首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective To explore the reversibility of early stage tubular interstitial injury as well as the timing of reparation through the pig relief of unilateral ureteral obstruction (R-UUO) model. Methods Eight three-month-old female Guangxi BA-MA mini pigs were selected for the construction of R-UUO models. Five time points were set which were UUO 0 day, UUO 3 days, R-UUO 7 days, R-UUO 14 days, and R-UUO 21 days. Renal function, histological structure, and protein expressions of α-smooth muscle actin (α-SMA), vimentin and E-cadherin were evaluated at different time points. Results After 3 days of UUO, compared with UUO 0 day, serum creatinine levels were increased obviously and the kidney tissues presented varying degrees of damage. The expressions of α-SMA and vimentin were increased and E-cadherin expression was decreased (P<0.05). Following R-UUO after 3 days of UUO, compared to UUO, serum creatinine levels were significantly decreased. Renal pathological tissue damage was repaired. The expressions of α-SMA and vimentin were decreased and E-cadherin expression was increased (P<0.05). Conclusions The pig R-UUO animal model may provide a good platform to study the kidney injury and repair. The tubular injury may be fully reversed and repaired when removing the pathogenic factors if the renal tubular injury was at an earlier stage.  相似文献   

2.
Aim: To determine whether matrix metalloproteinase‐12 (MMP‐12) plays a functional role in renal interstitial macrophage accumulation, interstitial fibrosis or tubular apoptosis in the unilateral ureteric obstruction (UUO) model. Background: MMP‐12 is an enzyme that can cleave a number of extracellular matrix proteins and plays a role in macrophage‐mediated injury in experimental models of emphysema and antibody‐dependent glomerular disease. Macrophages are thought to promote renal fibrosis and tubular damage in the obstructed kidney. Furthermore, upregulation of MMP‐12 expression by infiltrating macrophages in the obstructed kidney has been described, but the potential role of MMP‐12 in renal injury induced by this non‐immune insult is unknown. Methods: Groups of eight MMP‐12 gene deficient (MMP‐12?/?) and wild type (WT) C57BL/6J mice were killed 3, 7 or 14 days after UUO. Results: Analysis of three different lineage markers found no difference in the degree of interstitial macrophage accumulation between MMP‐12?/? and WT UUO groups at any time point. Examination of renal fibrosis by total collagen staining, α‐SMA + myofibroblast accumulation, and TGF‐β1, PAI‐1 and collagen IV mRNA levels showed no difference between MMP‐12?/? and WT UUO groups. Finally, tubular damage (KIM‐1 levels) and tubular apoptosis (cleaved caspase‐3) in the obstructed kidney was not affected by MMP‐12 gene deletion. Conclusion: In contrast to lung injury and antibody‐dependent glomerular injury, MMP‐12 is not required for renal interstitial macrophage accumulation, interstitial fibrosis or tubular damage in the obstructed kidney.  相似文献   

3.
BACKGROUND: Although unilateral ureteropelvic junction obstruction is the most common cause of congenital obstructive nephropathy in infants and children, management remains controversial, and follow-up after pyeloplasty is generally limited to the pediatric ages. We have developed a model of temporary unilateral ureteral obstruction (UUO) in the neonatal rat: One month following the relief of five-day UUO, the glomerular filtration rate (GFR) of the postobstructed kidney was normal despite a 40% reduction in the number of glomeruli and residual vascular, glomerular, tubular, and interstitial injury. METHODS: To determine whether hyperfiltration and residual injury of remaining nephrons leads to progression of renal insufficiency in later life, 31 rats were sham operated or subjected to left UUO at one day of age, with relief of UUO five days later, and were studied at one year of age. GFR was measured by inulin clearance, and the number of glomeruli, tubular atrophy, glomerular sclerosis, and interstitial fibrosis were measured by histomorphometry in sham, obstructed (UUO), and intact opposite kidneys. Intrarenal macrophages and alpha-smooth muscle actin were identified by immunohistochemistry. RESULTS: Despite relief of UUO, ultimate growth of the postobstructed kidney was impaired. The number of glomeruli was reduced by 40%, and GFR was decreased by 80%. However, despite significant compensatory growth of the opposite kidney, there was no compensatory increase in GFR, and proteinuria was increased. Moreover, glomerular sclerosis, tubular atrophy, macrophage infiltration, and interstitial fibrosis were significantly increased not only in the postobstructed kidney, but also in the opposite kidney. CONCLUSIONS: Although GFR is initially maintained following relief of five-day UUO in the neonatal rat, there is eventual profound loss of function of the postobstructed and opposite kidneys because of progressive tubulointerstitial and glomerular damage. These findings suggest that despite normal postoperative GFR in infancy, children undergoing pyeloplasty for ureteropelvic junction obstruction should be followed into adulthood. Elucidation of the cellular response to temporary UUO may lead to improved methods to assess renal growth, injury, and functional reserve in patients with congenital obstructive nephropathy.  相似文献   

