首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influenza A virus has the ability to overcome immunity from previous infections through the acquisition of genetic changes. Thus, understanding the evolution of the viruses in humans is important for the surveillance and the selection of vaccine strains. A total of 30 influenza A/H3N2 viruses and 35 influenza A/H1N1 viruses that were collected in Vietnam from 2001 to 2006 were used to analyze the evolution of the hemagglutinin (HA), neuraminidase (NA), and matrix protein (M) genes. Phylogenetic analysis of individual gene segments revealed that the HA and the NA genes of the influenza A viruses evolved in a sequential way. However, the evolutionary pattern of the M gene proved to be nonlinear and was not linked with that of the HA and NA genes. Genetic drift in HA1 segments, especially in the antigenic sites of A/H3N2 viruses, occurred more frequently in A/H3N2 viruses than it did in A/H1N1 viruses. Two reassortants, one influenza A/H3N2 strain and one A/H1N1 strain, were found on the basis of the phylogenetic analysis of the three genes. While both genetic mutation and reassortment contributed to their evolution, the frequency of genetic changes and reassortment events differs between the two subtypes. As influenza viruses circulate throughout the year, we emphasize the importance of surveillance in tropical and subtropical zones, where the emergence of new strains may be detected earlier than it is in temperate zones.  相似文献   

2.
Influenza A viruses cause pandemics at sporadic intervals. Pandemic viruses can potentially be introduced into the human population through in toto transfer of an avian influenza virus or through reassortment between avian and human strains. Pigs are believed to play a central role in the creation of pandemic viruses through reassortment because of their susceptibility to infection with both avian and human influenza viruses. However, we recently found that a human-lineage H3N2 influenza virus was highly restricted in its ability to infect pigs after intranasal inoculation. We hypothesized that this restricted infectivity phenotype was controlled by the hemagglutinin (HA) and neuraminidase (NA). To test this, we infected pigs with reverse genetics-created HA plus NA reassortant viruses. Specifically, introduction of the HA and NA genes of a contemporary H3N2 swine virus into the genetic background of the wholly human virus resulted in a significant increase in virus shedding and pathogenicity. These data indicate that the HA/NA can play important roles in controlling human influenza virus infectivity in pigs. The results further support the premise that a barrier exists to human influenza virus infection in pigs, which may limit the role of pigs in pandemic virus creation through reassortment of human and avian influenza viruses.  相似文献   

3.
AIM: To characterise neuraminidase(NA) substrate specificity of avian influenza H5N1 strains from humans and birds comparing to seasonal influenza virus.METHODS: Avian influenza H5N1 strains from humans and birds were recruited for characterising their NA substrate specificity by using a modified commercial fluorescence Amplex Red assay. This method can identify the preference of α2,6-linked sialic acid or α2,3-linked sialic acid. Moreover, to avoid the bias of input virus, reverse genetic virus using NA gene from human isolated H5N1 were generated and used to compare with the seasonal influenza virus. Lastly, the substrate specificity profile was further confirmed by high-performance liquid chromatography(HPLC) analysis of the enzymatic product. RESULTS: The H5N1 NA showed higher activity on α2,3-linked sialic acid than α2,6-linked(P 0.0001). To compare the NA activity between the H5N1 and seasonal influenza viruses, reverse genetic viruses carrying the NA of H5N1 viruses and NA from a seasonal H3N2 virus was generated. In these reverse genetic viruses, the NA activity of the H5N1 showed markedly higher activity against α2,3-linked sialic acid than that of the H3N2 virus, whereas the activities on α2,6-linkage were comparable. Interestingly, NA from an H5N1 human isolate that was previously shown to have heamagglutinin(HA) with dual specificity showed reduced activity on α2,3-linkage. To confirm the substrate specificity profile, HPLC analytic of enzymatic product was performed. Similar to Amplex red assay, H5N1 virus showed abundant preference on α2,3-linked sialic acid.CONCLUSION: H5N1 virus maintains the avian specific NA and NA changes may be needed to accompany changes in HA receptor preference for the viral adaptation to humans.  相似文献   

