首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synergistic effect of combined drug therapy provides an enhanced treatment for advanced liver cancer. We aimed to investigate the underlying mechanism of cetuximab sensitization by rapamycin in hepatoma cells. Four hepatoma cell lines, HepG2, HuH7, SNU-387, and SNU-449, were treated with cetuximab or cetuximab plus rapamycin and growth inhibition was evaluated by measuring relative cell viability and cell proliferation. The cell phenotype was determined for each hepatoma cell line by western blot analysis of E-cadherin and vimentin expression and mTOR activation status. To identify the role of mTOR signaling in cetuximab sensitization, we used deferoxamine-mediated hypoxia to induce epithelial–mesenchymal transition (EMT) in HuH7 and HepG2 cells and measured mTOR activity after rapamycin treatment. Rapamycin significantly increased cetuximab cytotoxicity in hepatoma cell lines with differential sensitivities. Phenotypic differences among hepatoma cell lines, specifically epithelial (HuH7and HepG2) and mesenchymal (SNU-387 and SNU-449), correlated with the efficacy of rapamycin cotreatment, although rapamycin treatment did not affect cell phenotype. We further showed that rapamycin inhibits mTOR in mesenchymal SNU-387 and SNU-449 cells. In addition, the induction of EMT in HuH7 and HepG2 cells significantly decreased cetuximab cytotoxicity; however, rapamycin treatment significantly restored cetuximab sensitivity and decreased mTOR signaling in these cells. In conclusion, we identified significant differences in rapamycin-induced cetuximab sensitization between epithelial and mesenchymal hepatoma cells. We therefore report that rapamycin cotreatment enhances cetuximab cytotoxicity by inhibiting mTOR signaling in mesenchymal cells.  相似文献   

2.
Arsenic trioxide (As2O3) has been demonstrated to be effective for the treatment of acute promyelocytic leukemia (APL) and to inhibit proliferation and produce apoptosis in the APL cell line NB4. The effect of this newly utilized chemotherapeutic agent on other lineages is currently under study to evaluate its efficacy for the treatment of other human malignancies and myeloproliferative syndromes. A recent study described the effects of As2O3 upon viability, proliferation, and induction of apoptosis in four different megakaryocytic leukemia cell lines. At pharmacological concentrations (0.5-2 microM) As2O3 selectively inhibits growth and causes apoptosis in the megakaryocytic leukemia cell lines HEL, Meg-01, UT7 and M07e. Pertinently, these concentrations of As2O3 resulted in identical changes in the characteristics of the APL cell line NB4, suggesting that As2O3 could produce its effects in both cellular lineages via a common mechanism of action. Various mechanisms have been proposed for the As2O3-induced changes in NB4 (including modulation of promyelocytic leukemia proteins (PML) and Bcl-2, modification of the glutathione redox system, caspase activation, and cell cycle arrest) and are currently under investigation in the megakaryocytic leukemia cell lines. Recent preliminary results indicate that As2O3 downregulates Bcl-2 expression and induces cell cycle arrest in megakaryocytic cell lines. The use of As2O3 for the treatment of malignant megakaryocytic disorders also has been considered. The in vitro effects of As2O3 on a chronic megakaryocytic proliferative disorder. i.e., Essential Thrombocythemia (ET), have been analyzed and megakaryocyte progenitors have shown an unexpectedly higher resistance to As2O3, in comparison to normal megakaryocyte colony-forming cells. The effects of As2O3 on ET and other megakaryocytic disorders need to be fully examined, in order to determine the clinical efficacy of As2O3 in the treatment of syndromes affecting the megakaryocytic lineage.  相似文献   

