首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The strain of Zika virus (ZIKV) that circulated during the 2015 epidemic in Brazil has been associated with more than 2000 cases of microcephaly from September 2015 through November 2016. The viral genome determines the biology and pathogenesis of a virus and the virus employs its own gene products to evade host immune surveillance, manipulate cellular machineries, and establish efficient replication. Therefore, understanding the functions of virus-encoded protein not only aids the knowledge of ZIKV biology but also guides the development of anti-ZIKV drugs. In this review, we focus on 10 proteins encoded by ZIKV and summarize their functions in ZIKV replication and pathogenesis according to studies published in the past 6 years.  相似文献   

2.
Zika virus (ZIKV) outbreak has emerged as a global health threat, particularly in tropical areas, over the past few years. No antiviral therapy or vaccine is available at present. For these reasons, repurposing clinically approved drugs against ZIKV infection may provide rapid and cost‐effective global health benefits. Here, we explored this strategy and screened eight FDA‐approved drugs for antiviral activity against ZIKV using a cell‐based assay. Our results show that the antimalarial drug amodiaquine has anti‐ZIKV activity with EC50 at low micromolar concentrations in cell culture. We further characterized amodiaquine antiviral activity against ZIKV and found that it targets early events of the viral replication cycle. Altogether, our results suggest that amodiaquine may be efficacious for the treatment of ZIKV infection.
  相似文献   

3.
The Zika virus (ZIKV) outbreak, which started in the year 2015, is considered the fastest and most widely spread outbreak reported for this flavivirus. The polymerase domain of the NS5 protein has been targeted in other viral infections and is recognized as a suitable target in ZIKV infection. Different novel modified compounds against ZIKV NS5 have been tested in silico. A few structures have been solved for ZIKV polymerase and deposited in the protein data bank website. Two of these solved structures (with a resolution of less than 1.9 A) are used in this study to test the binding of 74 novel compounds in silico. Molecular docking is used to quantify the binding affinities of ZIKV polymerase and compare it to the hepatitis C virus NS5B. A total of 19 novel compounds revealed results that are either similar to or better than the physiological molecule, guanosine triphosphate. Water molecules are found to facilitate the binding of the compounds to ZIKV RNA-dependent RNA polymerase (RdRp) structures. The presented 19 novel compounds represent good binders to ZIKV RdRp and could be suitable candidates for developing a new and effective anti-ZIKV polymerase nucleotide inhibitor.  相似文献   

4.
5.
In the last few months, a new Zika virus (ZIKV) outbreak evolved in America. In accordance, World Health Organization (WHO) in February 2016 declared it as Public Health Emergency of International Concern (PHEIC). ZIKV infection was reported in more than 60 countries and the disease was spreading since 2007 but with little momentum. Many antiviral drugs are available in market or in laboratories under clinical trials, could affect ZIKV infection. In silico docking study were performed on the ZIKV polymerase to test some of Hepatitis C Virus (HCV) drugs (approved and in clinical trials). The results show potency of almost all of the studied compounds on ZIKV polymerase and hence inhibiting the propagation of the disease. In addition, the study suggested two nucleotide inhibitors (IDX‐184 and MK0608) that may be tested as drugs against ZIKV infection. J. Med. Virol. 88:2044–2051, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Current therapy for human immunodeficiency virus (HIV-1) infection relies primarily on the administration of anti-retroviral nucleoside analogues, either alone or in combination with HIV-protease inhibitors. Although these drugs have a clinical benefit, continuous therapy with the drugs leads to drug-resistant strains of the virus. Recently, significant progress has been made towards the development of natural and synthetic agents that can directly inhibit HIV-1 replication or its essential enzymes. We previously reported on the pharmacological cyclin-dependent kinase inhibitor (PCI) r-roscovitine as a potential inhibitor of HIV-1 replication. PCIs are among the most promising novel antiviral agents to emerge over the past few years. Potent activity on viral replication combined with proliferation inhibition without the emergence of resistant viruses, which are normally observed in HAART patients; make PCIs ideal candidates for HIV-1 inhibition. To this end we evaluated twenty four cdk inhibitors for their effect on HIV-1 replication in vitro. Screening of these compounds identified alsterpaullone as the most potent inhibitor of HIV-1 with activity at 150 nM. We found that alsterpaullone effectively inhibits cdk2 activity in HIV-1 infected cells with a low IC50 compared to control uninfected cells. The effects of alsterpaullone were associated with suppression of cdk2 and cyclin expression. Combining both alsterpaullone and r-roscovitine (cyc202) in treatment exhibited even stronger inhibitory activities in HIV-1 infected PBMCs.  相似文献   

