首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunoliposomes (ILs) can be constructed to target the epidermal growth factor receptor (EGFR) to provide efficient intracellular drug delivery in tumor cells. We hypothesized that this approach might be able to overcome drug resistance mechanisms, which remain an important obstacle to better outcomes in cancer therapy. ILs were evaluated in vitro and in vivo against EGFR-overexpressing pairs of human cancer cells (HT-29 and MDA-MB-231) that either lack or feature the multidrug resistance (mdr) phenotype. In multidrug-resistant cell lines, ILs loaded with doxorubicin (DOX) produced 19-216-fold greater cytotoxicity than free DOX, whereas in nonresistant cells, immunoliposomal cytotoxicity of DOX was comparable with that of the free drug. In intracellular distribution studies, free DOX was efficiently pumped out of the multidrug-resistant tumor cells, whereas immunoliposomal DOX leads to 3.5-8 times higher accumulation of DOX in the cytoplasm and 3.5-4.9 times in the nuclei compared with the free drug. Finally, in vivo studies in the MDA-MB-231 Vb100 xenograft model confirmed the ability of anti-EGFR ILs-DOX to efficiently target multidrug-resistant cells and showed impressive antitumor effects, clearly superior to all other treatments. In conclusion, ILs provide efficient and targeted drug delivery to EGFR-overexpressing tumor cells and are capable of completely reversing the multidrug-resistant phenotype of human cancer cells.  相似文献   

2.
Immunoliposomes (ILs) can be constructed to target the epidermal growth factor receptor (EGFR) to provide efficient intracellular drug delivery in tumor cells. We hypothesized that this approach might be able to overcome drug resistance mechanisms, which remain an important obstacle to better outcomes in cancer therapy. ILs were evaluated in vitro and in vivo against EGFR-overexpressing pairs of human cancer cells (HT-29 and MDA-MB-231) that either lack or feature the multidrug resistance (mdr) phenotype. In multidrug-resistant cell lines, ILs loaded with doxorubicin (DOX) produced 19–216-fold greater cytotoxicity than free DOX, whereas in nonresistant cells, immunoliposomal cytotoxicity of DOX was comparable with that of the free drug. In intracellular distribution studies, free DOX was efficiently pumped out of the multidrug-resistant tumor cells, whereas immunoliposomal DOX leads to 3.5–8 times higher accumulation of DOX in the cytoplasm and 3.5–4.9 times in the nuclei compared with the free drug. Finally, in vivo studies in the MDA-MB-231 Vb100 xenograft model confirmed the ability of anti-EGFR ILs-DOX to efficiently target multidrug-resistant cells and showed impressive antitumor effects, clearly superior to all other treatments. In conclusion, ILs provide efficient and targeted drug delivery to EGFR-overexpressing tumor cells and are capable of completely reversing the multidrug-resistant phenotype of human cancer cells.  相似文献   

3.
Tumor stromal cells have gained increasing attention as possible target for cancer therapy. Fibroblast activation protein (FAP) represents a cell surface antigen selectively expressed by reactive tumor stromal fibroblasts of various cancers. Here, we describe anti-FAP immunoliposomes as carrier systems for active targeting of FAP-expressing cells. As targeting ligand we used single-chain Fv (scFv) molecules cross-reacting with human and mouse FAP. These scFv molecules were genetically modified to express an additional cysteine residue at the C-terminus allowing a defined and site-directed conjugation. Coupling to Mal-PEG(2000)-DSPE containing liposomes resulted in sterically stabilized scFv immunoliposomes showing strong and specific binding to FAP-expressing cells. These immunoliposomes were highly stable when incubated under physiological conditions (human plasma, 37 degrees C). In addition, we could show that binding to FAP-expressing cells leads to internalization of intact liposomes into the endosomal compartment. Thus, these anti-FAP scFv immunoliposomes should be suitable for target cell-specific delivery and uptake of encapsulated drugs.  相似文献   