4.
The results of a molecular-genetic analysis of epidemical strains of influenza A virus isolated in Russia from 1995 to 2007 are described. The analysis based on the genes sequences of neuraminidase (NA) and M2 protein of influenza A virus was performed. 15 strains of subtype A(H3N2) and 17 strains of subtype A(H1N1) were analyzed for the detection of mutations in the genome virus. The analysis of amino acid sequences of M2 protein of the all remantadin resistant strains demonstrated the substitution S31N as the basic resistant marker. Additional mutations in M2 and NA proteins were detected for both subtypes of the virus. Identified mutations, together with an S31N substitution, could be classified as novel markers for identification of remantadin-resistant strains. The sequence’s analysis of NA from both subtypes of the influenza virus possessed no known mutations to cause a resistance to neuraminidase inhibitors, which indicates the susceptibility of analyzed strains to NA inhibitors.  相似文献   

5.
Gulati U  Wu W  Gulati S  Kumari K  Waner JL  Air GM 《Virology》2005,339(1):12-20
The hemagglutinin (HA) of influenza viruses initiates infection by binding to sialic acid on the cell surface via alpha2,6 (human) or alpha2,3 (avian) linkage. The influenza neuraminidase (NA) can cleave both alpha2,3- and alpha2,6-linked sialic acids, but all influenza NAs have a marked preference for the non-human alpha2,3 linkage. Recent H3N2 influenza viruses have lost the ability to agglutinate chicken red blood cells. To determine if changes in HA specificity or affinity correlate with NA specificity or activity, we examined red cell binding and elution of a series of H3N2 viruses. We found that the NA activity of many influenza viruses does not release binding by their HA. In some egg-adapted strains, lack of elution correlates with low levels of viral NA activity, and these elute rapidly when bacterial NA is added. However, a Fujian-like virus, A/Oklahoma/323/03, does not elute by its own NA or with Vibrio cholerae sialidase, and it binds to red cells pre-treated with V. cholerae sialidase. It elutes after addition of the broad specificity Micromonospora viridifaciens sialidase. Human glycophorin inhibits A/Oklahoma/323/03 hemagglutination 6-fold better than fetuin. We conclude that specific forms of sialic acid are used as receptor by recent human H3N2 influenza viruses, perhaps involving branched alpha2,6 sialic acid or alpha2,8 sialic acid structures on O-linked carbohydrates. The virus itself has no O-linked glycans, so even though the NA is not able to cleave receptors on cells, the viruses will not self-aggregate. It will be important to monitor efficacy of neuraminidase inhibitors in case there are NA-resistant receptors in the human respiratory tract that allow the viruses to be less dependent on NA activity.  相似文献   

6.
G M Air  L R Ritchie  W G Laver  P M Colman 《Virology》1985,145(1):117-122
An influenza virus neuraminidase (NA) of the N9 subtype also has hemagglutinin (HA) activity (W. G. Laver, P. M. Colman, R. G. Webster, V. S. Hinshaw, and G. M. Air (1984), Virology 137, 314-323). To determine sequence relationships between this NA and other known NA and HA subtype sequences, and as a necessary step toward a complete structure determination, we have cloned a full-length copy of the coding sequence of the N9 NA of influenza virus A/tern/Australia/G70C/75 into the plasmid pUC9 using SalI linkers. The gene was sequenced by directed subcloning into the single-stranded phage vectors M13mp19 and M13mp18 and use of the dideoxy procedure. Most of the NA sequence was also obtained by direct protein sequencing of tryptic peptides. The N9 NA has 43 and 44% homology when compared to N1 or N2 sequences, respectively. There is no significant homology to any known HA sequence, or to the HN protein of the paramyxovirus SV5. Like the other NA molecules, the N9 NA is anchored in the membrane by an N-terminal hydrophobic region, from which biologically active heads can be released by pronase.  相似文献   

7.
Hatta M  Halfmann P  Wells K  Kawaoka Y 《Virology》2002,295(2):250-255
Although influenza A viruses are occasionally transmitted from one animal species to another, their host range tends to be restricted. Currently circulating human influenza A viruses are thought to have originated from avian viruses, yet none of these strains replicate in duck intestine, a major site of avian virus replication. Although the hemagglutinin (HA) and neuraminidase (NA) genes are known to restrict human virus replication in ducks, the contribution of the other viral genes remains unknown. To determine the genetic basis for host range restriction of the replication of human influenza A virus in duck intestine, we first established a reverse genetics system for generating A/Memphis/8/88 (H3N2) (Mem/88) and A/mallard/New York/6750/78 (H2N2) (Mal/NY) viruses from cloned cDNAs. Using this system, we then attempted to generate reassortant viruses with various combinations of candidate genes. We were able to generate single-gene reassortants, which possessed PB2, NP, M, or NS from Mem/88, with the remainder from Mal/NY. Despite unsuccessful production of other single-gene reassortants from Mem/88, we did generate reassortant viruses comprised of both the HA and the NA, all three polymerase genes (PB2, PB1, and PA), or all polymerase genes and the NP gene from Mem/88, with the rest derived from Mal/NY. Among these reassortants, only those possessing the M or NS gene from Mem/88 and the remainder from Mal/NY replicated in duck intestine. These results indicate incompatibility between the genes of avian and human influenza A viruses and indicate that all genes other than the M and NS restrict replication of human influenza A virus in duck intestine.  相似文献   

