首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of the rat barrel field cortex was investigated with an antibody to the axonal membrane-specific phosphoprotein GAP-43 in order to examine the developmental pattern of afferent projections, and with cytochrome oxidase histochemistry and Nissl stains to reveal the morphogenesis of cortical barrels. On the first two days after birth, GAP-43 immunostaining in the cortical plate was light and diffuse, then became intense in the presumptive layer IV of the parietal cortex on PND3 (day of birth = PND0). Immunoreactive densities were visible as small, focal patches within the centers of prospective barrels. These densities increased in size and intensity over the next few days and then diminished abruptly. On PND7, the distribution of GAP-43 was coextensive with barrels, as defined by cytochrome oxidase histochemistry and Nissl staining. GAP-43 virtually disappeared from the barrels after PND7. From the second postnatal week, GAP-43 immunostaining was evident in the septa between barrels and in the dysgranular regions of SI cortex. This pattern of GAP-43 distribution was complementary to the pattern of cytochrome oxidase activity, and persisted into maturity. In an attempt to identify possible source(s) of GAP-43 positive afferents in the developing barrels, we examined the effects of altering the sensory periphery on the distribution of GAP-43 immunostaining in the cortex. Rat pups had row C whiskers cauterized on PND0 and were sacrificed on PND3 or PND5. Whereas immunopositive densities corresponding to intact whiskers developed in a normal, punctate pattern, cortical representation of the lesioned whiskers formed a continuous band of labeling that was evident as early as PND3. We argue that the disjunctive expression of GAP-43 in the barrel field reflects the pattern of distribution of afferents (most likely from the ventro-basal thalamic nucleus) to the barrel field cortex, and that this pattern may be instructive in the formation of barrels as cytoarchitectonic units. The rapid alteration in patterns of immunostaining following whisker lesions lends further support to the conclusion that the "barrel template" is conveyed to the neocortex by incoming afferents. The possible significance of the transient expression of GAP-43 in the maturing barrel field is discussed.  相似文献   

2.
Previous studies in rat, showing a transient pattern of expression of the α7 nicotinic acetylcholine receptor in the ventrobasal thalamus and barrel cortex during the first 2 postnatal weeks, suggest that these receptors may play a role in development of the thalamocortical system. In the present study, in situ hybridization and radiolabeled ligand binding were employed to examine the spatiotemporal distribution of α7 mRNA and α-bungarotoxin binding sites in the thalamocortical pathway of mouse during early postnatal development. As in the rat, high levels Of α7 mRNA and α-bungarotoxin binding sites are present in the barrel cortex of mouse during the first postnatal week. Both α7 mRNA and its receptor protein are observed in all cortical laminae, with the highest levels seen in the compact cortical plate, layer IV, and layer VI. When viewed in a tangential plane, α7 mRNA and α-bungarotoxin binding sites delineate a whisker-related barrel pattern in layer IV by P3–5. Quantitative analysis reveals a dramatic decrease in the levels of expression of α7 mRNA and α-bungarotoxin binding sites in the cortex by the end of the second postnatal week. Unlike in the rat, only low levels of α7 mRNA or α-bungarotoxin binding sites are present in the ventrobasal complex of the mouse thalamus. The broad similarities between the thulamocurticul development of rat and mouse taken together with the present results suggest that α7 receptors located on cortical neurons, rather than on thalamic neurons, play a role in mediating aspects of thalamocortical development. © 1995 Wiley-Liss, Inc.  相似文献   

3.
J L Fuchs 《Brain research》1989,501(2):223-234
The postnatal ontogeny of [125I]alpha-bungarotoxin (alpha-Btx) binding distribution in rat neocortex was described and quantified using autoradiography of in vitro labeled brain sections. During the first two weeks, distinctive transitory radial and laminar patterns emerged. Dense columnar bands of alpha-Btx binding extended through the depth of primary sensory cortex, including somatosensory, visual and auditory areas. An association of alpha-Btx binding with thalamic input zones was further demonstrated within developing somatosensory cortex, where discrete radial bands appeared over the whisker barrels around the time that ingrowing thalamocortical fibers segregate as they selectively innervate the barrels. The early laminar distribution of alpha-Btx binding also resembled that of developing thalamocortical afferents. From P12 to P20, alpha-Btx radial distinctions faded and the laminar pattern changed further to achieve the adult distribution. The spatiotemporal ontogeny of alpha-Btx binding suggests a role for alpha-Btx binding sites in the development of cortical connectivity.  相似文献   

