highly expressed in a subset of human lung adenocarcinomas. We recently described a mouse model in which FGF9 expression in the lung epithelium caused proliferation of the airway epithelium at the terminal bronchioles and led to rapid development of adenocarcinoma. Here, we used this model to characterize the effects of prolonged FGF9 induction on the proximal and distal lung epithelia, and examined the propagation potential of FGF9‐induced lung tumours. We showed that prolonged FGF9 over‐expression in the lung resulted in the development of adenocarcinomas arising from both alveolar type II and airway secretory cells in the lung parenchyma and airways, respectively. We found that tumour cells harboured tumour‐propagating cells that were able to form secondary tumours in recipient mice, regardless of FGF9 expression. However, the highest degree of tumour propagation was observed when unfractionated tumour cells were co‐administered with autologous, tumour‐associated mesenchymal cells. Although the initiation of lung adenocarcinomas was dependent on activation of the FGF9–FGF receptor 3 (FGFR3) signalling axis, maintenance and propagation of the tumour was independent of this signalling. Activation of an alternative FGF–FGFR axis and the interaction with tumour stromal cells is likely to be responsible for the development of this independence. This study demonstrates the complex role of FGF–FGFR signalling in the initiation, growth and propagation of lung cancer. Our findings suggest that analysing the expressions of FGF–FGFRs in human lung cancer will be a useful tool for guiding customized therapy. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

9.
10.
Tissue interactions mediate early events in pulmonary vasculogenesis.   总被引:1,自引:0,他引:1  
Extensive study has provided considerable insight into the mechanisms governing branching morphogenesis and developmental maturation of the pulmonary epithelium. The process by which the vascular tree arises in the mesodermal mesenchyme of the developing lung, however, is not known. Because normal epithelial branching and differentiation have been shown to be dependent on interactions with the lung mesenchyme, we hypothesized that the developing pulmonary vasculature is dependent on a reciprocal interaction with pulmonary epithelium. In this study we have defined the temporal and spatial expression of flk-1 mRNA, which encodes an endothelial cell-specific vascular endothelial growth factor (VEGF) receptor, in fetal and neonatal rat lung. Flk-1-positive cells were observed in the lung at every prenatal stage from fetal day 11 through birth, demonstrating that vascularization has been initiated as soon as the lung evaginates from the foregut epithelium. The spatial distribution of vascular precursors was distinct and consistent in early lung (fetal days 11-16): clusters of flk-1-positive cells were localized in the mesenchyme closely apposed to the developing epithelium. This spatial relationship between vascular precursors and the developing epithelium suggested that vascular development in the lung may be dependent on interactions between the two tissue types. To investigate this possibility, day-13 distal lung mesenchyme was cultured in the presence and absence of lung epithelium. Lung mesenchyme cultured in the absence of epithelium degenerated significantly, and few flk-1-positive cells were maintained. In contrast, lung mesenchyme recombined with lung epithelium contained abundant flk-1-positive cells, and their spatial distribution mimicked that observed in vivo. These studies provide the first detailed information regarding the temporal and spatial pattern of pulmonary vascularization in early development and suggest that tissue interactions play an important role in growth and maintenance of the developing lung vasculature.  相似文献   