3.
4.
Chelbi-alix MK  Bobé P  Benoit G  Canova A  Pine R 《Oncogene》2003,22(57):9121-9130
Arsenic trioxide (As2O3) can induce clinical remission in patients with acute promyelocytic leukemia (APL), including those who have relapsed after treatment with all-trans-retinoic acid (RA). In vitro studies with the APL-derived NB4 cell line showed that As2O3 exerts a dose-dependent dual effect, which induces apoptosis at 1 microM, whereas at a lower concentration of 0.1 microM, a partial differentiation of APL is observed. In non-APL cells, interferon (IFN) alpha and 1 microM As2O3 act synergistically to induce apoptosis. In this report, we show that in NB4 cells and in two RA-resistant NB4-derived cell lines, NB4-R1 and NB4-R2, IFNalpha or IFNgamma combined with 0.1 microM As2O3 lead to an increased maturation effect. Moreover, IFNgamma alone is able to differentiate RA-sensitive and -resistant cells with a higher maturation effect on NB4-R2 cells. In contrast, all these cells underwent apoptosis in the presence of the cytokine and a higher concentration of As2O3. IFNgamma boosted As2O3-induced apoptosis in APL cells as tested by TUNEL, Annexin V staining and activation of caspase 3. As2O3 differently altered IFN-induced gene products; it downregulated PML/RARalpha and PML, did not alter PKR and Stat1, and upregulated interferon regulatory family (IRF)-1. Synergism by IFNgamma and arsenic on IRF-1 expression is mediated by a composite element in the IRF-1 promoter that includes an IFNgamma-activation site (GAS) overlapped by a nonconsensus site for nuclear factor kappa B (NFkappaB). Arsenic has no effect on NFkappaB, whereas it enhances the activation of Stat1 by IFNgamma in NB4 cells leading to an increase in IRF-1 expression.  相似文献   

5.
Arsenic trioxide (As2O3) is a novel anticancer agent, which has been found to induce remission in acute promyelocytic leukaemic patients following daily intravenous administration. The therapeutic value of As2O3 in other cancers is still largely unknown. Cytotoxic tests in a panel of cancer cell lines showed that bladder cancer, acute promyelocytic leukaemic and gastrointestinal cancer cells were the most sensitive to As2O3 among 17 cell lines tested. Cellular glutathione (GSH) system plays an important role in arsenic detoxification in mammalian cells. Cancer cells that were intrinsically sensitive to As2O3 contained lower levels of GSH, whereas resistant cancer cells contained higher levels of GSH. On the other hand, there was no association of glutathione-S-transferase-pi or multidrug resistance-associated protein 1 levels with arsenic sensitivity in these cancer cells. Multidrug-resistant cancer cells that were cross-resistant to arsenic contained higher levels of GSH or multidrug-resistance-associated protein 1 than their drug-sensitive parental cells. Cancer cells become more sensitive to arsenic after depletion of cellular GSH with L-buthionine sulphoximine. We concluded that cellular GSH level is the most important determinant of arsenic sensitivity in cancer cells. Cellular GSH level and its modulation by buthionine sulphoximine should be considered in designing clinical trials using arsenic in solid tumours.  相似文献   

6.
As2O3对多发性骨髓瘤细胞的细胞毒作用的机制研究   总被引:1,自引:0,他引:1  
Chen YB  Hou J  Fu WJ  Ding SQ  Wang DX  Yuan ZG  Kong XT 《癌症》2003,22(12):1276-1279
背景与目的:多发性骨髓瘤(multiple myeloma,MM)是恶性浆细胞疾病,目前仍难以治愈;已有研究证明三氧化二砷(arsenic trioxide,As2O3)在体外能够抑制骨髓瘤细胞增殖并诱导其凋亡.本研究拟探讨As2O3对多发性骨髓瘤细胞的可能作用机制.方法:采用MTr法检测As2O3对5株骨髓瘤细胞U266、SKO-007、LP-1、HS-Sultan和KM3的抑制作用,求出其IC50,同时研究维生素K3(vitamine K3,VK3)、N-乙酰半胱氨酸(N-acetyl-cysteine,NAC)和还原型谷胱甘肽(glutathione,GSH)对As2O3的协同或拮抗作用;利用光学比色法测定不同浓度As2O3作用后的5株骨髓瘤细胞以及As2O3与VK3、NAC或外源性GSH共同作用后的U266细胞的GSH含量,对细胞GSH含量与IC50进行相关性分析.结果:As2O3对5株骨髓瘤细胞均有增殖抑制作用,但其敏感性不同,细胞内GSH含量与其IC50正相关(r=0.87,P<0.05);氧化剂VK3与As2O3有明显协同作用,抗氧化剂NAC和GSH对As2O3具有拮抗作用.结论:As2O3可能是通过与细胞内的含巯基化合物结合,降低细胞内GSH含量,从而诱导骨髓瘤细胞凋亡.  相似文献   