4.
In the murine somatosensory pathway, the metabolic whisker map in barrel cortex derived with the autoradiographic deoxyglucose method is spatially in register with the morphological whisker map represented by the barrels. The barrel cortex of adult mice, in which we had removed three whisker follicles from the middle row of whiskers shortly after birth, contained a disorganized zone surrounded by enlarged barrels with partially disrupted borders. With the fully quantitative autoradiographic deoxyglucose method, we investigated in barrel cortex of such mice the magnitude and the pattern of metabolic responses evoked by the deflection of whiskers. Most remarkably, the simultaneous deflection of six whiskers neighbouring the lesion activated not only the territory of the corresponding barrels, but also the unspecifiable area intercalated between the clearly identified barrels. This metabolic whisker map, unpredictable from the morphological 'barrel' map, may reflect a functional compensation for the deficit in input.  相似文献   

5.
With various patterns of whisker deafferentation, C3 whisker stimulation produced divergently shaped metabolic barrel representations in layer IV of the primary somatosensory cortex. Whisker deafferentation results in functional and structural reorganization of the barrels in the primary somatosensory cortex. The present study examines the alteration of the metabolic barrel representations in layer IV with various configurations of selective whisker deafferentation in neonates, using [14C]2-deoxyglucose autoradiography. The deafferentation was produced by unilateral ablation of whiskers, leaving certain follicles intact. Configurations of intact follicles included: (I) row C follicles; (II) B3, C3, and D3 follicles; (III) B3, B4, C3, and C4 follicles; (IV) C2, C3, D2, and D3 follicles. The metabolic C3 barrel representations in layer IV after the deafferentations were found to have expanded only toward the barrel sites in which the corresponding whiskers were ablated, with no expansion toward the neighboring barrels. Expansion toward row D was significantly more pronounced than expansion toward row B, and expansion toward the C2 barrel was significantly more pronounced than expansion toward the C4 barrel. From these results, it can be inferred that asymmetric intrinsic structural connections are reflected in the functional metabolic barrel representation under the condition of neural plasticity in the barrel cortex following whisker deafferentation.  相似文献   

6.
To further investigate the role of the transiently expressed serotonin (5-HT) transporter (5-HTT) in the development of thalamic fibers projecting to cortical barrels and the potential developmental changes in neuronal circuitry caused by a selective serotonin reuptake inhibitor (SSRI), paroxetine (5 mg/kg, twice daily, s.c.) or saline was administered to rat pups from postnatal day 0 (P0) to P8. Pups were perfused on P8 for 5-HT immunostaining (-im) to confirm the 5-HT uptake blockade, and 5-HTT-im and phospholipase C-beta1 (PLC-beta1)-im to label the thalamic afferents to barrels and barrel cells respectively. Paroxetine treatment completely blocked 5-HT uptake into the thalamocortical fibers as indicated by the negative 5-HT-im in cortical barrel areas. Organization of thalamic afferents to barrels, indicated by 5-HTT-im or PLC-beta1, was altered in paroxetine-treated pups in the following manners: (1) segregation of thalamocortical fibers was partially disrupted and thalamocortical fibers corresponding to anterior snouts and row A mystacial vibrissae were fused; (2) sizes of the unfused thalamocortical fiber patches related to the long caudal vibrissae in rows B, C, D and E were significantly decreased without changes in the brain weights and cortical areas representing these vibrissae; and (3) thalamocortical fibers corresponding to C4 and D4 vibrissae tended to be closer to each other along the arc while the relative positions of thalamocortical fibers related to the rest of the vibrissae were normal. Our study demonstrated that 5-HTT plays an important role in the refinement, but not the formation, of barrel-like clusters of thalamocortical fibers and that the development of neural circuitry in rodent somatosensory cortex was affected by exposure to a SSRI during thalamocortical synaptic formation.  相似文献   