8.
猪型(H1N1)流感病毒血凝素和神经氨酸酶基因来源的研究   总被引:1,自引:2,他引:1  
目的 研究2002年我国内地从猪群中分离的猪型(H1N1)毒株HA和NA基因来源。及其使猪致病的原因。方法 用PCR扩增目的基因,用P^GEM-T Easy Vector,4℃过夜连接,重组质粒转入DH-10B细菌,筛选阳性菌落,酶切鉴定,送六合通公司自动测序,并作进化树分析。结果 3株猪型(H1N1)病毒的HA和NA基因属猪型(H1N1)流感病毒,而不同于其他禽或人的H1N1亚型流感病毒。2002年猪型毒株由1991年猪型毒株演变而来。近来我国内地猪群中猪型毒株活动增强,其对猪能致病是由于病毒粒HA和NA蛋白抗原性发生变异所造成。结论 3株猪型病毒的HA和NA基因来源于猪型(H1N1)毒株。近来猪型毒株对猪具有致病性和活动增强是由于其HA和NA蛋白分子上氨基酸序列发生替换所造成。  相似文献   

9.
During the winter 2009 outbreak in the Moscow Region, H3N2 influenza viruses were isolated from the nasopharyngeal washes of patients via their propagation in the human intestinal (Caco-2) and bronchial (Calu-3) epithelial cell cultures maintaining the proteolytic cleavage of HA0--> HA1+HA2 and multicycle virus replication. Analysis of the nucleotide sequences of virus RNA indicated that the 2009 viruses differed from those isolated in 2003 in 14 and 21 amino acids of the neuraminidase (NA) and hemagglutinin (HA) genes, respectively. The NA gene was 1762 nucleotides long whereas the 2003 isolates had a deletion of 66 nucleotides (22 amino acids) in the stalk region (short-stalk NA genotype) of viruses. The NA gene of the 2009 and 2003 isolates possessed an amino acid profile characterized for oseltamivir- and zanamivir-susceptible viral strains. The HA gene of the 2009 viruses contained an N-glycosylation site at Asn181 (an analog to Asn 65 numbering from a signal peptide), which correlated with the long-stalk NA gene. The 2009 viruses had Phe209 in the HA receptor binding center whereas the 2003 isolates possessed Ser209, which correlated with their differences in HA activity. Phylogenetic analysis showed that the NA genes of the 2003 and 2009 Moscow strains were located in the same genetic clade with a single common precursor while their HA genes were diverged in more genetic distance and located in different clades. Viral distribution in the phylogenetic tree indicated that the Moscow strains isolated in 2009 were not direct ancestors of those isolated in 2003; and during the period of 2003 to 2009, H3N2 influenza virus with a short-stalk NA genotype was substituted for a migrant virus possessing a long-stalk NA gene.  相似文献   

10.
Quan FS  Kim MC  Lee BJ  Song JM  Compans RW  Kang SM 《Virology》2012,430(2):127-135
Influenza virus like particles (VLPs) containing hemagglutinin were previously demonstrated to induce protection against the homologous strains. However, little information is available on the protective role of neuraminidase (NA), the second major glycoprotein. In this study, we developed VLPs (NA VLPs) containing NA and M1 derived from A/PR/8/34 (H1N1) influenza virus, and investigated their ability to induce protective immunity. Intranasal immunization with NA VLPs induced serum antibody responses to H1N1 and H3N2 influenza A viruses as well as significant neuraminidase inhibition activity. Importantly, mice immunized with NA VLPs were 100% protected against lethal infection by the homologous A/PR/8/34 (H1N1) as well as heterosubtypic A/Philippines/82 (H3N2) virus, although body weight loss was observed after lethal challenge with heterosubtypic H3N2 virus. The present study therefore provides evidence that influenza VLPs containing M1 and NA are capable of inducing immunity to homologous as well as antigenically distinct influenza A virus strains.  相似文献   