7.
PURPOSE: Arsenic compounds have been found to be effective in the treatment of acute promyelocytic leukemia through the downregulation of bcl-2 expression. Resistant ovarian cancer cells often overexpress bcl-2 or p53 proteins or both. We hypothesized that arsenic compounds, such as As2O3 and As2S3, could also be active against gynecological cancers resistant to conventional chemotherapy. METHODS: We investigated the effects of these two arsenic compounds in vitro on ovarian cancer cell lines sensitive (OVCAR, GG, JAM) and resistant (CI80-13S) to cisplatin (CDDP) and on human cervical cancer cell lines (HeLa) in comparison with their effects on human fibroblasts (HF). A fluorometric assay based on measurements of fluorescein diacetate (FDA) in cells was used to determine cell viability. Apoptosis was assessed in terms of cell morphology, by flow cytometry and by a DNA fragmentation assay. RESULTS: Treatment of each cell line with the As2O3 or As2S3 led to a marked dose-dependent decrease in cell growth. The IC50 of the two compounds indicated a significantly greater cytotoxic effect against all the cancer cells tested than against the normal HF. At a clinically achievable concentration (2 microM), As2O3 selectively inhibited the growth and induced apoptosis in CI80-13S, OVCAR and HeLa cells but had no significant apoptotic effect on GG or JAM cells or HF. Following treatment with 5 microM As2S3, the CI80-13S, OVCAR and HeLa cells also exhibited growth inhibition and induction of apoptosis. CONCLUSIONS: Arsenic compounds (As2O3 and As2S3) can inhibit growth and induce apoptosis in human ovarian and cervical cancer cells at clinically achievable concentrations, indicating that As2O3 and As2S3 could be effective in the treatment of gynecological cancer.  相似文献   

8.
Arsenic trioxide (As2O3) induces remission in patients with acute promyelocytic leukemia (APL). To better understand molecular mechanisms of arsenic actions, this study investigated the effect of two different arsenic compounds on gene expression of apoptosis and cellular proliferation related genes. The Wilms' tumor gene (wt1) is up-regulated in acute myeloid leukemia (AML) and a variety of leukemia cell lines. The expression of wt1 in these cells is proposed to have an anti-apoptotic effect. HL-60 and K562 were treated with arsenic trioxide (As2O3) and sodium arsenite (NaAsO2) at concentrations between 0 - 10 microM for up to 48 h. The induction of apoptosis was accompanied by down-regulation of hTERT and wt1 mRNA and protein expression but up-regulation of par-4. Low concentrations of 0.1 microM arsenic induced expression of the anti-apoptotic bcl-2 gene in both cell lines HL-60 and K562. There were no major differences encountered between compounds. After arsenic treatment of the leukemia cell lines HL-60 and K562 the up-regulation of par-4 may contribute to the induction of apoptosis rather than down-regulation of bcl-2. The therapeutic effect of arsenic is the induction of apoptosis by modulating the gene expression profile of pro- and anti-apoptotic genes including the wt1 gene.  相似文献   