7.
One hundred days after unilateral C-row nerve transection in the adult mouse whiskerpad, the caudal follicles of row C are reinnervated with ≈ 80 % of the original number of axons [Corthésy, M.-E., Bronchti, G. & Welker, E. (1999) Eur. J. Neurosci., 11, 2835–2846]. To what extent is this reinnervation functional, and how does it interact with the enlargement of the functional representation of neighbouring rows subsequent to the denervation? Using the autoradiographic deoxyglucose method, we studied the whisker representation at the level of the barrel cortex 100 days post lesionem. We stimulated whiskers belonging to the denervated row C, the neighbouring rows B and D, or to all five rows A–E. The deoxyglucose uptake was measured in tangential sections through layer IV. The results indicate that, 100 days post lesionem, whiskers of row C reactivate their cortical barrels. However, (i) the magnitude of this cortical response was reduced; (ii) row C barrels were equivalently activated by the stimulation of the neighbouring rows; and (iii) when all whiskers were stimulated, we observed a significantly reduced deoxyglucose uptake over the representation of nonlesioned whiskers of rows D and E. Therefore, 100 days after the peripheral nerve lesion the reinnervation of the whiskerpad had not restored a normal pattern of activation at the level of the barrel cortex. We propose that this is due to a modified interaction between the representations of the various rows of follicles at the cortical level that does not return to normal.  相似文献   

8.
Several lines of evidence implicate a crucial role for thalamic afferents from the ventroposterior nucleus (VP) in the development of barrels and their characteristic pattern in the primary somatosensory cortex (Sl) of rodents. We sought to determine the stage in development when VP thalamocortical afferents are first distributed in a periphery-related pattern and the sequence of events that culminate in a mature pattern. Using acetylcholinesterase (AChE) histochemistry, an early marker for VP thalamocortical afferents, and the anterograde axon tracer DiI, we show that VP thalamocortical afferents become distributed into a peripheryrelated pattern earlier than was previously reported, including their parcellation into a barrel-related pattern that mirrors the distribution of sensory hairs on the face. The earliest periphery-related patterning observed is transiently present in the deep cortical layers prior to the emergence of layer 4, the layer in which barrels later develop. AChE histochemistry reveals a clear sequence of maturation of the barrel pattern in the distribution of VP afferents: An initially patternless distribution of AChE-reactive afferents is followed by their distribution in a nascent trigeminal representation, from which rows subsequently emerge; barrel-related clusters of afferents then emerge from the rows. This process begins before birth, and the transition from row-related to barrel-related distributions of VP afferents is evident during the first postnatal day (P0). This demonstration of a periphery-related pattern in developing rat S1 precedes by about 2 days that revealed by any other marker reported to delineate barrels. These findings confirm that VP thalamocortical afferents are the first barrel component to have a periphery-related pattern and support the hypothesis that thalamocortical afferents provide to immature S1 the patterning information that initiates the formation of barrels and their characteristic array. Furthermore because these findings show an earlier onset for barrel formation than was previously realized, they necessitate a reevaluation of conclusions drawn from experiments examining, developmental plasticity in barrel patterning. © 1994 Wiley-Liss, Inc.  相似文献   

9.
In primary sensory neocortical areas of mammals, the distribution of sensory receptors is mapped with topographic precision and amplification in proportion to the peripheral receptor density. The visual, somatosensory and auditory cortical maps are established during a critical period in development. Throughout this window in time, the developing cortical maps are vulnerable to deleterious effects of sense organ damage or sensory deprivation. The rodent barrel cortex offers an invaluable model system with which to investigate the mechanisms underlying the formation of topographic maps and their plasticity during development. Five rows of mystacial vibrissa (whisker) follicles on the snout and an array of sinus hairs are represented by layer IV neural modules ('barrels') and thalamocortical axon terminals in the primary somatosensory cortex. Perinatal damage to the whiskers or the sensory nerve innervating them irreversibly alters the structural organization of the barrels. Earlier studies emphasized the role of the sensory periphery in dictating whisker-specific brain maps and patterns. Recent advances in molecular genetics and analyses of genetically altered mice allow new insights into neural pattern formation in the neocortex and the mechanisms underlying critical period plasticity. Here, we review the development and patterning of the barrel cortex and the critical period plasticity.  相似文献   