11.
Influenza A(H1N1)pdm09 pandemic virus causing the 2009 global outbreak moved into the post-pandemic period, but its variants continued to be the prevailing subtype in the 2015-2016 influenza season in Europe and Asia. To determine the molecular characteristics of influenza A(H1N1)pdm09 isolates circulating during the 2015-2016 season in Turkey, we identified mutations in the hemagglutinin (HA) genes and investigated the presence of H275Y alteration in the neuraminidase genes in the randomly selected isolates. The comparison of the HA nucleotide sequences revealed a very high homology (>99.5%) among the studied influenza A(H1N1)pdm09 isolates, while a relatively low homology (96.6%-97.2%), was observed between Turkish isolates and the A/California/07/2009 vaccine virus. Overall 14 common mutations were detected in HA sequences of all 2015-2016 influenza A(H1N1)pdm09 isolates with respect to the A/California/07/2009 virus, four of which located in three different antigenic sites. Eleven rare mutations in 12 HA sequences were also detected. Phylogenetic analysis revealed that all characterized influenza A(H1N1)pdm09 isolates formed a single genetic cluster, belonging to the genetic subclade 6B.1, defined by HA amino acid substitutions S84N, S162N, and I216T. Furthermore, all isolates showed an oseltamivir-sensitive genotype, suggesting that Tamiflu (Oseltamivir) could still be the drug of choice in Turkey.  相似文献   

12.
This study was performed to develop real-time PCR (qPCR) for detection of human seasonal and avian influenza viruses in duplex format. First duplex qPCR detects haemagglutinin (HA) gene of influenza virus A(H1N1)pdm09 and HA gene of influenza virus A(H3N2), the second reaction detects neuraminidase (NA) gene of influenza virus A(H3N2) and NA gene of influenza virus A(H1N1)pdm09 and A(H5N1), and the third reaction detects HA gene of influenza A(H5N1) and nonstructural protein gene of influenza B virus. Primers and probes were designed using multiple alignments of target gene sequences of different reference strains. Assays were optimised for identical thermocycling conditions. Their specificity was confirmed by conventional PCR and monoplex qPCR with nucleic acids isolated from different influenza viruses and other respiratory pathogens. Plasmid constructs with a fragment of specific gene were used to assess sensitivity of the assay. The limit of detection ranged from 27 to 96 cDNA copies/reaction. Clinical specimens (n = 107) have been tested using new assays, immunofluorescence and monoplex qRT-PCR. It has been shown that developed assays have been capable of rapid and accurate simultaneous detection and differentiation of influenza viruses. They are more sensitive than immunofluorescence and at least as sensitive as monoplex qRT-PCR.  相似文献   

13.
Substantial increase in amantadine-resistant influenza A (H3N2) was reported in Asia and North America in 2005. In this study the frequency and genetic characteristics of amantadine-resistant influenza A, circulated in Japan in 2005-2006 season, were investigated. Isolates were tested by amantadine susceptibility test (TCID(50)/0.2 ml method), and sequencing of the M2 gene to identify mutations that confer resistance. Additionally, the hemagglutinin (HA) and neuraminidase (NA) genes of the viruses were examined. In total, 415 influenza A isolates from six prefectures were screened, and 231 (65.3%) of 354 influenza A (H3N2) were amantadine-resistant, with a serine to asparagine (S31N) change in the M2 gene. However, none of 61 A (H1N1) isolates were resistant. In addition, genetic analyses of the HA gene showed all amantadine-resistant viruses clustered in one (named clade N), possessing specific double mutations at 193, serine to phenylalanine (S193F), and at 225, asparatic acid to asparagine (D225N), and sensitive viruses belonged to another group (clade S). The clinical presentations at the clinical visit did not differ between patients shedding clade N virus and those shedding clade S virus. None of the patients had received previous treatment with amantadine. The results indicate an unusually high prevalence and wide circulation of the amantadine-resistance influenza A (H3N2) in Japan in the 2005-2006 season. These strains had the characteristic double mutations in the HA, in addition to the M2 mutation responsive for resistance. Antiviral resistance monitoring should be intensified and maintained for rapid feedback into treatment strategies, and selection of alternative therapeutic agents.  相似文献   