7.
At the present moment, drugs which can inhibit Epstein-Barr virus replication are very rare, and their effects are not satisfactory. Therefore, it is necessary to develop new drugs to obtain a better treatment. Forty-one synthetic chemical compounds including purine analogs and nucleoside analogs were collected. These compounds were serially diluted and added to Akata cells, an EBV-containing cell line derived from Burkitt's lymphoma. The cells were immediately added with anti-human IgG to activate EBV replication within the cells. After one day of incubation, reduction of EBV protein synthesis was determined by indirect immunofluorescence assay and Western blotting. Inhibition of viral DNA replication was assayed by slot blot hybridization. The results showed that nucleoside analogs 2-methyl-5, 6-dichloro-1-(beta-D-ribofuranosyl) benzimidazole and 2-ethyl-5, 6-dichloro-1-(beta-D-ribofuranosyl) benzimidazole appeared to be the best drugs analyzed.  相似文献   

8.
Malaria is one of the most important tropical diseases and mainly affects populations living in developing countries. Reduced sensitivity of Plasmodium sp. to formerly recommended antimalarial drugs places an increasing burden on malaria control programs as well as on national health systems in endemic countries. The present study aims to evaluate the antimalarial activity of betulinic acid and its derivative compounds, betulonic acid, betulinic acid acetate, betulinic acid methyl ester, and betulinic acid methyl ester acetate. These substances showed antiplasmodial activity against chloroquine-resistant Plasmodium falciparum parasites in vitro, with IC50 values of 9.89, 10.01, 5.99, 51.58, and 45.79 μM, respectively. Mice infected with Plasmodium berghei and treated with betulinic acid acetate had a dose-dependent reduction of parasitemia. Our results indicate that betulinic acid and its derivative compounds are candidates for the development of new antimalarial drugs.  相似文献   

9.
After recent outbreaks, Zika virus (ZIKV) was linked to severe neurological diseases including Guillain-Barré syndrome in adults and microcephaly in newborns. The severities of pathological manifestations have been associated with different ZIKV strains. To better understand the tropism of ZIKV, we infected 10 human and four nonhuman cell lines (types) with two African (IbH30656 and MR766) and two Asian (PRVABC59 and H/FP/2013) ZIKV strains. Cell susceptibility to ZIKV infection was determined by examining viral titers, synthesis of viral proteins, and replication of positive and negative strands of viral genome. Among nonhuman cell lines, only Vero cells were efficiently infected by ZIKV. Among human cell lines, all were permissive to ZIKV infection. However, 293T and HeLa cells showed differential susceptibility towards African strains. In 293T cells, the NS1 protein was expressed at the high level by African strains but was almost not expressed by Asian strains though there was no obvious difference in viral genome replication, suggesting that the differential susceptibility might be controlled at the stage of viral protein translation. This study provides comprehensive results of the permissiveness of different cell types to both African and Asian ZIKV strains, which might help clarify their different pathogenesis.  相似文献   