10.
It has been known for a long time that subcortical input drives the specification of cortical areas. Molecular signals mediating this instructive effect from the periphery are poorly understood. In foetal or neonatal rats, ablation of whisker follicles, transection of the infraorbital nerve, inhibition of axonal transport, but not impulse activity blockade, prevent formation of barrels in the primary somatosensory cortex (S1). These findings suggest that a chemical signal, possibly arising from the skin or the follicle, may be responsible for somatotopic pattern formation in S1. Neurotrophins promote survival and differentiation of primary sensory neurons , and are expressed in the whisker pad during development. Neonatal rats received gelfoam impregnated with NGF, BDNF or NT‐3 under the whisker pad following surgical denervation of whisker rows D and E on P0. Barrel formation in S1 was assessed on P7 by acetylcholinesterase histochemistry and 5‐HT‐immunohistochemistry. BDNF and NT‐3, but not NGF, promoted development of the cortical barrels corresponding to denervated whiskers. Furthermore, BDNF and NT‐3 prevented the lesion‐induced expansion of row C barrels, while NGF appeared to promote row C expansion. Our results suggest that BDNF and NT‐3 arising from the whisker pad are involved in the formation and/or maintenance of the barrel pattern in S1. These findings are potentially relevant for the prevention of sensory disturbances possibly due to reorganization of central sensory circuits after peripheral nerve lesions in humans.  相似文献   

11.
Electrolytic lesions of the follicles of a set of mystacial vibrissae, and their innervation, of the mouse placed during the early postnatal period result in a modification in appearance of the corresponding and of adjacent barrels in the somatosensory cortex of the adult animal. These changes can be evoked during the first 6 days of postnatal life — the so-called critical period. The pattern of these modifications varies with the age of the animal at which the lesion was placed. In order to evaluate the contribution of the monoaminergic cortical input to this type of plasticity, the noradrenergic and/or serotonergic afferents to the cerebral cortex of newborn mice were destroyed by systemic administration of various selective neurotoxic drugs (6-hydroxydopamine, 5,7-dihydroxytryptamine, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine). The animals were then subjected, on postnatal day 3 (P3; PO = day of birth), to a lesion of the follicles of the large, caudal mystacial vibrissae of row C. Control animals were injected with vehicle solution only but had the same follicles lesioned. Compared with animals with intact monoaminergic afferents, those treated with neurotoxins showed a different changed barrel pattern, i.e. one that corresponded to a pattern normally obtained after a lesion placed at an earlier stage of development, i.e. at P2 or P1. Thus, monoaminergic depletion of the cortex results in a retardation of the maturation of the parietal cortex as defined by its plastic response to peripheral nerve injury. Interestingly, a peripheral lesion at P4 yields barrel patterns in monoamine deprived mice similar to those in controls, as if monoamines at that stage play no longer a role in this form of brain plasticity.  相似文献   

12.
In the rodent central nervous system, the region of the cortex that responds to facial whisker stimulation is anatomically segregated into discrete regions called barrels. Each barrel is made up of layer IV cortical neurons that receive input from a separate whisker via innervation from the thalamus. It has been shown that neurotrophins play important roles in the development and plasticity of thalamic axon innervation into the visual and retrosplenial cortex. We now extend those findings to the investigation of the role of neurotrophin signaling in barrel cortex formation. We show that the neurotrophin receptor TrkB is expressed in the thalamus and cortex during the time of cortical innervation. The two TrkB ligands, brain derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4), are expressed in the cortex at this time. Mice lacking TrkB demonstrate a developmental delay in the segregation of thalamic axons within barrels. In TrkB mutants, thalamic axons are abnormally uniform within layer IV of the cortex at postnatal day 4 compared to their control littermates, but show clear segregation into barrels 2 days later. This phenotype is recapitulated in BDNF mutant mice, but not in NT-4 mutant mice. These results demonstrate that BDNF is the sole TrkB ligand responsible for this phenotype. Analysis of conditional knockout mice that lack TrkB within the cortex, and not the thalamus, does not show a delay in thalamic axon segregation. These results indicate that TrkB expression in thalamic axons is important for the appropriate timing of barrel cortex development.  相似文献   

13.
We investigated the influence of prolonged administration of the 5-HT1A receptor agonists (8-OH-DPAT or buspirone) or its antagonist, NAN-190 to rat pups on development of their cortical barrel field. Pups were injected daily with the drugs starting from the day of birth till either the 5th postnatal day or the 22-25th postnatal day and were perfused one day later. Square areas of their whisker barrel fields were measured on tangential sections of the cortex stained for cytochrome oxidase. Injections of 8-OH-DPAT or buspirone till the 5th postnatal day did not change any of the investigated parameters, while injections of NAN-190 resulted in 15% reduction of the pups' body and brain weight and proportional reduction of the square area of their barrel fields. Groups treated till the 22-25th postnatal day showed similar results. Some of these pups were injected with [C(14)]2-deoxyglucose to investigate the strength of responses of their cortical barrels to stimulation of corresponding vibrissae. The cortical area labeled with 2-deoxyglucose after stimulation of vibrissae of the row C was narrower in the NAN-190 injected rats. This functional deficit was more pronounced than the anatomical one, which resembled the effects of neonatal serotonin depletion (Neuroreport, 1997). Therefore, the results of injecting NAN-190 to the rat pups point to a deficit of trophic developmental influences of serotonin, adding new arguments for the hypothesis of a trophic role of 5-HT1A receptors in the brain development.  相似文献   