4.
In photodynamic therapy (PDT), the light activation of a photosensitizer leads to the generation of reactive oxygen species that can trigger various mechanisms of cell death. Harnessing this process within cancer cells enables minimally invasive yet targeted cancer treatment. With this rationale, here we demonstrate tumor-targeted delivery of a highly hydrophobic photosensitizer Pc 4 loaded within biocompatible poly(ethylene glycol)–poly(?-caprolactone) block co-polymer micelles. The micelles were surface-modified with epidermal growth factor receptor (EGFR)–targeting GE11 peptides for active targeting of EGFR-overexpressing cancer cells, in vitro. Pc 4–loaded EGFR-targeted micelles were incubated with EGFR-overexpressing A431 epidermoid carcinoma cells for various time periods, to determine Pc 4 uptake by epifluorescence microscopy. The cells were subsequently photoirradiated, and PDT-induced cell death for various incubation periods was determined by MTT assay and fluorescence Live/Dead assay. Our results indicate that active EGFR targeting of the Pc 4–loaded micelles accelerates intracellular uptake of the drug. Consequently, this enhances the PDT-induced cytotoxicity within shorter time periods.From the Clinical EditorPhotodynamic cancer therapy using Pc 4, a light activated and highly hydrophobic photosensitizer is demonstrated in this paper in vitro. Pc 4 was delivered in block-copolymer micelles surface-modified with GE11 peptides targeting EGFR-overexpressing cancer cells.  相似文献   

5.
The poor selective cytotoxicity of anticancer drugs lead to dose-limiting adverse effects which compromise the clinical outcome. Solid tumors recruit new blood vessels to support their growth, and epitopes that are uniquely expressed on tumor cells and tumor endothelial cells (ECs) can function as targets for immunoliposomal anticancer drugs. Membrane type 1 matrix metalloproteinase (MT1-MMP), an important protein related to tumor growth and angiogenesis, is expressed on malignant tumor cells and is activated ECs. Selective delivery could be achieved by targeting MT1-MMP, as well as other angiogenic ECs. In this regard, an anti-MT1-MMP Fab' antibody was used to prepare a MT1-MMP targeted sterically stabilized immunoliposomes (SIL[anti-MT1-MMP(Fab')]). The binding and intracellular distribution of SIL[anti-MT1-MMP(Fab')] and a non-targeted sterically stabilized liposomes (SL) were examined using human fibrosarcoma HT-1080 cells. SIL[anti-MT1-MMP(Fab')] was taken up by the cells in a lipid concentration, temperature, and time dependent manner, ultimately accumulating in the lysosomes. The cytotoxicity of doxorubicin (DXR)-containing SIL[anti-MT1-MMP(Fab')] (DXR-SIL[anti-MT1-MMP(Fab')]) was significantly higher than that of DXR-containing SL. The cellular internalization of SIL[anti-MT1-MMP(Fab')] was inhibited by endocytosis inhibitors, suggesting that their internalization was mediated via clathrin- or caveolae-dependent endocytosis. Furthermore, the efficient binding of SIL[anti-MT1-MMP(Fab')] was observed on human umbilical vein endothelial cells (HUVEC). Based on these results, it would be expected that DXR-SIL[anti-MT1-MMP(Fab')] may achieve direct tumor cell kill and indirect tumor cell kill via the destruction of the tumor endothelium in vivo. This strategy may have the potential for overcoming some major limitations in conventional chemotherapy in vivo.  相似文献   

6.
Cancer cells reflect higher level of ROS in comparison to the normal cell, so they become more vulnerable to further oxidative stress induced by exogenous ROS-generating agents. Through this a novel therapeutic strategy has evolved, which involves the delivery of redox cycler-doxorubicin (DOX) to the mitochondria of cancer cell where it acts as a source of exogenous ROS production. The purpose of this study is to develop a liposomal preparation which exhibits a propensity to selectively target cancer cell along with the potential of delivering drug to mitochondria of cell. We have rendered liposomes mitocancerotropic (FA-MTLs) by their surface modification with dual ligands, folic acid (FA) for cancer cell targeting and triphenylphosphonium (TPP) cations for mitochondria targeting. The cytotoxicity, ROS production and cell uptake of doxorubicin loaded liposomes were evaluated in FR (+) KB cells and found to be increased considerably with FA-MTLs in comparison to folic acid appended, mitochondria targeted and non-targeted liposomes. As confirmed by confocal microscopy, the STPP appended liposomes delivered DOX to mitochondria of cancer cell and also showed higher ROS production and cytotoxicity in comparison to folic acid appended and non-targeted liposomes. Most importantly, mitocancerotropic liposomes showed superior activity over mitochondria targeted liposomes which confirm the synergistic effect imparted by the presence of dual ligands - folic acid and TPP on the enhancement of cellular and mitochondrial delivery of doxorubicin in KB cells.  相似文献   