10.
The absence of a vaccine and the rampant resistance to almost all antimalarial drugs have accentuated the urgent need for new antimalarial drugs and drug targets for both prophylaxis and chemotherapy. The aim of the study was to discover effective plant extracts against Plasmodium falciparum. In the present study, the hexane, chloroform, ethyl acetate, acetone, and methanol extracts of Citrus sinensis (peel), Leucas aspera, Ocimum sanctum, Phyllanthus acidus (leaf), Terminalia chebula (seed) were tested for their antimalarial activity against chloroquine (CQ)-sensitive (3D7) strain of P. falciparum which was cultured following the candle-jar method. Antimalarial evaluations of daily replacement of culture medium containing CQ and different plant crude extracts were performed on 96-well plates at 37°C for 24 and 48 h. Parasitemia was determined microscopically on thin-film Giemsa-stained preparations. Plant extracts were tested for their cytotoxicity using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay on human laryngeal cancer cell line (HEp-2) and normal cell line (Vero). Out of the 25 extracts tested, six showed good (IC50 4.76–22.76 μg/mL), 15 exhibited moderate (IC50 31.42–88.03 μg/mL), while four displayed mild (IC50 > 100 μg/mL) antiplasmodial activity. The leaf ethyl acetate and methanol extracts of L. aspera; ethyl acetate, acetone, and methanol extracts of P. acidus; and seed acetone extract of T. chebula had good antiplasmodial activity (IC50 = 7.81, 22.76, 9.37, 14.65, 12.68, and 4.76 μg/mL) with selectivity indices 5.43, 2.04, 4.88, 3.35, 3.42, and 9.97 for HEp-2 and >5.79, >2.20, >11.75, >3.41, >3.94, and >7.38 for Vero cells, respectively. These analyses have revealed for the first time that the components present in the solvent extracts of L. aspera, P. acidus, and T. chebula have antiplasmodial activity. The high antiplasmodial activity observed make these plants good candidates for isolation of anti-protozoal compounds which could serve as new lead structures for drug development.  相似文献   

11.
Because of resistance to current insecticides and to environmental, health, and regulatory concerns, naturally occurring compounds and their derivatives are of increasing interest for the development of new insecticidal compounds against vectors of disease-causing pathogens. Fifty-eight compounds, either extracted and purified from plants native to China or synthetic analogs of curcumin, were evaluated for both their larvicidal activity against Aedes aegypti (L.) and their ability to inhibit binding of cholesterol to Ae. aegypti sterol carrier protein-2 in vitro. Of the compounds tested, curcumin analogs seem especially promising in that of 24 compounds tested five were inhibitors of Ae. aegypti sterol carrier protein-2 with EC50 values ranging from 0.65 to 62.87 microM, and three curcumin analogs exhibited larvicidal activity against fourth instar Ae. aegypti larvae with LC50 values ranging from 17.29 to 27.90 microM. Adding to the attractiveness of synthetic curcumin analogs is the relative ease of synthesizing a large diversity of compounds; only a small fraction of such diversity has been sampled in this study.  相似文献   

12.
13.
Malaria is still a major threat in many parts of the world with resistance spreading to almost all classes of antimalarials. The limited arsenal of available antimalarial drugs emphasizes the urgent need for novel antimalarial compounds. Owing to the fact that novel leads from nature have traditionally played a pivotal role in the development of various classes of antimalarials, we investigated a set of eight naturally occurring dietary flavonoids and their analogues for their antiplasmodial activity on clinical field isolates in southeastern Bangladesh and culture-adapted chloroquine-sensitive and chloroquine-resistant parasite clones. Except for taxifolin, all the other flavonoids had 50% inhibitory concentrations below 14 μM, both in the field and laboratory-adapted parasites. Neither of the flavonoids showed any activity correlation with chloroquine. The quercetin analogue rutin (7.10?±?10.32 μM) was the most active substance in field isolates as well as laboratory-adapted cultures (3.53?±?13.34 μM in 3D7 and 10.38?±?15.08 μM in K1), providing the first evidence of its activity against Plasmodium falciparum parasites. Thus, our results provide important evidence of the antimalarial activity of flavonoids in traditional use and thus warrant further investigation of these compounds as potential antiplasmodial agents.  相似文献   