14.
In our previous studies influenza A virus reassortants having neuraminidase (NA) gene of A/USSR/90/77 (H1N1) strain and hemagglutinin (HA) genes of H3, H4 and H13 subtypes were shown to produce a low virus yield and to exhibit a strong tendency to virion aggregation. More detailed studies with the use of a H3N1 reassortant and its high-yield non-aggregating variants revealed that NA of A/USSR/90/77 strain is inefficient in the removal of the terminal sialic acid residues from the virion components, and that the inefficiency of NA may be compensated by mutations in HA gene leading to a decrease of the receptor-binding affinity (Kaverin, N.V. , Gambaryan, A.S., Bovin, N.V., Rudneva, I.A., Shilov, A.A., Khodova, O.M., Varich, N.L., Sinitsin, B.V., Makarova, N.L., Kaverin, N.V., 1998. Postreassortment changes in influenza virus hemagglutinin restoring HA-NA functional match, Virology 244, 315-321). The present report describes studies performed with the use of H2N1 and H4N1 reassortants having HA genes of A/Pintail/Primorie/695/76 (H2N3) and A/Duck/Czechoslovakia/56 (H4N6) strains respectively and NA gene of A/USSR/90/77 strain. The low-yield reassortants and their high-yield non-aggregating variants were studied in both direct and competitive binding assays with sialic acid-containing substrates. The non-aggregating variants were shown to have a decreased affinity as compared to the initial reassortants toward high-molecular-weight sialic acid-containing substrates. The sequencing of HA genes revealed that all non-aggregating variants of H2N1 and H4N1 reassortants had amino acid substitutions increasing the negative charge of the HA molecule in the vicinity of the receptor-binding pocket. The results suggest that the influenza virus reassortants containing low-functional NA undergo similar postreassortment changes irrespective of the HA subtype: their receptor-binding activity decreased due to negatively charged amino acid substitutions in the vicinity of the receptor-binding pocket.  相似文献   

15.
Cloning in chick embryos and MDCK cell culture of influenza A/USSR/13/81 (H1N1-N3) virus isolated during virological examinations of autopsy materials from a child who had died from acute respiratory virus infection yielded three subpopulations of clones differing in antigenic, biological, physico-chemical properties and glycoprotein structures. One subpopulation contained hemagglutinin (HA) similar to that of the A/PR/8/34 strain and neuraminidase (NA) N3, the other HA similar to that of A/WS/33 and NA N1, and the third HA of the isolate proper and NA of the both serosubtypes mentioned.  相似文献   

16.
Molecular mechanisms of influenza virus resistance to neuraminidase inhibitors   总被引:15,自引:0,他引:15  
Gubareva LV 《Virus research》2004,103(1-2):199-203
A wide use of inhibitors of influenza virus neuraminidase (NAIs) to control influenza in humans demands a better understanding of the mechanisms involved in the resistance emergence. In vitro studies demonstrate that both neuraminidase (NA) and hemagglutinin (HA) influence virus susceptibility to NAIs. Drug resistance conferred due to changes in the NA could be monitored in the NA inhibition assays. Zanamivir-selected viruses acquired the NA substitutions at residues 119 and 292; oseltamivir-selected--at 274 and 292; peramivir-selected--at 292; and A-315675-selected--at 119. The HA binding efficiency and therefore susceptibility to NAIs are affected by the amino acids forming the HA receptor-binding site, the location and number of oligosaccharide chains, and structure of the neuraminic acid-containing cellular receptors. The lack of suitable cell culture-based assays hampers the assessment of virus susceptibility in humans. Emergence of the viruses with the NAI-induced substitutions in the NA is uncommon in drug-treated humans, however a compromised state of the immune system promotes emergence of drug resistance. In vivo, the zanamivir-selected mutant contained a substitution at 152 (B/NA); the oseltamivir-selected mutants-at residues 119 (A/N2), 198 (B/NA), 274 (A/N1), and 292 (A/N2). Substitutions in the NA were often accompanied by impairment of virus infectivity and virulence in animal models. Because of complexity of mechanisms of virus resistance, further analysis of the viruses recovered from the drug-treated humans is warranted.  相似文献   