9.
K Davison  S C?té  S Mader  W H Miller 《Leukemia》2003,17(5):931-940
Arsenic trioxide (As(2)O(3)) is an effective treatment for acute promyelocytic leukemia (APL), but is less effective against other leukemias. Although the response of APL cells to As(2)O(3) has been linked to degradation of the PML/RARalpha fusion oncoprotein, there is evidence that PML/RARalpha expression is not the only mediator of arsenic sensitivity. Indeed, we found that exogenous expression of PML/RARalpha did not sensitize a non-APL leukemic line to As(2)O(3). To evaluate possible other determinants of sensitivity of leukemic cells to As(2)O(3), we derived two arsenic-resistant NB4 subclones. Despite being approximately 10-fold more resistant to arsenic than their parental cell line, PML/RARalpha protein was still degraded by As(2)O(3) in these cells, providing further evidence that loss of expression of the oncoprotein does not confer arsenic sensitivity. Both arsenic-resistant clones contained high glutathione (GSH) levels, however, and we found that GSH depletion coupled with As(2)O(3) treatment dramatically inhibited their growth. Annexin V-staining and TUNEL analysis confirmed a synergistic induction of apoptosis. In addition, these cells failed to accumulate ROS in response to arsenic treatment, in contrast to their arsenic-sensitive parental cells, unless cotreated with buthionine sulfoximine. While other malignant cells did not show a good correlation between arsenic sensitivity and GSH content, GSH depletion nevertheless sensitized all cell lines examined, regardless of their initial response to arsenic alone. These findings suggest that PML/RARalpha expression is not a determinant of arsenic sensitivity, and further support the coupling of GSH depletion and arsenic treatment as a novel treatment for human malignancies that are unresponsive to arsenic alone.  相似文献   

10.
Park WH  Seol JG  Kim ES  Hyun JM  Jung CW  Lee CC  Kim BK  Lee YY 《Cancer research》2000,60(11):3065-3071
We investigated the in vitro effect of As2O3 on proliferation, cell cycle regulation, and apoptosis in human myeloma cell lines. As2O3 significantly inhibited the proliferation of all of eight myeloma cell lines examined in a dose-dependent manner with IC50 of approximately 1-2 microM. DNA flow cytometric analysis indicated that As2O3 (2 microM) induced a G1 and/or a G2-M phase arrest in these cell lines. To address the mechanism of the antiproliferative effect of As2O3, we examined the effect of As2O3 on cell cycle-related proteins in MC/CAR cells in which both G1 and G2-M phases were arrested. Western blot analysis demonstrated that treatment with As2O3 (2 microM) for 72 h did not change the steady-state levels of CDK2, CDK4, cyclin D1, cyclin E, and cyclin B1 but decreased the levels of CDK6, cdc2, and cyclin A. The mRNA and protein levels of CDKI, p21 were increased by treatment with As2O3, but those of p27 were not. In addition, As2O3 markedly enhanced the binding of p21 with CDK6, cdc2, cyclin E, and cyclin A compared with untreated control cells. Furthermore, the activity of CDK6-associated kinase was reduced in association with hypophosphorylation of Rb protein. The activity of cdc2-associated kinase was decreased, which was accompanied by the up-regulation of cdc2 phosphorylation (cdc2-Tyr15 phosphorylation) resulting from reduction of cdc25B and cdc25C phosphatases. As2O3 also induced apoptosis in MC/CAR cells as evidenced by flow cytometric detection of sub-G1 DNA content and annexin V binding assay. This apoptotic process was associated with down-regulation of Bcl-2, loss of mitochondrial transmembrane potential (delta psi(m)), and an increase of caspase-3 activity. These results suggest that As2O3 inhibits the proliferation of myeloma cells, especially MC/CAR cells, via cell cycle arrest in association with induction of p21 and apoptosis.  相似文献   