14.
Malaria is a major global public health problem, and the alarming spread of drug resistance and limited number of effective drugs now available underline how important it is to discover new antimalarial compounds. In the present study, ten plants were extracted with ethyl acetate and methanol and tested for their antimalarial activity against chloroquine (CQ)-sensitive (3D7) and CQ-resistant (Dd2 and INDO) strains of Plasmodium falciparum in culture using the fluorescence-based SYBR Green assay. Plant extracts showed moderate to good antiparasitic effects. Promising antiplasmodial activity was found in the extracts from two plants, Phyllanthus emblica leaf 50% inhibitory concentration (IC50) 3D7: 7.25 μg/mL (ethyl acetate extract), 3.125 μg/mL (methanol extract), and Syzygium aromaticum flower bud, IC50 3D7:13 μg/mL, (ethyl acetate extract) and 6.25 μg/mL (methanol extract). Moderate activity (30–75 μg/mL) was found in the ethyl acetate and methanol extracts of Abrus precatorius (seed) and Gloriosa superba (leaf); leaf ethyl acetate extracts of Annona squamosa and flower of Musa paradisiaca. The above mentioned plant extracts were also found to be active against CQ-resistant strains (Dd2 and INDO). Cytotoxicity study with P. emblica leaf and S. aromaticum flower bud, extracts showed good therapeutic indices. These results demonstrate that leaf ethyl acetate and methanol extracts of P. emblica and flower bud extract of S. aromaticum may serve as antimalarial agents even in their crude form. The isolation of compounds from P. emblica and S. aromaticum seems to be of special interest for further antimalarial studies.  相似文献   

15.
The Zika virus (ZIKV) became a major worldwide public concern in 2015 due to the congenital syndrome which presents the highest risk during the first trimester of pregnancy and includes microcephaly and eye malformations. Several cellular, genetic and molecular studies have shown alterations in metabolic pathways, endoplasmic reticulum (ER) stress, immunity and dysregulation of RNA and energy metabolism both in vivo and in vitro. Here we summarise the main metabolic complications, with a particular focus on the possibility that brain energy metabolism is altered following ZIKV infection, contributing to developmental abnormalities. Brain energetic failure has been implicated in neurological conditions such as autism disorder and epilepsy, as well as in metabolic diseases with severe neurodevelopmental complications such as Glut‐1 deficiency syndrome. Therefore, these energetic alterations are of wide‐ranging interest as they might be directly implicated in congenital ZIKV syndrome. Data showing increased glycolysis during ZIKV infection, presumably required for viral replication, might support the idea that the virus can cause energetic stress in the developing brain cells. Consequences may include neuroinflammation, cell cycle dysregulation and cell death. Ketone bodies are non‐glycolytic brain fuels that are produced during neonatal life, starvation or fasting, ingestion of high‐fat low‐carbohydrate diets, and following supplementation with ketone esters. We propose that dietary ketones might alter the course of the disease and could even provide some degree of prevention of ZIKV‐associated abnormalities and potentially related neurological conditions characterised by brain glucose impairment.  相似文献   

16.
The increasing spread of chloroquine resistant malaria has intensified the search for new antimalarial treatment, especially drugs that can be used in combination. Ciprofloxacin (CFX) a fluoroquinolone commonly used to treat bacterial infections has been shown to possess significant antimalarial activity both in vitro and in vivo. Thus efforts in this study were devoted to evaluating the antimalarial activity of combination of chloroquine (CQ) with varying doses (10, 20, 40 80, 160 mg/kg body weight) of CFX in groups of 35 mice inoculated intraperitoneally with 107 chloroquine resistant strain Plasmodium berghei ANKA. Parasitological activity and survival of the animals were assessed over 21 days. Parasitemia in non-treated control mice peaked at 78% on day 9 and none survived by day 10. However, the combination of CQ with 160 mg/kg body weight of CFX resulted in a reduction in parasitemia between days 9 and 14 and this was significantly lower than that obtained with CQ alone or CQ combined with the lower doses of CFX (p < 0.05). In addition, the combination of CQ with 160 mg/kg CFX significantly reduced mortality in the infected animals (p = 0.0002) compared with the other treatment groups. The results from this study support the potential usefulness of CFX in combination with antimalarial drugs for the treatment of chloroquine resistant human malaria.  相似文献   

