首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Potassium currents have an important role in modulating neuronal excitability. We have investigated the effects of axotomy on three voltage-activated K(+) currents, one sustained and two transient, in cutaneous afferent dorsal root ganglion (DRG) neurons. Fourteen to 21 days after axotomy, L(4) and L(5) DRG neurons were acutely dissociated and were studied 2-8 h after plating. Whole cell patch-clamp recordings were obtained from identified cutaneous afferent neurons (46-50 microm diam); K(+) currents were isolated by blocking Na(+) and Ca(2+) currents with appropriate ion replacement and channel blockers. Separation of the current components was achieved on the basis of sensitivity to dendrotoxin or 4-aminopyridine and by the response to variation in conditioning voltage. Both control and injured neurons displayed qualitatively similar complex K(+) currents composed of distinct kinetic and pharmacological components. Three distinct K(+) current components, a sustained (I(K)) and two transient (I(A) and I(D)), were identified in variable proportions. However, total peak current was reduced by 52% in the axotomized cells when compared with control cells. Two current components were reduced after ligation, I(A) by 60%, I(K) by over 65%, compared with control cells. I(D) appeared unaffected after acute ligation. These results indicate a large reduction in overall K(+) current, resulting from reductions in I(K) and I(A), on large cutaneous afferent neurons after nerve ligation and have implications for excitability changes of injured primary afferent neurons.  相似文献   

2.
Section of rat sciatic nerve (axotomy) increases the excitability of neurons in the L(4)-L(5) dorsal root ganglia (DRG). These changes are more pronounced in animals that exhibit a self-mutilatory behavior known as autotomy. We used whole cell recording to examine changes in the tetrodotoxin-sensitive (TTX-S) and the tetrodotoxin-resistant (TTX-R) components of sodium channel currents (I(Na)) that may contribute to axotomy-induced increases in excitability. Cells were initially divided on the basis of size into "large," "medium," and "small" groups. TTX-S I(Na) predominated in "large" cells, whereas TTX-R I(Na) predominated in some, but not all "small cells." "Small" cells were therefore subdivided into "small-slow" cells, which predominantly exhibited TTX-R I(Na) and "small fast" cells that exhibited more TTX-S I(Na). In contrast to results obtained in other laboratories, where slightly different experimental procedures were used, we found that axotomy increased TTX-R and/or TTX-S I(Na) and slowed inactivation. The effects were greatest in "small-slow" cells and least in "large" cells. The changes promoted by axotomy were expressed more clearly in animals that exhibited autotomy. Also, the presence of autotomy correlated with a shift in the properties of I(Na) in "large" rather than "small-slow," putative nociceptive cells. These trends parallel previous observations on axotomy-induced increases in excitability, spike height, and spike width that are also greatest in "small" cells and least in "large" cells. In addition, the presence of autotomy correlates with an increase in excitability of "large" rather than "small" cells. Increases in TTX-R and TTX-S I(Na) thus coincide with axotomy-induced increases in excitability and alterations in spike shape across the whole population of sensory neurons. Injury-induced changes of this type are likely associated with the onset of chronic pain in humans.  相似文献   

3.
The neuropeptide galanin is known to have an antinociceptive effect under neuropathic conditions. After axotomy, galanin is upregulated in sensory neurons, presumably in the capsaicin-sensitive ones. Here, the sensitivity to capsaicin and the expression of galanin were simultaneously examined by double-staining in individual, dissociated rat dorsal root ganglion neurons (1) after axotomy of the sciatic nerve for up to 14 days and (2) in culture for up to 4 days without prior nerve injury. Ten days after axotomy, the proportion of capsaicin-sensitive neurons had decreased by 36 percentage points (from 63% to 27%), whereas the proportion of galaninergic neurons had increased by 33 percentage points (from 3% to 36%). These changes were also observed in neurons kept in culture, where the regulation was attenuated by the addition of nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) to the medium. After axotomy, galaninergic neurons had a soma size-distribution profile similar to the capsaicin-sensitive neurons, but there was no colocalization of capsaicin sensitivity and galanin expression in individual neurons. In culture, some neurons showed colocalization after 30 h and 48 h, but not after 6 h or 96 h. We conclude that the upregulation of galanin in an individual neuron is preceded by downregulation of its capsaicin sensitivity both in NGF-dependent peptidergic and in GDNF-dependent non-peptidergic neurons, indicating a change in phenotype.  相似文献   