11.
Lu M  Xia L  Luo D  Waxman S  Jing Y 《Oncogene》2004,23(22):3945-3952
To determine the effects of glutathione-S-transferase pi (GSTpi) on the actions of As2O3, As2O3-induced growth inhibition and apoptosis was studied in three prostate cancer cell lines: DU-145, PC-3 and LNCaP cells. As2O3 inhibited cell proliferation of DU-145 and PC-3 cells (both cells express GSTpi), but not of LNCaP cells (which lack GSTpi expression) at concentrations below 1 microM. LNCaP cells stably transfected and expressed GSTpi (LNCaP/GSTpi) became sensitive to As2O3 growth inhibition. As2O3 arrested cell growth of DU-145, PC-3 and LNCaP/GSTpi cells in the G2/M phase of the cell cycle at low concentrations (<2 microM), but did not induce apoptosis. At higher concentrations (10-20 microM), As2O3 induced apoptosis in LNCaP cells, but not in DU-145 or PC-3 cells. The apoptosis induction due to As2O3 treatment of LNCaP cell correlated with the activation of JNK and p38 and induction of p53 protein. LNCaP/GSTpi cells became insensitive to As2O3-induced apoptosis with reduced JNK activition. These data indicate that GSTpi increases growth inhibition due to As2O3 treatment and prevents As2O3-induced apoptosis in prostate cancer cells. Therefore, it appears that As2O3 inhibits cell growth and induces apoptosis through different mechanisms.  相似文献   

12.
BACKGROUND: Arsenic trioxide (As2O3) can induce clinical remission in patients with acute promyelocytic leukemia via induction of differentiation and programmed cell death (apoptosis). We investigated the effects of As2O3 on a panel of malignant lymphocytes to determine whether growth-inhibitory and apoptotic effects of As2O3 can be observed in these cells at clinically achievable concentrations. METHODS: Eight malignant lymphocytic cell lines and primary cultures of lymphocytic leukemia and lymphoma cells were treated with As2O3, with or without dithiothreitol (DTT) or buthionine sulfoximine (BSO) (an inhibitor of glutathione synthesis). Apoptosis was assessed by cell morphology, flow cytometry, annexin V protein level, and terminal deoxynucleotidyl transferase labeling of DNA fragments. Cellular proliferation was determined by 5-bromo-2'-deoxyuridine incorporation into DNA and flow cytometry and by use of a mitotic arrest assay. Mitochondrial transmembrane potential (delta psi(m)) was measured by means of rhodamine 123 staining and flow cytometry. Protein expression was assessed by western blot analysis or immunofluorescence. RESULTS: Therapeutic concentrations of As2O3 (1-2 microM) had dual effects on malignant lymphocytes: 1) inhibition of growth through adenosine triphosphate (ATP) depletion and prolongation of cell cycle time and 2) induction of apoptosis. As2O3-induced apoptosis was preceded by delta psi(m) collapse. DTT antagonized and BSO enhanced As2O3-induced ATP depletion, delta psi(m) collapse, and apoptosis. Caspase-3 activation, usually resulting from delta psi(m) collapse, was not always associated with As2O3-induced apoptosis. As2O3 induced PML (promyelocytic leukemia) protein degradation but did not modulate expression of cell cycle-related proteins, including c-myc, retinoblastoma protein, cyclin-dependent kinase 4, cyclin D1, and p53, or expression of differentiation-related antigens. CONCLUSIONS: Substantial growth inhibition and apoptosis without evidence of differentiation were induced in most malignant lymphocytic cells treated with 1-2 microM As2O3. As2O3 may prove useful in the treatment of malignant lymphoproliferative disorders.  相似文献   