11.
Fibroblast growth factor (FGF) signaling has been implicated in the pathogenesis of pulmonary fibrosis. Mice lacking FGF2 have increased mortality and impaired epithelial recovery after bleomycin exposure, supporting a protective or reparative function following lung injury. To determine whether FGF2 overexpression reduces bleomycin‐induced injury, we developed an inducible genetic system to express FGF2 in type II pneumocytes. Double‐transgenic (DTG) mice with doxycycline‐inducible overexpression of human FGF2 (SPC‐rtTA;TRE‐hFGF2) or single‐transgenic controls were administered intratracheal bleomycin and fed doxycycline chow, starting at either day 0 or day 7. In addition, wild‐type mice received intratracheal or intravenous recombinant FGF2, starting at the time of bleomycin treatment. Compared to controls, doxycycline‐induced DTG mice had decreased pulmonary fibrosis 21 days after bleomycin, as assessed by gene expression and histology. This beneficial effect was seen when FGF2 overexpression was induced at day 0 or day 7 after bleomycin. FGF2 overexpression did not alter epithelial gene expression, bronchoalveolar lavage cellularity or total protein. In vitro studies using primary mouse and human lung fibroblasts showed that FGF2 strongly inhibited baseline and TGFβ1‐induced expression of alpha smooth muscle actin (αSMA), collagen, and connective tissue growth factor. While FGF2 did not suppress phosphorylation of Smad2 or Smad‐dependent gene expression, FGF2 inhibited TGFβ1‐induced stress fiber formation and serum response factor‐dependent gene expression. FGF2 inhibition of stress fiber formation and αSMA requires FGF receptor 1 (FGFR1) and downstream MEK/ERK, but not AKT signaling. In summary, overexpression of FGF2 protects against bleomycin‐induced pulmonary fibrosis in vivo and reverses TGFβ1‐induced collagen and αSMA expression and stress fiber formation in lung fibroblasts in vitro, without affecting either inflammation or epithelial gene expression. Our results suggest that in the lung, FGF2 is antifibrotic in part through decreased collagen expression and fibroblast to myofibroblast differentiation. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

12.
13.
The effect of the mesenchyme on early thymus development was investigated in vitro by culturing tissue recombinants of the epithelium and mesenchyme derived from the earliest fetal thymus primordium. The thymus mesenchyme promoted the development of the epithelium as assessed by expression of epithelial surface molecules such as major histocompatibility complex (MHC) class I and class II antigens; mesenchymes of other organs were similarly effective. We looked for the culture conditions in which the epithelium could normally express the MHC class II antigen without the mesenchyme and found that the insulin-like growth factors — I and — II were able to support epithelial development under serum-free conditions. When we cultured the prospective thymus region of a day 9 embryo which had not initiated lymphoid precursor migration, MHC class II antigen was expressed on the epithelium, indicating that lymphoid precursors are not required for early epithelial differentiation. This system provides a means to dissect the complex tissue interactions during the earliest stages of thymus development.  相似文献   

14.
Fibroblast growth factor-10 (FGF10) is a mesenchymal growth factor, involved in epithelial and mesenchymal interactions during lung branching morphogenesis. In the present work, FGF10 overexpression was transiently induced in a temporally and spatially restricted manner, during the pseudoglandular or canalicular stages of rat lung development, by trans-uterine ultrasound-guided intraparenchymal microinjections of adenoviral vector encoding the rfgf10 transgene. The morphologic and histologic classification of the resulting malformations were dependent upon developmental stage and location. Overexpression of FGF10 restricted to the proximal tracheobronchial tree during the pseudoglandular phase resulted in large cysts lined by tall columnar epithelium composed primarily of Clara cells with a paucity of Type II pneumocytes, resembling bronchiolar type epithelium. In contrast, FGF10 overexpression in the distal lung parenchyma during the canalicular phase resulted in small cysts lined by cuboidal epithelial cells composed of primarily Type II pneumocytes resembling acinar epithelial differentiation. The cystic malformations induced by FGF10 overexpression appear to closely recapitulate the morphology and histology of the spectrum of human congenital cystic adenomatoid malformation (CCAM). These findings support a role for FGF10 in the induction of human CCAM and provide further mechanistic insight into the role of FGF10 in normal and abnormal lung development.  相似文献   

15.
16.
17.
Embryonic mouse tracheal epithelium, which branches in an epithelial-mesenchymal recombination culture with bronchial mesenchyme, was cultured under mesenchyme-free conditions. When embedded in a basement-membrane-like matrix and cultured in a serum-free medium supplemented with fibroblast growth factor 1 (FGF1), the tracheal epithelium did not branch, whereas the bronchial epithelium underwent branching morphogenesis. When the medium was enriched with transferrin (Tf), bud formation was induced in the tracheal epithelium and some buds branched secondarily. FGF7 and FGF10, in cooperation with Tf, induced tracheal bud formation to the same extent as FGF1, although the optimum concentrations differed. A bromodeoxyuridine-labeling study comparing cultures with and without Tf showed no Tf-specific amplification of cell proliferation. A whole-mount in situ hybridization study of the expression of Bmp4 and Shh genes in explants of mesenchyme-free culture revealed that both genes were ubiquitously expressed and that expression did not correlate with bud formation. This expression pattern was different from the distally localized expression pattern observed in normal lung rudiments and in extratracheal buds induced by the recombined bronchial mesenchyme. These results suggest that both bronchial and tracheal bud formations were initiated without localized exposure of the epithelium to FGFs and were not accompanied by localized expression of Bmp4 and Shh in the epithelium.  相似文献   