4.
In the present study, we have used in situ hybridization to examine the distribution of serotonin (5-HT) receptors in rat dorsal root ganglion (DRG) neurons. Within DRG neurons, mRNAs for 5-HT1B, 5-HT1D, 5-HT2A, 5-HT2B, 5-HT3B and 5-HT4 receptors were readily detected in small (<25 microm), medium (25-45 microm) and large (>45 microm) diameter neurons. In contrast mRNAs for 5-HT1A, 5-HT1E, 5-HT2C, 5-HT5A, 5-HT5B, 5-HT6 and 5-HT7 receptors were undetectable in these neurons. The present study provides an insight into the molecular profile of 5-HT receptor subtypes in neurons responsible for modulating sensory information.  相似文献   

5.
Chronic compression (CCD) of the dorsal root ganglion (DRG) is a model of human radicular pain produced by intraforaminal stenosis and other disorders affecting the DRG, spinal nerve, or root. Previously, we examined electrophysiological changes in small-diameter lumbar level 3 (L3) and L4 DRG neurons treated with CCD; the present study extends these observations to medium-sized DRG neurons, which mediate additional sensory modalities, both nociceptive and non-nociceptive. Whole-cell patch-clamp recordings were obtained from medium-sized somata in the intact DRG in vitro. Compared with neurons from unoperated control animals, CCD neurons exhibited a decrease in the current threshold for action potential generation. In the CCD group, current densities of TTX-resistant and TTX-sensitive Na(+) current were increased, whereas the density of delayed rectifier voltage-dependent K(+) current was decreased. No change was observed in the transient or "A" current after CCD. We conclude that CCD in the mouse produces hyperexcitability in medium-sized DRG neurons, and the hyperexcitability is associated with an increased density of Na(+) current and a decreased density of delayed rectifier voltage-dependent K(+) current.  相似文献   

6.
Noradrenaline (NAdr) has well documented analgesic actions at the level of the spinal cord. Released from bulbospinal projections onto superficial dorsal horn (SDH) neurons, NAdr modulates the excitability of these neurons through the activation of 1, 2 or β adrenoceptors. This study utilised in situ hybridisation to determine the specific expression of adrenoceptors within adult rat lumbar SDH and dorsal root ganglion (DRG) neurons, and reports the presence of 1A, 1B, 2B, β1 and β2 adrenoceptor mRNA within SDH neurons, and the presence of 1A, 1B and 2C adrenoceptor mRNA within DRG neurons. The present study provides an insight into the modulation of sensory processing at the level of the spinal cord following adrenoceptor activation.  相似文献   

7.
Several studies have suggested that acid-sensing ion channel 2 (ASIC2) plays a role in mechanoperception and acid sensing in the peripheral nervous system. We examined the expression and distribution of ASIC2 in the rat dorsal root ganglion, the co-localization of ASIC2 with tropomyosin-related kinase (trk) receptors, and the effects of axotomy on ASIC2 expression. ASIC2 immunoreactivity was observed in both neurons and satellite cells. ASIC2-positive neurons accounted for 16.5 +/- 2.4% of the total neurons in normal dorsal root ganglion. Most ASIC2-positive neurons were medium-to-large neurons and were labeled with neurofilament 200 kD (NF200). Within these neurons, ASIC2 was not evenly distributed throughout the cytoplasm, but rather was accumulated prominently in the cytoplasm adjacent to the axon hillock and axonal process. We next examined the co-localization of ASIC2 with trk receptors. trkA was expressed in few ASIC2-positive neurons, and trkB and trkC were observed in 85.2% and 53.4% of ASIC2-positive neurons, respectively, while only 6.9% of ASIC2-positive neurons were co-localized with trkC alone. Peripheral axotomy markedly reduced ASIC2 expression in the axotomized dorsal root ganglion neurons. On the other hand, intense ASIC2 staining was observed in satellite cells. These results show that ASIC2 is expressed in the distinct neurochemical population of sensory neurons as well as satellite cells, and that peripheral axotomy induced marked reductions in ASIC2 in neurons.  相似文献   