17.
Our understanding of the host-pathogen relationship in tuberculosis (TB) can help guide drug discovery in at least two ways. First, the recognition that host immunopathology affects lesional TB drug distribution means that pharmacokinetic evaluation of drug candidates needs to move beyond measurements of drug levels in blood, whole lungs, or alveolar epithelial lining fluid to include measurements in specific types of lesions. Second, by restricting the replication of M. tuberculosis (Mtb) subpopulations in latent TB infection and in active disease, the host immune response puts Mtb into a state associated with phenotypic tolerance to TB drugs selected for their activity against replicating Mtb. This has spurred a major effort to conduct high throughput screens in vitro for compounds that can kill Mtb when it is replicating slowly if at all. Each condition used in vitro to slow Mtb's replication and thereby model the phenotypically drug-tolerant state has advantages and disadvantages. Lead candidates emerging from such in vitro studies face daunting challenges in the design of proof-of-concept studies in animal models. Moreover, some non-replicating subpopulations of Mtb fail to resume replication when plated on agar, although their viability is demonstrable by other means. There is as yet no widely replicated assay in which to screen compounds for their ability to kill this ‘viable but non-culturable’ subpopulation. Despite these hurdles, drugs that can kill slowly replicating or non-replicating Mtb may offer our best hope for treatment-shortening combination chemotherapy of TB.  相似文献   

18.
The standard method for in vitro antimalarial drug screening is based on the isotopic assay which is expensive and utilizes radioactive materials with limited availability, safety, and disposal problems in developing countries. The use of non-radioactive DNA stains SYBR Green I (SG) and PICO green® (PG) for antimalarial screening had been reported. However, the use of the two DNA stains for antimalarial screening of medicinal plants has not been compared. Thus, this study compared SG, PG with the [3H]-hypoxanthine (HP) incorporation assays for in vitro antimalarial screening of medicinal plants. The 50% inhibitory concentration (IC50) values obtained using the three methods for antimalarial activity of medicinal plants and standard antimalarial drugs were similar. Data generated from this study suggests that the non-radioactive microflourimetric assay is sufficiently sensitive to reproducibly identify plant extracts with antimalarial activity from those lacking activity. The HP-based assay exhibited the most robust signal-to-noise ratio of 100, compared with signal-to-noise ratios of 7 for SG and 8 for PG. The SG-based assay is less expensive than the PG- and HP-based assays. SG appears to be a cost-effective alternative for antimalarial drug screening and a viable technique that may facilitate antimalarial drug discovery process especially in developing countries.  相似文献   

19.
The pandemic spread of Zika virus (ZIKV), a member of the flavivirus genus of the Flaviviridae family, has become a major public health concern. Reproductive specialists are particularly concerned over the spread of ZIKV as it is now known to have both sexual and transplacental routes of transmission resulting in fetal congenital abnormalities. Other members of the Flaviviridae family, hepatitis C virus (HCV) and bovine viral diarrhea virus (BVDV) (which primarily affects cattle), are well known to reproductive specialists as both sexually transmitted illnesses that are capable of vertical transmission. Congenital infection with BVDV also has a predilection for neuro‐teratogenicity as has been seen with ZIKV. HCV and BVDV are also known to be capable of persistent infection in offspring. Could this be the case with ZIKV? Examining what we know about HCV and BVDV, in addition to what we have already learned about ZIKV, may answer some of the questions that remain about ZIKV. Herein, we review the current literature as it pertains to ZIKV vertical transmission and neuro‐teratogenicity and compare it to what is known about HCV and BVDV.  相似文献   

20.
In the year 2015, new Zika virus (ZIKV) broke out in Brazil and spread away in more than 80 countries. Scientists directed their efforts toward viral polymerase in attempt to find inhibitors that might interfere with its function. In this study, molecular dynamics simulation (MDS) was performed over 444 ns for a ZIKV polymerase model. Molecular docking (MD) was then performed every 10 ns during the MDS course to ensure the binding of small molecules to the polymerase over the entire time of the simulation. MD revealed the binding ability of four suggested guanosine inhibitors (GIs); (Guanosine substituted with OH and SH (phenyl) oxidanyl in the 2′ carbon of the ribose ring). The GIs were compared to guanosine triphosphate (GTP) and five anti‐hepatitis C virus drugs (either approved or under clinical trials). The mode of binding and the binding performance of GIs to ZIKV polymerase were found to be the same as GTP. Hence, these compounds were capable of competing GTP for the active site. Moreover, GIs bound to ZIKV active site more tightly compared to ribavirin, the wide‐range antiviral drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号