18.
Backgrounds: The lung develops by epithelial tubes budding and branching into a flexible mesenchyme. This growth is associated with the remodelling of the epithelial basement membrane, of which laminin is a major component. Methods: Both the synthesis and expression of laminin were studied in the human lung between 10 and 31 weeks of gestation, using in sity hybridization and immunohistochemistry. Results: The synthesis of the β chain was active in the epithelial and surrounding mesenchymal cells. The mRNAs coding for the γ chain were less abundant and mainly found in the epithelium. The synthesis of these two chains continued throughout gestation, and no significant difference in the density of hybridization grains could be detected between the tips of the expanding buds and the proximal portions. Immunohistochemical localization of laminin showed important modifications of the basement membrane during gestation. In the first part of the pseudoglandular stage the epithelial basement membrane stained continuously for laminin. Later, the basement membrane was labelled in a graded fashion: at the apex of the growing buds the staining became weak with focal disruptions. Both epithelial and mesenchymal synthesis of laminin remained active, while the polypeptide was undetectable using immunohistochemistry. Conclusions: These findings suggest that the remodelling of the basement membrane during human lung morphogenesis is probably not related to a decreasing synthesis of laminin, but to either a proteolytic degradation or the assembly of an inadequate complex undetectable with the polyclonal antibody antilaminin. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Background: The developmental processes of the genital tubercle (GT), the anlage of the external genitalia, possess several developmental aspects, including GT outgrowth, urethral tube formation, and epithelial differentiation of the urethra. The GT comprises the mesenchyme derived from the lateral mesoderm, ectodermal epithelium, and endodermal epithelium (embryonic urethral epithelium). The three tissue layers develop the GT coordinately. Results: Around the initial stage of GT outgrowth (E11.5), FGF signaling was detected in the mesenchyme of the GT. FGF signaling was detected in the three tissue layers of the GT around the early stage of urethral formation (E13.5). Subsequently, FGF signaling was predominantly detected in the urethral epithelium (E14.5). Tissue‐specific roles of FGF signaling in GT development were revealed by conditional Fgfr gene knockout approaches. Mesenchymal FGF signaling in the early‐stage GT is required for its outgrowth. Ectodermal FGF signaling in the GT is required for the differentiation of the ectoderm and urethral epithelium at their junction to form the proper urethral tube. Endodermal FGF signaling in the GT is required for the stratification and cell adhesive characteristics of the urethral epithelium. Conclusions: The current study suggests that spatiotemporally regulated FGF signaling plays tissue‐specific roles in multiple processes of external genitalia development. Developmental Dynamics 244:759–773, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
胎肺中甲状腺转录因子-1的表达及其生物学作用   总被引:5,自引:1,他引:4  
目的 检测甲状腺转录因子 1 (TTF 1 )在小鼠胎肺发育过程中的表达特征 ,探讨其对胎肺发育、分化和成熟的调控作用。方法 不同发育阶段昆明小鼠胎肺组织 ,用免疫组织化学技术观察TTF 1的表达特征 ,用Tiger图象分析系统进行定量分析。结果 小鼠胎肺 1 0d开始检测到TTF 1的表达。其主要表达于正在形成呼吸道的上皮细胞核内 ,且处于末端位置的反应总是明显较近端者强 ;出生后 ,TTF 1主要表达在Ⅱ型上皮细胞核内。在胎肺发育过程 ,TTF 1的AOD值逐渐增加 ,表明Ⅱ型肺泡上细胞TTF 1密度呈现增加趋势 ,与肺泡功能的不断分化成熟相适应。结论 TTF 1参与肺组织的发生 ,可能具有调控上皮细胞发育的重要功能 ;肺泡发育过程中 ,TTF 1在Ⅱ型细胞的丰富表达 ,提示可能与肺泡功能的成熟分化 ,适应出生后执行功能的需要密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号