8.
Voltage-dependent K+ currents in rat cardiac dorsal root ganglion neurons   总被引:1,自引:0,他引:1  
We have assessed the expression and kinetics of voltage-gated K(+) currents in cardiac dorsal root ganglion (DRG) neurons in rats. The neurons were labelled by prior injection of a fluorescent tracer into the pericardial sack. Ninety-nine neurons were labelled: 24% small (diameter<30 microm), 66% medium-sized (diameter 30 microm>.48 microm) and 10% large (>48 microm) neurons. Current recordings were performed in small and medium-sized neurons. The kinetic and pharmacological properties of K(+) currents recorded in these two groups of neurons were identical and the results obtained from these neurons were pooled. Three types of K(+) currents were identified:a) I(As), slowly activating and slowly time-dependently inactivating current, with V(1/2) of activation -18 mV and current density at +30 mV equal to 164 pA/pF, V(1/2) of inactivation at -84 mV. b) I(Af) current, fast activating and fast time-dependently inactivating current, with V(1/2) of activation at two mV and current density at +30 mV equal to 180 pA/pF, V(1/2) of inactivation at -26 mV. At resting membrane potential I(As) was inactivated, whilst I(Af), available for activation. The I(As) currents recovered faster from inactivation than I(Af) current. 4-Aminopiridyne (4-AP) (10 mM) and tetraethylammonium (TEA) (100 mM) produced 98% and 92% reductions of I(Af) current, respectively and 27% and 66% of I(As) current, respectively. c) The I(K) current that did not inactivate over time. Its V(1/2) of activation was -11 mV and its current density equaled 67 pA/pF. This current was inhibited by 95% (100 mM) TEA, whilst 4-AP (10 mM) produced its 23% reduction. All three K(+) current components (I(As), I(Af) and I(K)) were present in every small and medium-sized cardiac DRG neuron.We suggest that at hyperpolarized membrane potentials the fast reactivating I(As) current limits the action potential firing rate of cardiac DRG neurons. At depolarised membrane potentials the I(Af) K(+) current, the reactivation of which is very slow, does not oppose the firing rate of cardiac DRG neurons.  相似文献   

9.
The dihydropyridines nifedipine, nimodipine and Bay K 8644 are widely used as pharmacological tools to assess the contribution of L-type voltage-gated Ca2+ channels to a variety of neuronal processes including synaptic transmission, excitability and second messenger signaling. These compounds are still used in neuronal preparations despite evidence from cardiac tissue and heterologous expression systems that they block several voltage-dependent K+ (Kv) channels. Both because these compounds have been used to assess the relative contribution of L-type Ca2+ channels to several different processes in dorsal root ganglion (DRG) neurons and because a relatively wide variety of Kv channels present in other neuronal populations is present in DRG neurons, we determined the extent to which dihydropyridines block Kv currents in these neurons. Standard whole cell patch clamp techniques were used to study acutely disassociated adult rat DRG neurons. All three dihydropyridines tested blocked Kv currents in DRG neurons; IC50 values (concentration resulting in an inhibition that is 50% of maximum) for nifedipine and nimodipine-induced block of sustained Kv currents were 14.5 and 6.6 μM, respectively. The magnitude of sustained current block was 44±1.6%, 60±2%, and 56±2.9% with 10 μM nifedipine, nimodipine and Bay K 8644, respectively. Current block was occluded by neither 4-aminopyridine (5 mM) nor tetraethylammonium (135 mM). Dihydropyridine-induced block of Kv currents was not associated with a shift in the voltage-dependence of current activation or inactivation, the recovery from inactivation, or voltage dependent block. However, there was a small use-dependence to the dihydropyridine-induced block. Our results suggest that several types of Kv channels in DRG neurons are blocked by mechanisms distinct from those underlying block of Kv channels in cardiac myocytes. Importantly, our results suggest that if investigators wish to explore the contribution of L-type Ca2+ channels to neuronal function, they should consider alternative strategies for the manipulation of these channels than the use of dihydropyridines.  相似文献   