7.
A novel method for synthesis of anti-EGFR immunoliposomes using folate-folate binding protein (FBP) affinity is described. An anti-EGFR antibody (cetuximab or C225) was covalently linked to FBP via a thioether bond. Liposomes incorporating a lipophilic folate derivative (folate-PEG-cholesterol) were prepared by polycarbonate membrane extrusion. Anti-EGFR immunoliposomes were then obtained by combining FBP-C225 and folate-liposomes and evaluated for uptake and cytotoxicity in EGFR-overexpressing U87 human glioblastoma cells. Anti-EGFR immunoliposomes constructed via folate-FBP affinity exhibited excellent stability under physiological pH, and quickly released the bound FBP-C225 upon low pH (pH 3.5) treatment. Flow cytometry and fluorescence microscopy showed similar receptor-specific binding and internalization for both folate-FBP affinity-coupled and covalently coupled C225-immunoliposomes, but not for the non-targeted IgG-immunoliposomes. C225-immunoliposomes loaded with anticancer drug doxorubicin were more cytotoxic than non-targeted immunoliposomes in EGFR-overexpressing U87 glioma cells. Folate-FBP affinity is a potential method for construction of immunoliposomes and may have applications in synthesis of targeted drug carriers in general.  相似文献   

8.
Immunoliposomes are potent carriers for targeting of therapeutic drugs to specific cells. Membrane type-1 matrix metalloproteinase (MT1-MMP), which plays an important role in angiogenesis, is expressed on angiogenic endothelium cells as well as tumor cells. Then, the MT1-MMP might be useful as a target molecule for tumor and neovascularity. In the present study, we addressed a utility of antibodies against the MT1-MMP as a targeting ligand of liposomal anticancer drug. Fab' fragments of antibody against the MT1-MMP were modified at distal end of polyethylene glycol (PEG) of doxorubicin (DXR)-encapsulating liposomes, DXR-sterically stabilized immunoliposomes (DXR-SIL[anti-MT1-MMP(Fab')]). Modification with the antibody significantly enhanced cellular uptake of DXR-SIL[anti-MT1-MMP(Fab')] into the HT1080 cells, which highly express MT1-MMP, compared with the non-targeted liposomes (DXR-stealthliposomes (DXR-SL)), suggesting that MT1-MMP antibody (Fab') is a potent targeting ligand for the MT1-MMP expressed cells. In vivo systemic administration of DXR-SIL[anti-MT1-MMP(Fab')] into the tumor-bearing mice showed significant suppression of tumor growth compared to DXR-SL. This is presumably due to the active targeting of immunoliposomes for tumor and neovascularity. However, tumor accumulation of DXR-SIL[anti-MT1-MMP(Fab')] and DXR-SL were comparable, suggesting that both liposomal formulations accumulated in tumor via enhanced permeation and retention (EPR) effect, but not via targeting to the MT1-MMP expressed on both the endothelial and tumor cells. It appears that the enhanced antitumor activity of DXR-SIL[anti-MT1-MMP(Fab')] resulted from acceleration of cellular uptake of lioposomes owing to the incorporated antibody after extravasation from capillaries in tumor.  相似文献   

9.
Epidermal growth factor receptor (EGFR) is overexpressed in a variety of epithelial malignancies and thus can be used for EGFR-targeted therapy to improve antitumor efficacy. Therefore we synthesized a novel conjugate of doxorubicin (DOX) with an EGFR-binding peptide (NH?-CMYIEALDKYAC-COOH; EBP) via an ester bond at position 14 of DOX through a glutarate spacer. To confirm that the DOX-EBP conjugate is capable of targeting tumor cells overexpressing EGFR, we compared the cellular accumulation, intracellular distribution and in vitro cytotoxicity of DOX-EBP and free DOX. After treating with equimolar concentration of DOX-EBP or free DOX, the conjugate accumulated at significantly higher levels in EGFR-overexpressing cells than in non-EGFR-overexpressing cells, while the intracellular accumulation of free DOX was almost the same in all the cells. However, the intracellular accumulation of DOX-EBP was significantly reduced in EGFR-overexpressing cells preincubated with inhibitory anti-EGFR monoclonal antibody, demonstrating the involvement of EGFR pathway in the transport of the conjugate. Confocal fluorescence microscopy reveals that the conjugate was distributed in cytoplasmic and perinuclear areas during the first 30 min, whereas the free DOX was accumulated in both cytoplasm and nuclei. After 24 h, however, the DOX signal in the cells treated with DOX-EBP was also distributed in the nuclei, suggesting the release of DOX from the conjugate and entry into the nuclei. Biodistribution and in vivo antitumor experiments, together with in vitro cytotoxicity, indicate that the therapeutic competence of DOX-EBP was due to its increased accumulation in EGFR-expressing tumor cells. Furthermore, the survival of tumor-bearing mice treated with DOX-EBP was significantly higher than that with free DOX. These data demonstrate the enhanced anticancer efficacy and reduced systemic toxicity of DOX-EBP conjugate with targeting ability to EGFR-overexpressing tumor cells.  相似文献   