14.
15.
Distinctive subsets of glutamatergic neurons in cerebral cortex sequester the transition metal zinc within the synaptic vesicles of their axon terminals. In the present study we used histochemical localization of synaptic zinc to investigate normal postnatal development and experience-dependent plasticity of zinc-containing circuits in somatosensory barrel cortex of rats. First, we found that zinc-containing cortical circuits are dynamically reorganized between postnatal day (P) 0 and P28. Whereas most cortical laminae exhibited idiosyncratic increases in zinc histochemical staining with advancing age, lamina IV barrels were darkly reactive early in life and then lost much of their complement of synaptic zinc during postnatal weeks 2-4. Second, we established that sensory experience plays a major role in sculpting the zinc-containing innervation of cortical barrels. Trimming a particular facial whisker arrested the normal postnatal decline in synaptic zinc in the corresponding, deprived barrel. This resulted in more intense zinc staining in deprived barrels compared with adjacent, nondeprived barrels. Notably, the influence of experience on development of zinc circuits was most robust during a critical period extending from about P14, when an effect of whisker trimming first could be observed, through P28, after which time chronic deprivation no longer resulted in heightened levels of synaptic zinc in lamina IV. These findings indicate that sensory input can have a marked influence on development of cortical circuits, including those within lamina IV, throughout the first postnatal month.  相似文献   

16.
We have previously shown that the serotonin (5-HT) and its thalamocortical afferents are compromised by prenatal alcohol exposure (PAE). The development of the sensory cortical barrels is regulated by 5-HT-rich thalamocortical afferents. Therefore, it is hypothesized that PAE will deleteriously affect the postnatal development of the cortical barrel formations. On embryonic day (E)7, C57BL/6 mice were grouped into: Alcohol (Alc), Pair-fed (PF), or Chow, and maintained on diet until E18. On postnatal day 7, cortices were stained with 5-HT for thalamocortical fibers, and a NeuN for identification of mature neurons. The area of the posterior medial barrel subfield (PMBSF), was measured as well as the number of NeuN+ neurons within the barrel patches. Though brain weight and brain volume were similar among the three groups, a significant reduction was seen in total area of the PMBSF, and in the average individual barrel area in the Alc group as compared to Chow. Furthermore, the volumes of the B, but not C row barrels were significantly reduced. Barrels were found missing in layer IV, specifically in the posterior aspects of the A, B, and straddler row in the Alc group. Cell counts demonstrated a nearly 50% reduction in NeuN+ neuron number in both rows. This reduction in size of the PMBSF and fewer neurons within these sensory barreloids may underlie a change in the development of the discriminatory sensitivity of the whiskers and serves as an excellent model for the study of a compromised sensory modality following PAE.  相似文献   