10.
The L4 and L5 dorsal root ganglia were studied in untreated rats and rats subjected to unilateral transection of the sciatic nerve, using the indirect immunofluorescence technique and antibodies to the peptide galanin (GAL). In control rats only low numbers of small ganglion cells contained GAL-like immunoreactivity (LI). After axotomy a marked increase in the number and intensity of GAL-immunoreactive ganglion cell bodies was seen on the lesion side. Thus, some primary sensory neurons react to transection of their peripheral branches by expressing increased GAL levels. A similar reaction has been described by other groups for vasoactive intestinal polypeptide.  相似文献   

11.
The ability of a series of specific Galpha carboxyl-terminal antisera, (i.e. anti-Gsalpha, anti-Gi1/2alpha, anti-Gi3alpha/Goalpha, anti-Goalpha/Gi3alpha, and anti-Gq/11alpha) to disrupt (+/-)-baclofen-stimulated high-affinity guanosine triphosphatase (GTPase) activity was explored in rat cerebral cortical membranes to identify the Galpha subunit(s) involved in gamma-aminobutyric acid(B) (GABA(B)) receptor-mediated signal transduction. Pretreatment of the membranes with the AS/7 (anti-Gi1/2alpha) antiserum inhibited GABA(B) receptor-mediated response without affecting the basal activity. The RM/1 (anti-Gsalpha) and QL (anti-Gq/11alpha) antisera failed to inhibit GABA(B) receptor-coupled responses. The results of the EC/2 (anti-Gi3alpha/Goalpha) and GO/1 (anti-Goalpha/Gi3alpha) antisera were difficult to interpret since the basal activities were influenced by these antisera. These results, in conjunction with the data in our previous reconstitution study, indicate that Gi2alpha is a main transducer of GABA(B) receptor-mediated signaling in rat cerebral cortex.  相似文献   

12.
Sciatic nerve section (axotomy) increases the excitability of rat dorsal root ganglion (DRG) neurons. The changes in Ca2+ currents, K+ currents, Ca2+ sensitive K+ current, and hyperpolarization-activated cation current (I(H)) that may be associated with this effect were examined by whole cell recording. Axotomy affected the same conductances in all types of DRG neuron. In general, the largest changes were seen in "small" cells and the smallest changes were seen in "large" cells. High-voltage-activated Ca2+ channel current (HVA-I(Ba)) was reduced by axotomy. Although currents recorded in axotomized neurons exhibited increased inactivation, this did not account for all of the reduction in HVA-I(Ba). Activation kinetics were unchanged, and experiments with nifedipine and/or omega-conotoxin GVIA showed that there was no change in the percentage contribution of L-type, N-type, or "other" HVA-I(Ba) to the total current after axotomy. T-type (low-voltage-activated) I(Ba) was not affected by axotomy. Ca2+ sensitive K+ conductance (g(K,Ca)) appeared to be reduced, but when voltage protocols were adjusted to elicit similar amounts of Ca2+ influx into control and axotomized cells, I(K,Ca)(s) were unchanged. After axotomy, Cd2+ insensitive, steady-state K+ channel current, which primarily comprised delayed rectifier K+ current (I(K)), was reduced by about 60% in small, medium, and large cells. These data suggest that axotomy-induced increases in excitability are associated with decreases in I(K) and/or decreases in g(K,Ca) that are secondary to decreased Ca2+ influx. Because I(H) was reduced by axotomy, changes in this current do not contribute to increased excitability. The amplitude and inactivation of I(Ba) in all cell types was changed more profoundly in animals that exhibited self-mutilatory behavior (autotomy). The onset of this behavior corresponded with significant reduction in I(Ba) of large neurons. This finding supports the hypothesis that autotomy, that may be related to human neuropathic pain, is associated with changes in the properties of large myelinated sensory neurons.  相似文献   