10.
《Journal of drug targeting》2013,21(10):933-943
Synthetic oligopeptides have emerged as a promising class of targeting ligands, providing a variety of choices for the construction of conjugates for desired ligand functionality. To explore the potential of short peptides as ligands for targeted delivery of macromolecular therapeutics for colorectal cancer (CRC), fluorescently labelled HPMA copolymers—bearing either G3-C12 or GE11 for targeting galectin-3 and epidermal growth factor receptor (EGFR), respectively—were synthesised and the mechanisms of their internalisation and subcellular fate in CRC cells were studied. The targetability of the G3-C12 bearing copolymers towards galectin-3 was further compared to that of galactose-containing copolymers. The resulting G3-C12-bearing conjugate actively and selectively targets CRC tumour cells over-expressing galectin-3 and exhibits superior targetability to galectin-3 when compared to the galactose-bearing copolymer. GE11 copolymer conjugate binds specifically and efficiently to EGFR over-expressing cells, thus mediating internalisation to a significantly higher extent relative the copolymer conjugated to a scrambled sequence peptide. We further incorporated doxorubicin (DOX) into GE11 bearing copolymer via an acid-labile hydrazone bond. The GE11-DOX copolymer conjugate demonstrated higher cytotoxicity toward EGFR over-expressing cells relative to the control non-targeted DOX conjugate. Altogether, our results show a proof of principle for the selective delivery of DOX to the target CRC cells.  相似文献   

11.
蜂毒多肽在肿瘤治疗中的应用引起研究者的极大兴趣。本研究使用大豆磷脂、胆固醇、羧酸化PEG-胆固醇制备了蜂毒多肽空间稳定脂质体,并将二硫键稳定抗人肝癌单链抗体联结PEG-胆固醇末端。使用酶联免疫法考察了蜂毒多肽空间稳定免疫脂质体的活性。蜂毒多肽空间稳定免疫脂质体有较高的肿瘤细胞选择性。体外实验证明,其对SMMC-7721细胞的杀伤能力远强于蜂毒多肽空间脂质体,而对Hela细胞的杀伤能力与蜂毒多肽空间脂质体无区别。蜂毒多肽空间稳定免疫脂质体对肿瘤细胞的选择性,可使其成为一种有效的靶向制剂。  相似文献   

12.
When an inflammatory stimulus is given, vascular endothelial cells express various cell adhesion molecules including the vascular cell adhesion molecule (VCAM)-1. In this study, the possibility of specifically delivering anti-inflammatory drugs to activated endothelial cells by utilizing VCAM-1 as a target receptor was explored by loading celecoxib, a selective cyclooxygenase-2 inhibitor, into liposomes coupled to the Fab' fragment against VCAM-1. Anti-VCAM-1-Fab'-conjugated liposomes were prepared by forming an amide linkage between amino groups of Fab' and the carboxylic group of glutaryl-N-phosphatidylethanolamine in liposomes using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as a cross-linker in the presence of sulpho-N-hydroxysuccinimide. The coupling of Fab' to phospholipids constituting liposomes was confirmed by SDS-PAGE analysis. Under our optimized conjugation conditions, 130.0?μg Fab' was coupled to 1?μmol liposomes. Immunoblotting analysis showed that VCAM-1 protein expression could be induced by incubating human umbilical vein endothelial cells (HUVEC) with TNF-α. Confocal laser microsopy analysis revealed that Fab' conjugation to liposomes selectively increased liposomal uptake in TNF-α-pre-stimulated (VCAM-1-expressed) HUVECs, but not in cells without VCAM-1 expression. The concentration of celecoxib loaded in Fab'-conjugated liposomes was 281.1?±?29?μg/mL, suggesting that liposomal loading also helped to overcome the limitations in celecoxib administration caused by its poor water solubility. Celecoxib loaded in Fab'-conjugated liposomes inhibited prostaglandin E? (PGE?) production induced by TNF-α-pre-stimulation more efficiently than when loaded in conventional liposomes. Therefore, Fab'-conjugated liposomes served as a drug delivery system with dual functions: targeted delivery and solubilizing capacity.  相似文献   