17.
Characterization of a new avian-like influenza A virus from horses in China.   总被引:20,自引:0,他引:20  
Y Guo  M Wang  Y Kawaoka  O Gorman  T Ito  T Saito  R G Webster 《Virology》1992,188(1):245-255
In March 1989 a severe outbreak of respiratory disease occurred in horses in the Jilin and Heilongjiang provinces of Northeast China that caused up to 20% mortality in some herds. An influenza virus of the H3N8 subtype was isolated from the infected animals and was antigenically and molecularly distinguishable from the equine 2 (H3N8) viruses currently circulating in the world. The reference strain A/Equine/Jilin/1/89 (H3N8) was most closely related to avian H3N8 influenza viruses. Sequence comparisons of the entire hemagglutinin (HA), nucleoprotein (NP), neuraminidase (NA), matrix (M), and NS genes along with partial sequences of the three polymerase (PB1, PB2, PA) genes suggest that six of the eight gene segments (PA, HA, NP, NA, M, NS) are closely related to avian influenza viruses. Since direct sequence analysis can only provide a crude measure of relationship, phylogenetic analysis was done on the sequence information. Phylogenetic analyses of the entire HA, NP, M, and NS genes and of partial sequences of PB1, PB2, and PA indicated that these genes are of recent avian origin. The NP gene segment is closely related to the gene segment found in the newly described H14 subtype isolated from ducks in the USSR. The A/Equine/Jilin/1/89 (H3N8) influenza virus failed to replicate in ducks, but did replicate and cause disease in mice on initial inoculation and on subsequent passaging caused 100% mortality. In ferrets, the virus caused severe influenza symptoms. A second outbreak of influenza in horses in Northeast China occurred in April 1990 in the Heilongjiang province with 48% morbidity and no mortality. The viruses isolated from this outbreak were antigenically indistinguishable from those in the 1989 outbreak and it is probable that the reduced mortality was due to the immune status of of the horses in the region. No influenza was detected in horses in Northern China in the spring, summer, or fall of 1991 and no influenza has been detected in horses in adjacent areas. Our analysis suggests that this new equine influenza virus in horses in Northeast China is the latest influenza virus in mammals to emerge from the avian gene pool in nature and that it may have spread to horses without reassortment. The appearance of this new equine virus in China emphasizes the potential for whole avian influenza viruses to successfully enter mammalian hosts and serves as a model and a warning for the appearance of new pandemic influenza viruses in humans.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
Cheng X  Zengel JR  Xu Q  Jin H 《Virology》2012,432(1):91-98
The hemagglutinin (HA) genes of the influenza A H3N2 subtype viruses isolated from 1968 to 2010 have evolved substantially but their neuraminidase (NA) genes have been relatively less divergent. The H3N2 viruses isolated since 1995 were found to replicate in the lower respiratory tract of ferrets less efficiently than the earlier isolates. To evaluate whether the HA or/and NA or the internal protein gene segments of the H3N2 virus affected viral replication in the respiratory tract of ferrets, recombinant A/California/07/2004 (CA04) (H3N2) virus and its reassortants that contained the same CA04 internal protein gene segments and the HA and/or NA of A/Udorn/309/1972 (UD72) or A/Wuhan/359/1995 (WH95) H3N2 viruses were generated and evaluated for their replication in the respiratory tract of ferrets. All the reassortant viruses replicated efficiently in the upper respiratory tract of ferrets, but their replication in the lower respiratory tract of ferrets varied. In contrast to the UD72-HA reassortant virus that replicated efficiently in the lungs of ferrets, the virus with the WH95-HA or the CA04-HA either replicated modestly or did not replicate in the lungs of ferrets. The reassortants with the WH95-HA and UD72-NA or CA04-NA had the tendency to lose a N-linked glycosylation site at residue 246 in the HA, resulting in viral lung titer of 100-fold higher than the virus with the HA and NA from WH95. The UD72-NA had the highest neuraminidase activity and increased viral replication by up to 100-fold in tissue culture cells during early infection. Thus, our data indicate that both the HA and NA glycoproteins play important roles in viral replication of the H3N2 influenza virus in ferrets.  相似文献   

20.
目的 确认引起一起流感暴发疫情的病原,阐明该病原的血凝素基因(HA)和神经氨酸酶基因(NA)的特性.方法 疫情中最早出现流感样症状病例的咽拭子样本用real-time RT-PCR方法检测甲型H1N1流感病毒核酸,采用鸡胚分离法进行病毒培养,选取两病毒分离株进行HA和NA核苷酸序列测定,并进行基因特性分析.结果 此次流感疫情是由甲型H1N1流感病毒引起的,其HA和NA基因均与参比毒株的HA和NA基因高度同源,NA基因没有发生H274Y突变.结论 本研究的甲型H1N1流感病毒分离株为疫苗亲本株和中国分离株的类似株,对神经氨酸酶抑制剂类药物(如达菲)敏感.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号