13.
14.
Du Z  Meng Z 《Neuroscience letters》2006,405(1-2):147-152
This study addressed the effect of sulfur dioxide (SO(2)) derivatives on high-voltage-activated calcium currents (HVA-I(Ca)) in somatic membrane of freshly isolated rat dorsal root ganglion (DRG) neurons by using the whole-cell configuration of patch-clamp technique. High-threshold Ca(2+) channels are highly expressed in small dorsal root ganglion neurons. SO(2) derivatives increased the amplitudes of calcium currents in a concentration-dependent and voltage-dependent manner. The 50% enhancement concentrations (EC(50)) of SO(2) derivatives on HVA-I(Ca) was about 0.4 microM. In addition, SO(2) derivatives significantly shifted the activation and inactivation curve in the depolarizing direction. Parameters for the fit of a Boltzmann equation to mean values for the activation were V(1/2)=-17.9+/-1.3 mV before and -12.5+/-1.1 mV after application 0.5 microM SO(2) derivatives 2 min (P<0.05). The half inactivation of HVA-I(Ca) was shifted 9.7 mV to positive direction (P<0.05). Furthermore, SO(2) derivatives significantly prolonged the slow constant of inactivation, slowed the fast recovery but markedly accelerated the slow recovery of HVA-I(Ca) from inactivation. From HP of -60 mV 0.5 microM SO(2) derivatives increased the amplitude of HVA-I(Ca) with a depolarizing voltage step to -10 mV about 54.0% in small DRG neurons but 33.3% in large DRG neurons. These results indicated a possible correlation between the change of calcium channels and SO(2) inhalation toxicity, which might cause periphery neurons abnormal regulation of nociceptive transmission via calcium channels.  相似文献   

15.
Reg-2 is a secreted protein that is expressed de novo in motoneurons, sympathetic neurons, and dorsal root ganglion (DRG) neurons after nerve injury and which can act as a Schwann cell mitogen. We now show that Reg-2 is also upregulated by DRG neurons in inflammation with a very unusual expression pattern. In a rat model of monoarthritis, Reg-2 immunoreactivity was detected in DRG neurons at 1 day, peaked at 3 days (in 11.6% of DRG neurons), and was still present at 10 days (in 5%). Expression was almost exclusively in the population of DRG neurons that expresses the purinoceptor P2X(3) and binding sites for the lectin Griffonia simplicifolia IB4, and which is known to respond to glial cell line-derived neurotrophic factor (GDNF). Immunoreactivity was present in DRG cell bodies and central terminals in the dorsal horn of the spinal cord. In contrast, very little expression was seen in the nerve growth factor (NGF) responsive and substance P expressing population. However intrathecal delivery of GDNF did not induce Reg-2 expression, but leukemia inhibitory factor (LIF) had a dramatic effect, inducing Reg-2 immunoreactivity in 39% of DRG neurons and 62% of P2X(3) cells. Changes in inflammation have previously been observed predominantly in the neuropeptide expressing, NGF responsive, DRG neurons. Our results show that changes also take place in the IB4 population, possibly driven by members of the LIF family of neuropoietic cytokines. In addition, the presence of Reg-2 in central axon terminals implicates Reg-2 as a possible modulator of second order dorsal horn cells.  相似文献   