13.
K Kitamura  Y Minami  K Yamamoto  Y Akao  H Kiyoi  H Saito  T Naoe 《Leukemia》2000,14(10):1743-1750
Arsenic trioxide (As2O3)-treatment is effective in acute promyelocytic leukemia (APL) patients with t(15;17). Clinically achievable concentrations of As2O3 induce apoptosis in NB4, an APL cell line, in vitro. Here, to study the mechanism of As2O3-induced apoptosis, we established an As2O3-resistant subline, NB4/As. Growth of NB4/As was inhibited by 50% after 2 day-treatment (IC50) at 1.6 microM As2O3, whereas IC50 of NB4 was 0.3 microM. Degradation of PML-RARalpha and change of the PML-subcellular localization were similarly induced by As2O3 in NB4 and NB4/As, suggesting that their contribution to apoptosis is small. Treatment with 1 microM As2O3 induced the activation of caspase 3 as well as a loss of mitochondrial transmembrane potential (deltapsim) in NB4 but not in NB4/As. Caspase 8 and Bid were also activated by As2O3 in NB4 but not in NB4/As. In NB4, an inhibitor of caspase 8 blocked not only the activation of caspase 3 but also the loss of deltapsim. Neither cell line expressed CD95/Fas, and agonistic anti-Fas antibody (CH-11) failed to cause apoptosis. Neither antagonistic anti-CD95/Fas antibody nor anti-Fas ligand antibodies influenced the As2O3-induced apoptosis. NB4/As had a higher concentration of intracellular glutathione (GSH) than NB4 (96 vs 32 nmol/mg). Reduction of the GSH level by buthionine sulfoxide (BSO) completely restored the sensitivity to As2O3 in NB4/As. Furthermore, caspase activation and the loss of deltapsim were recovered by combination treatment with BSO. These findings suggest that the As2O3 treatment activates caspase 8 in a CD95-independent but GSH concentration-dependent manner. In combination with BSO, As2O3 might be applied to therapy of leukemia/cancers which are insensitive to the clinically achievable concentrations of As2O3.  相似文献   

14.
Arsenic trioxide (As2O3), used to treat human diseases for centuries in traditional Chinese medicine, has been identified as a very effective antileukaemic agent, but its effect on solid tumours which could be more suitable for clinical treatment with arsenic compounds is still unknown. In this study, we investigated the in vitro effect of As2O3 at concentrations of 0.01-1 microM against six human malignant cell lines, MGC-803, HIC, MCF-7, HeLa, BEL-7402 and A549 cells. As2O3 inhibited growth and induced apoptosis in these malignant cells at varying degrees, in a time dose-dependent manner. The most marked effects were seen in the gastric cancer cell line, MGC-803. In contrast, minimal growth inhibition and induction of apoptosis occurred in human embryonic pulmonary cells following treatment with As2O3 found at the same concentrations. Changes in intracellular Ca2+, following As2O3 treatment were measured by Ca2+ sensitive fluorescent probe Indo-1/AM in flow cytometric assays. The increase in intracellular Ca2+ correlated with the sensitivity of these cells to As2O3, possibly indicating that a critical intracellular Ca2+ signal transduction pathway could be involved in As2O3-mediated cell-death and its selectivity. The marked sensitivity of MGC-803 cells in vitro suggests that As2O3 may be a potential antigastric cancer agent.  相似文献   

15.
Recent clinical studies have demonstrated that As2O3 is an effective drug in the treatment of acute promyelocytic leukemia (APL) by inducing apoptosis and inhibiting the proliferation of leukemia cells both in vitro and in vivo. As a novel anticancer agent for the treatment of solid cancer, As2O3 is promising, but no experimental investigations of its efficacy on glioblastoma have been conducted at concentrations that may be achieved clinically. In addition, the cell proliferation and cell cycle regulating mechanism of As2O3 has not yet to be clarified, especially in solid cancers. We investigated the effect of As2O3 on proliferation and cell cycle regulation with change in cyclins in two human glioblastoma cell lines differing in p53 status (U87MG-wt; T98G-mutated). Sensitivity to As2O3 varied depending on the dose with the IC50 of the U87MG and T98G cells being 1.78 and 3.55 microM, respectively. Analysis by laser scanning cytometry (LSC) indicated that As2O3 inhibited the proliferation of the two cell lines via cell cycle arrest both at the G1 and G2 phases. To address the mechanism of the antiproliferative effect of As2O3, we examined its effect on cell cycle-related proteins by means of LSC, confocal microscopy and Western blot analysis. As2O3 induced an increase in p53 level and a decrease in level of cyclin B1 combined with cell arrest at G2/M in both cell lines. Cell arrest in G1, however, was associated with a decline in cyclin D1 expression only in the wt U87MG cells. As2O3 also induced apoptosis of U87MG cells as evidenced by the presence of cells with fractional DNA content ( cell populations). The present evidence that As2O3 at relatively low concentration effectively inhibited proliferation of U87MG and T98G cells in vitro, suggests that the drug may be considered for in vivo testing on animal models and possibly clinical trials on glioma patients.  相似文献   