13.
Folate-targeted liposomes (FTL) were tested as drug delivery vehicles to PSMA-positive cancer cells. We used FL with co-entrapped mitomycin C lipophilic prodrug (MLP) and doxorubicin (DOX), and the LNCaP prostate cancer cell line which expresses PSMA but is negative for folate receptor. A major increase in cell drug levels was observed when LNCaP cells were incubated with FTL as compared to non-targeted liposomes (NTL). MLP was activated to mitomycin C, and intracellular and nuclear fluorescence of DOX was detected, indicating FTL processing and drug bioavailability. PMPA (2-(phosphonomethyl)-pentanedioic acid), a specific inhibitor of PSMA, blocked the uptake of FTL into LNCaP cells, but did not affect the uptake of FTL into PSMA-deficient and folate receptor-positive KB cells. The cytotoxic activity of drug-loaded FTL was found significantly enhanced when compared to NTL in LNCaP cells. FTL may provide a new tool for targeted therapy of cancers that over-express the PSMA receptor.  相似文献   

14.
To achieve a sustained and targeted delivery of liposomes to liver parenchymal cells (PC), we modified distearoyl-L-phosphatidylcholine (DSPC)/cholesterol (Chol) (60:40) (DSPC/Chol) liposomes with a galactosylated cholesterol derivative (Gal-C4-Chol), and polysorbate (Tween) 20 or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-polyethylene glycol (PEG(x)-DSPE). After intravenous injection, DSPC/Chol/Gal-C4-Chol (60:35:5) (Gal) liposomes were rapidly eliminated from the blood circulation and mostly recovered in the liver. The blood elimination of DSPC/Chol/Gal-C4-Chol/Tween 20 (55:35:5:5) (Tween 20-Gal) liposomes was slightly reduced as compared to Gal-liposomes. In contrast, a significant reduction in the blood elimination was observed with DSPC/Chol/Gal-C4-Chol/PEG(2000)-DSPE (59:35:5:1) (PEG(2000)-Gal) liposomes. Hepatic uptake of DSPC/Chol/Gal-C4-Chol/PEG(350)-DSPE (59:35:5:1) (PEG(350)-Gal) liposomes was intermediate between PEG(2000)-Gal-liposomes and Tween 20-Gal-liposomes. The uptake of PEG(350)-Gal-liposomes by liver PC was 7.7-fold higher than that by non-parenchymal cells (NPC). These results suggest that PEG(350)-DSPE can control the delivery rate of Gal-liposomes to liver PC without losing its targeting capability.  相似文献   

15.
The purpose of our research was to evaluate in vitro therapeutic efficacy of doxorubicin (DXR)-loaded immunoliposomes with Fab' fragments of the anti-CD74 antibody LL1 attached to the surface. LL1 is well suited for targeting purposes because it is internalized very fast by B-lymphoma cells. However, at in vivo application whole antibodies show fast clearance in circulation. Taking this fact into consideration, this study was initiated to elucidate the prospects of using Fab' fragments of LL1 in stead of the whole antibody for future targeting in vivo of DXR-loaded liposomes. The Fab' fragments were covalently attached to the surface of sterically stabilized liposomes by use of a PEG-based heterobifunctinal coupling agent. LL1 Fab' conjugated sterically stabilized DXR liposomes showed approximately six times faster accumulation of the drug in Raji human B-lymphoma cells than nontargeted liposomes. In vitro cytotoxicity, quantitated by a tetrazolium assay, against Raji cells gave IC(50) values of 0.13, 0.45, and 0.11 microM for DXR-loaded immunoliposomes, DXR-loaded liposomes and free drug, respectively. The results from this study suggest that DXR-loaded immunoliposomes targeted with Fab' fragments from the anti-CD74 antibody LL1 could be a useful system for future in vivo experiments.  相似文献   