16.
The changes in gene expression and protein synthesis induced in neurons by axotomy usually lead to increased production of axon constituents and decreased production of molecules related to neurotransmission. Exceptions to this generalization occur, however, and it is unclear whether the injury itself changes the pattern of synthesis or whether individual mechanisms regulate the synthesis of the various axonal components. We used in situ hybridization histochemistry and immunocytochemistry to compare the changes in L4 and L5 rat dorsal root ganglion neuron levels of preprotachykinin mRNA and tachykinin peptides caused by sciatic nerve injury with those caused by dorsal root injury. Both lesions elicit regeneration, although only the axotomized peripheral processes re-establish functional contact with their targets. In the contralateral, intact dorsal root ganglia approximately 17% of neurons contained detectable levels of both mRNAs and peptides. Sciatic nerve section decreased by 70% the number of neurons labeled for preprotachykinin mRNA at three days post-operatively. Not all cells in the ganglion are axotomized by the sciatic nerve lesion; grain counts over the cells spared by the lesion showed an increased level of labeling, possibly a result of collateral sprouting by these spared cells. By two weeks, the number of cells labeled for preprotachykinin mRNA had decreased to 80% of control levels. The numbers of neurons labeled for tachykinin peptides decreased more slowly and reached approximately 50% of control numbers at two weeks. By six months post-operatively, when regeneration is largely complete, the number of neurons containing both mRNAs and peptides returned to normal. In contrast, dorsal root section did not elicit a decrease in the number of neurons labeled either for the mRNAs or the peptides at any of the post-operative intervals examined. These results indicate that axotomy is not the stimulus that elicits changes in the expression of genes coding for tachykinins. Evidence is considered indicating that interruption of the supply of peripherally derived nerve growth factor may be responsible for the changes in gene expression for tachykinins after axotomy.  相似文献   

17.
Potassium transmembrane currents induced by membrane depolarization have been studied on isolated dorsal root ganglion neruons of 5–10 day-old rats using the voltage-clamp technique. The neurons were intracellularly dialysed with solutions containing a fixed amount of K+ ions, and the correspondence between the reversal potentials of the measured currents and the theoretical potassium equilibrium potential was determined. Sodium and calcium transmembrane currents were eliminated by replacement of Na+ ions in the extracellular solution and by introduction of fluoride into the cell.In all cells studied, the total potassium current could be separated into two components—fast and slow (IKf and IKsby changing the holding potential level. IKfwas inactivated comparatively fast obeying first-order kinetics. The dependence h (V) for this current was S-shaped with meanV12 = ?75 mV. Therefore, this current could be almost completely switched off at holding potentials more positive than ?50 mV. On the contrary, the inactivation of IKs developed very slowly even at stronger depolarizing potential shifts. The mean activation time constants calculated on the basis of Hodgkin-Huxley model for potassium currents were 0.5 ms at zero testing potential for IKf and 40 ms at + 30 mV for IKs.The reversal potential for IKf determined from instantaneous current-voltage characteristics was close to the equilibrium potential for a potassium electrode. The reversal potential for IKs was shifted in the depolarizing direction by about 25 mV indicating lower selectivity of the corresponding channels.  相似文献   

18.
We investigated the effects of chronic compression (CCD) of the L3 and L4 dorsal root ganglion (DRG) on pain behavior in the mouse and on the electrophysiological properties of the small-diameter neuronal cell bodies in the intact ganglion. CCD is a model of human radicular pain produced by intraforaminal stenosis and other disorders affecting the DRG, spinal nerve, or root. On days 1, 3, 5, and 7 after the onset of compression, there was a significant decrease from preoperative values in the threshold mechanical force required to elicit a withdrawal of the foot ipsilateral to the CCD (tactile allodynia). Whole cell patch-clamp recordings were obtained, in vitro, from small-sized somata and, for the first time, in the intact DRG. Under current clamp, CCD neurons exhibited a significantly lower rheobase compared with controls. A few CCD but no control neurons exhibited spontaneous action potentials. CCD neurons showed an increase in the density of TTX-resistant and TTX-sensitive Na(+) current. CCD neurons also exhibited an enhanced density of voltage-dependent K(+) current, due to an increase in delayed rectifier K(+) current, without a change in the transient or "A" current. We conclude that CCD in the mouse produces a model of radicular pain, as we have previously demonstrated in the rat. While the role of enhanced K(+) current remains to be elucidated, we speculate that it represents a compensatory neuronal response to reduce ectopic or aberrant levels of neuronal activity produced by the injury.  相似文献   