16.
Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells   总被引:35,自引:0,他引:35  
Li YM  Broome JD 《Cancer research》1999,59(4):776-780
Arsenic exhibits a differential toxicity to cancer cells. At a high concentration (>5 microM), As2O3 causes acute necrosis in various cell lines. At a lower concentration (0.5-5 microm), it induces myeloid cell maturation and an arrest in metaphase, leading to apoptosis. As2O3-treated cells have features found with both tubulin-assembling enhancers (Taxol) and inhibitors (colchicine). Prior treatment of monomeric tubulin with As2O3 markedly inhibits GTP-induced polymerization and microtubule formation in vitro but does not destabilize GTP-induced tubulin polymers. Cross-inhibition experiments indicate that As2O3 is a noncompetitive inhibitor of GTP binding to tubulin. These observations correlate with the three-dimensional structure of beta-tubulin and suggest that the cross-linking of two vicinal cysteine residues (Cys-12 and Cys-213) by trivalent arsenic inactivates the GTP binding site. Furthermore, exogenous GTP can prevent As2O3-induced mitotic arrest.  相似文献   

17.
Arsenic trioxide (As2O3) induces clinical remission in acute promyelocytic leukemic patients and apoptosis in various tumor cells in vitro. To develop As2O3-based combination chemotherapy for renal cell carcinoma (RCC), we investigated the cytotoxic effects of As2O3 in combination with chemotherapeutic agents or L-buthionine sulfoximine (BSO), a glutathione (GSH) synthesis inhibitor. Cytotoxicity and synergy were assessed by the MTT assay and isobolographic analysis, respectively. Apoptosis was monitored by Hoechst 33342 staining, flow cytometrical analysis, and DNA fragmentation assay. Treatment of ACHN cells with As2O3 in combination with adriamycin, vinblastine, or 5-fluorouracil induced an antagonistic effect. However, combination treatment with As2O3 and BSO resulted in a synergistic cytotoxic effect. Synergy was also obtained in Caki-1, Caki-2, NC65 cells and freshly derived RCC cells from 6 patients. Simultaneous treatment of ACHN cells with As2O3 and BSO caused significantly more cytotoxicity than the As2O3 first BSO second or the reverse treatment. We further explored the mechanisms underlying this synergistic effect and found that the synergistic cytotoxicity of As2O3 and BSO was realized by inducing apoptosis. This combination markedly decreased intracellular GSH content and GSH-S-transferase (GST) activity. However, neither the intracellular GSH nor GST was decreased by As2O3 with adriamycin, vinblastine, or 5-fluorouracil. Furthermore, the GSH-increasing agents N-acetylcysteine and lipoic acid significantly inhibited the combined cytotoxicity of As2O3 and BSO. These findings indicate that BSO sensitizes RCC cells to As2O3-induced apoptosis through the down-regulation of the intracellular GSH redox system, suggesting the potential application of a combination of As2O3 and BSO for the treatment of RCC.  相似文献   

18.
High concentrations (greater than 5 microM) of arsenic trioxide (As(2)O(3)) have been reported to be able to induce apoptosis in several malignant cells. We explored cell lines in which apoptosis was induced with a therapeutic concentration (1-2 microM) of As(2)O(3), and found that 1 microM of As(2)O(3) induced apoptosis in the NKM-1 cell line, which was established from a patient with acute myeloid leukemia (M2). Apoptosis induced by 1 microM of As(2)O(3) in NKM-1 cells was accompanied by an increased cellular content of H(2)O(2), a decreased mitochondrial membrane potential (Deltapsim), and activation of caspase-3. C-Jun-terminal kinase (JNK) was activated only in NKM-1 cells and arsenic-sensitive NB4 cells, but not in arsenic-insensitive HL-60 cells. Activation of JNK in NKM-1 was sustained from 6 to 24 h after As(2)O(3) treatment, and preceded changes in cellular H(2)O(2), Deltapsim, and caspase-3 activation. Moreover, addition of a JNK inhibitor reduced the percentage of apoptotic cells after the As(2)O(3) treatment. Taken together, in the M2 cell line NKM-1, 1 microM of As(2)O(3) induced sustained activation of JNK and apoptosis. This finding may provide a basis to select a subgroup other than acute promyelocytic leukemia, which can benefit from As(2)O(3) treatment.  相似文献   