16.
The purpose of this study is to propose a suitable vector combining increased circulation lifetime and intracellular delivery capacities for a therapeutic peptide. Long circulating classical liposomes [SPC:CHOL:PEG-750-DSPE (47:47:6 molar% ratio)] or pH-sensitive stealth liposomes [DOPE:CHEMS:CHOL:PEG750-DSPE (43:21:30:6 molar% ratio)] were used to deliver a therapeutic peptide to its nuclear site of action. The benefit of using stealth pH-sensitive liposomes was investigated and formulations were compared to classical liposomes in terms of size, shape, charge, encapsulation efficiency, stability and, most importantly, in terms of cellular uptake. Confocal microscopy and flow cytometry were used to evaluate the intracellular fate of liposomes themselves and of their hydrophilic encapsulated material. Cellular uptake of peptide-loaded liposomes was also investigated in three cell lines: Hs578t human epithelial cells from breast carcinoma, MDA-MB-231 human breast carcinoma cells and WI-26 human diploid lung fibroblast cells. The difference between formulations in terms of peptide delivery from the endosome to the cytoplasm and even to the nucleus was investigated as a function of time. Characterization studies showed that both formulations possess acceptable size, shape and encapsulation efficiency but cellular uptake studies showed the important benefit of the pH-sensitive formulation over the classical one, in spite of liposome PEGylation. Indeed, stealth pH-sensitive liposomes were able to deliver hydrophilic materials strongly to the cytoplasm. Most importantly, when encapsulated in pH-sensitive stealth liposomes, the peptide was able to reach the nucleus of tumorigenic and non tumorigenic breast cancer cells.  相似文献   

17.
Epidermal growth factor receptor (EGFR) is an important anti-cancer therapy target that is applicable to many cancer types. We had previously reported the screening and discovery of a novel peptide ligand against EGFR named GE11. It was shown to bind to EGFR competitively with EGF and mediate gene delivery to cancer cells with high-EGFR expression. In this study, we conjugated GE11 on to liposome surface and examined their binding and distribution to EGFR expressing cancer cells in vitro and in vivo using fluorescence imaging techniques. GE11 liposomes were found to bind specifically and efficiently to EGFR high-expressing cancer cells. In vivo in H1299 xenograft mouse model, GE11 liposomes also extravasated and accumulated into the tumor site preferentially, and demonstrated better targeting and drug delivery capacities.  相似文献   

18.
Type B gelatin-based engineered nanocarrier systems (GENS) have been used over the last several years as a non-condensing systemic and oral DNA delivery system. In this study, we have modified the surface of GENS with epidermal growth factor receptor (EGFR)-targeting peptide for gene delivery and transfection in pancreatic cancer cell lines. GENS were prepared by the solvent displacement method and the EGFR-targeting peptide was grafted on the surface using a hetero-bifunctional poly(ethylene glycol) (PEG) spacer. Plasmid DNA, encoding for enhanced green fluorescent protein (GFP), was efficiently encapsulated and protected from degrading enzymes in the control and surface-modified GENS. Upon incubation with EGFR over-expressing Panc-1 human pancreatic adenocarcinoma cells, the peptide-modified nanoparticles were found to be internalized efficiently by receptor-mediated endocytosis. Both quantitative and qualitative transgene expression efficiencies were significantly enhanced when plasmid DNA was administered with EGFR-targeted GENS relative to the control-unmodified gelatin or PEG-modified gelatin nanoparticle systems. Based on these preliminary results, EGFR-targeted GENS show tremendous promise as a safe and effective gene delivery vector with the potential to treat pancreatic cancer.  相似文献   

19.
Tumor stromal cells have gained increasing attention as possible target for cancer therapy. Fibroblast activation protein (FAP) represents a cell surface antigen selectively expressed by reactive tumor stromal fibroblasts of various cancers. Here, we describe anti-FAP immunoliposomes as carrier systems for active targeting of FAP-expressing cells. As targeting ligand we used single-chain Fv (scFv) molecules cross-reacting with human and mouse FAP. These scFv molecules were genetically modified to express an additional cysteine residue at the C-terminus allowing a defined and site-directed conjugation. Coupling to Mal-PEG2000-DSPE containing liposomes resulted in sterically stabilized scFv immunoliposomes showing strong and specific binding to FAP-expressing cells. These immunoliposomes were highly stable when incubated under physiological conditions (human plasma, 37°C). In addition, we could show that binding to FAP-expressing cells leads to internalization of intact liposomes into the endosomal compartment. Thus, these anti-FAP scFv immunoliposomes should be suitable for target cell-specific delivery and uptake of encapsulated drugs.  相似文献   

20.
Long-circulating liposomes loaded with doxorubicin (Dox) were additionally modified with the prostate cell-specific monoclonal antibody 5D4 (mAb 5D4). The resultant Dox-loaded 5D4-immunoliposomes specifically recognized prostate cancer cell lines of several different types expressing the mAb 5D4 antigen, PSMA, and significantly enhanced cytotoxicity toward these cells compared with the non-targeted Dox-liposomes in vitro while no increased toxicity was observed toward non-prostate (lung) cancer cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号