17.
We used immunohistochemistry to examine possible molecular interactions between the subplate and growing thalamocortical axons in rat fetuses. In the cortical anlage of embryonic day 16 (E16), the subplate first appeared below the cortical plate. Among chondroitin sulfate proteoglycans, phosphacan was uniformly distributed throughout the cortical wall, whereas neurocan was localized only in the subplate at E16. Neural cell adhesion molecules, NCAM-H, TAG-1, and L1, were detected in the cortical anlage. Both cortical neurons and growing axons were diffusely immunopositive for NCAM-H, and TAG-1 immunoreactivity was found on immature neurons and cortical efferent axons but not on thalamocortical axons. L1 immunoreactivity was specifically localized on the growing thalamocortical axons. When the locations of neurocan and L1 were compared in the developing cortex, L1-bearing axons were found to extend to neurocan-immunopositive regions; neurocan immunoreactivity was intense in the subplate at E16, when small numbers of L1-immunoreactive thalamocortical axons began to invade the cortex. At E17, many L1-positive axons were observed in the subplate that expressed neurocan specifically. Double immunostaining showed that L1-positive axons and neurocan immunoreactivity overlapped in the subplate at E17. After E18, neurocan expression gradually extended to the lower part of the cortical plate; it extended to the entire cortex by E21, 1 day before birth. By E21, L1-bearing axons had invaded the lower part of the cortical plate. The present study demonstrated that the neurocan expression precedes growth of L1-bearing thalamocortical afferent fibers. Because neurocan can bind to L1 molecule in vitro, these results suggest that neurocan and L1 play some important roles in pathfinding of the thalamocortical afferent fibers during rat corticogenesis. J. Comp. Neurol. 382:141-152, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
GAP-43 has been implicated in axonal pathfinding and sprouting, synaptic plasticity, and neurotransmitter release. However, its effect on cortical development in vivo is poorly understood. We have previously shown that GAP-43 knockout (-/-) mice fail to develop whisker-related barrels or an ordered whisker map in the cortex. Here we used cytochrome oxidase (CO) histochemistry to demonstrate that GAP-43 heterozygous (+/-) mice develop larger than normal barrels at postnatal day 7 (P7), despite normal body and brain weight. Using serotonin transporter (5HT-T) histochemistry to label thalamocortical afferents (TCAs), we found no obvious abnormalities in other somatosensory areas or primary visual cortex of GAP-43 (+/-) mice. However, TCA projections to (+/-) primary auditory cortex were not as clearly defined. To clarify the mechanism underlying the large-barrel phenotype, we used lipophilic (DiI) axon labeling. We found evidence for multiple pathfinding abnormalities among GAP-43 (+/-) TCAs. These axons show increased fasciculation within the internal capsule, as well as abnormal turning and branching in the subcortical white matter. These pathfinding errors most likely reflect failures of signal recognition and/or transduction by ingrowing TCAs. In addition, many DiI-labeled (+/-) TCAs exhibit widespread, sparsely branched terminal arbors in layer IV, reflecting the large-barrel phenotype. They also resemble those found in rat barrel cortex deprived of whisker inputs from birth, suggesting a failure of activity-dependent synaptogenesis and/or synaptic stabilization in (+/-) cortex. Our findings suggest that reduced GAP-43 expression can alter the fine-tuning of a cortical map through a combination of pathfinding and synaptic plasticity mechanisms.  相似文献   

19.
We have previously shown that a classical aversive conditioning paradigm involving stimulation of a row of facial vibrissae (whiskers) in the mouse produced expansion of the cortical representation of the activated vibrissae ("trained row"). This was demonstrated by labeling with 2-deoxyglucose (2DG) in layer IV of the barrel cortex. We have also shown that functional reorganization of the S1 cortex is accompanied by increases in the density of small GABAergic cells, and in GAD67 mRNA in the hollows of barrels representing the "trained row". The aim of this study was to determine whether GAD67-positive puncta (boutons) are affected by learning. Unbiased optical disector counting was applied to sections from the mouse barrel cortex that had been immunostained using a polyclonal antibody against GAD67. Quantification of the numerical density of GAD67-positive boutons was performed for four groups of mice: those that had been given aversive conditioning, pseudoconditioned mice with random application of the unconditioned stimulus, mice that had received only whisker stimulation, and naive animals. This study is the first to demonstrate that learning-dependent modification of mature somatosensory cortex is associated with a 50% increase in GAD67-positive boutons in the hollows of "trained" barrels compared with those of control barrels. Sensory learning seems to mobilize the activity of the inhibitory transmission system in the cortical region where plastic changes were previously detected by 2DG labeling.  相似文献   

20.
The thalamocortical slice is widely employed for in vitro studies of cortical circuits. This preparation was developed in order to preserve anatomical and functional connectivity between the ventrobasal thalamus and somatosensory (whisker/barrel) cortex of young mice, and thalamocortical slice experiments have contributed significantly to our understanding of the thalamocortical synapse. Cortical somatotopy within thalamocortical slices, however, has not been characterized, and this greatly limits their use in studies that require identification of cortical areas associated with particular regions of the sensory periphery. To address this shortcoming we used electrophysiological recording and neuroanatomical labeling techniques in rats to mark the position of functionally defined whisker barrels, in vivo. We subsequently processed the brains in a plane appropriate for TC slices and characterized the location of somatotopically identified barrels in relation to other aspects of slice topology. We found that barrels associated with the large mobile whiskers occupy a particular location in TC slices, but that there are certain constraints to studying this portion of the barrelfield in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号