19.
Arsenic trioxide (As2O3) has been shown to inhibit the proliferation of hematologic malignant cells. Previously, we reported that As2O3 had an antitumoral effect in head and neck cancer. Here, we investigated the induction of apoptosis and its mechanism in PCI-1 head and neck squamous carcinoma cells, after treatment with As2O3. Treatment with 2 microM of As2O3 caused apoptosis in PCI-1 cells following 3 days of exposure, which was detected by the annexin V-PI and DAPI staining methods. The cell death population was markedly increased, being 88% larger than the As2O3-untreated control cells. To address the mechanism of apoptosis, a Western blot assay was performed, showing that Bax was up-regulated without a change in Bcl-2. Activation of caspase-9 during As2O3-induced apoptosis was substantiated by monitoring the proteolysis of the caspase-9, which was associated with an increase of Apaf-1 and cytochrome c protein. PCI-1 cells rapidly changed the mitochondria membrane potential (DeltaPsim) after addition of As2O3. Furthermore, activation of caspase-3 was demonstrated by monitoring the proteolysis of the caspase-3 and by measuring caspase-3 activity with a fluorogenic substrate, which was associated with the cleavage of poly(ADP-ribose) polymerase. To examine the in vivo effect of As2O3, C3H mouse inoculated with syngenic SCC7 cells was treated by intratumoral injection of As2O3 (300 microg) every day, demonstrating that tumor mass was dramatically reduced on day 4, and revealed induction of apoptosis by TUNEL assay. These results suggest that apoptosis of PCI-1 cells by As2O3 is induced by activation of caspase-3 via cytochrome c, caspase-9 and Apaf-1 complex.  相似文献   

20.
PURPOSE: Arsenic trioxide (As(2)O(3)), an inorganic arsenic compound, has recently been approved for the treatment of relapsed or refractory acute promyelocytic leukemia. However, systemic toxicity associated with As(2)O(3) treatment remains a problem. Inorganic arsenic is detoxified in vivo by methylation reactions into organic arsenic compounds that are less toxic. METHODS AND RESULTS: We investigated the antiproliferative and cytotoxic activity of dimethylarsinic acid (DMAA), an organic arsenic derivative and major metabolic by-product of As(2)O(3), against a panel of eight leukemia and multiple myeloma cell lines. As(2)O(3) was tested in comparison. In clonogenic assay, the average concentration of DMAA that suppressed cell colony growth by 50% was 0.5-1 m M, while for As(2)O(3) it was on average 1-2 microM. At those concentrations DMAA and As(2)O(3) had significantly less effect on colony growth of normal progenitor cells. Cytotoxic doses of DMAA and As(2)O(3) in 3-day trypan blue dye exclusion assay experiments were similar to doses effective in clonogenic assay. Assessment of apoptosis by annexin V assay revealed a high rate of apoptosis in all cell lines treated with DMAA and As(2)O(3), but significantly less effect on normal progenitor cells. DMAA, unlike As(2)O(3), had no effect on the maturation of leukemic cells. CONCLUSIONS: DMAA exerts differential antiproliferative and cytotoxic activity against leukemia and multiple myeloma cells, with no significant effect on normal progenitor cells. However, concentrations of DMAA needed to achieve such efficacy are up to 1000 times those of As(2)O(3). Evaluation of novel organic arsenic that would combine the high efficacy of As(2)O(3) and the low toxicity of DMAA is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号