19.
Summary We have previously reported that dorsal root ganglion neurons cultured in the presence of the highly specific, reversible acetylcholinesterase inhibitor 1,5-bis-(4-allyldimethylammoniumphenyl) pentan-3-one dibromide (BW284c51), showed significantly reduced neurite outgrowth and contained massive perikaryal inclusions of neurofilaments. In the present report we have more closely examined these changes in a time course study over a 21-day culture period using a combined morphological, immunocytochemical and enzymatic approach and additionally, describe, the effects of acetylcholinesterase inhibitor treatment on the state of neurofilament phosphorylation. Finally, we have examined the effects of co-administration of N6,2-0-dibutyryladenosine 35-cyclic monophosphate (dbcAMP) with BW284c51. At 1 day in culture, both control and treated cells displayed eccentrically located nuclei, numerous polysomes and perikaryal accumulations of neurofilaments which were immunoreactive with both phosphorylation- and nonphosphorylation-dependent neurofilament antibodies. These cytological changes, which are common features of the chromatolytic reaction following axotomyin vivo, rapidly resolved in the control neurons, where by 7 days in culture, the neurofilament accumulations had completely disappeared and neurite outgrowth was robust. In contrast, inhibitor-treated neurons retained the post-axotomy features up to 21 days and had significantly reduced neurite outgrowth. In addition, we have investigated a possible role of cyclic adenosine monophosphate (cAMP) in the recovery process since it has been shown to enhance neuritic outgrowth in cultured neurons. Our results demonstrate that the addition of dbcAMP, a membrane permeable analog of cAMP, significantly enhanced neuritic outgrowth and accelerated the recovery of BW284c51-treated dorsal root ganglion cells, as gauged by the disappearance of the axotomy-related cytological changes. Treatment with dbcAMP also increased acetylcholinesterase activity which has been positively correlated with neurite outgrowth bothin vivo andin vitro. Together, these observations suggest that acetylcholinesterase has a non-cholinolytic, neurotrophic role in neuronal regeneration and development.  相似文献   

20.
Hu SJ  Yang HJ  Jian Z  Long KP  Duan YB  Wan YH  Xing JL  Xu H  Ju G 《Neuroscience》2000,101(3):689-698
In this study, we compared the sensitivity of non-periodically and periodically active neurons in chronically compressed dorsal root ganglion in rats to norepinephrine and sympathetic stimulation. Forty-nine of 58 (84.5%) neurons with non-periodic activity showed responses to norepinephrine, whereas only five of 48 (10.4%) neurons with periodic activity displayed any response. The dose-response relationship of norepinephrine to the irregular burst pattern neurons shifted towards the left significantly compared to that of the periodic activity neurons. Responses to norepinephrine became apparent in eight neurons after their periodic firing activity was transformed into the non-periodic firing activity through the increase in Ca(2+). Changes in the time-response curves indicate a higher sensitivity of irregular burst pattern neurons to sympathetic stimulation than the periodic activity neurons. Finally, deterministic dynamics contained within the interburst interval series for non-periodic activity were identified.From these results, we suggest that the non-periodic activity neurons have a higher adrenergic sensitivity than those displaying periodic activity, and that this sensitivity may depend on the deterministic chaos within its firing dynamic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号