4.
Unilateral ureteral obstruction (UUO) results in widespread tubular apoptosis in obstructed kidneys of both adults and neonates. The oncoprotein bcl-2 inhibits many forms of apoptosis, whereas the related protein bax promotes apoptosis. To evaluate the interaction of bcl-2, bax, and apoptosis in the renal response to UUO, adult and neonatal rats were subjected to UUO or sham operation, and kidneys were harvested 14 days later. Apoptotic cells were identified by the Tunel technique, and the distribution of bcl-2 and bax was determined by immunochemistry. In both adults and neonates, tubular and interstitial apoptosis was present in the obstructed kidney, but not in intact kidneys. In both adults and neonates, there was diffuse tubular bcl-2 and bax staining of sham-operated and intact kidneys. While bcl-2 was increased in scattered nonapoptotic tubules of the obstructed kidney, there was minimal staining of dilated apoptotic tubules. These results are consistent with the premise that bcl-2 normally suppresses renal tubular apoptosis. The distribution of bax staining in tubules of the obstructed kidney overlapped that of bcl-2. We conclude that chronic UUO inhibits bcl-2 expression in selected tubules of the obstructed kidney which contributes to activation of apoptosis and progressive renal damage in either neonatal or adult kidneys. Dysregulation of apoptosis may be a response to renal injury similar to that underlying the development of cystic kidney disease or renal dysplasia.  相似文献   

5.
BACKGROUND: The intracellular serpin, proteinase inhibitor 8 (PI8/Serpinb8), can inhibit furin, a prohormone convertase involved in inflammation, prohormone processing and extracellular matrix remodeling. Unilateral ureteral obstruction (UUO) is a well-characterized model of kidney disease associated with interstitial fibrosis, where recovery involves cellular proliferation and extracellular matrix remodeling. Given the presence of mouse PI8 (mPI8) in kidney, the UUO technique was used to investigate its potential role in kidney disease and regeneration. METHODS: RT-PCR and in situ hybridization was used to assess PI8 mRNA in kidney sections. Immunohistochemistry was used to examine mPI8 distribution in normal kidney, and following reversal of UUO. RESULTS: mPI8 mRNA was detected in whole kidney by RT-PCR, and by in situ hybridization in convoluted tubules of the renal cortex and medulla. In normal and control contralateral unobstructed kidneys, mPI8 was within the ascending limb and convoluted section of the distal tubules. PI8 distribution did not change in UUO kidney, but was significantly altered in reversed UUO kidney, appearing in regions containing nephrons undergoing remodeling. These included regenerating proximal and distal tubules and glomeruli. CONCLUSIONS: mPI8 distribution alters during kidney regeneration, possibly to control a prohormone convertase involved in inflammation or tissue repair.  相似文献   

6.
BACKGROUND: Urinary tract obstruction during development leads to tubular atrophy and causes interstitial fibrosis. Macrophage infiltration into the interstitium plays a central role in this process. Selectins, a family of three adhesion molecules, are involved in leukocyte recruitment to sites of inflammation and immune activity. We investigated the role of selectins in obstructive nephropathy in newborn mice. METHODS: Triple selectin-deficient mice (EPL-/-), L-selectin deficient mice (L-/-) and wild type mice (WT) were subjected to complete unilateral ureteral obstruction (UUO) or sham operation within the first 48 hours of life, and were sacrificed 5 and 12 days later. Kidneys were removed, and sections were stained for macrophage infiltration (mAb F4/80), apoptosis (TUNEL), tubular atrophy (periodic acid-Schiff) and interstitial fibrosis (Masson trichrome). RESULTS: Selectin deficient mice showed a marked reduction in macrophage infiltration into the obstructed kidney compared to WT at day 5 and day 12 after UUO. Tubular apoptosis was strongly reduced in EPL-/- at day 5 after UUO, and in EPL-/- and L-/- at day 12 after UUO when compared to WT. The number of apoptotic tubular cells was correlated with macrophage infiltration, suggesting that macrophages stimulate tubular apoptosis in obstructive nephropathy. In addition, tubular atrophy and interstitial fibrosis were significantly diminished in EPL-/- and L-/- compared to WT at day 12 after UUO. CONCLUSION: Following UUO, selectins mediate macrophage infiltration into the obstructed kidney, which in turn may induce tubular apoptosis, tubular atrophy and interstitial fibrosis.  相似文献   

7.
Congenital obstructive nephropathy is a major cause of renal insufficiency in children. Osteopontin (OPN) is a phosphoprotein produced by the kidney that mediates cell adhesion and migration. We investigated the role of OPN in the renal response to unilateral ureteral obstruction (UUO) in neonatal mice. OPN null mutant (-/-) and wild-type (+/+) mice were subjected to sham operation or UUO within the first 2 days of life. At 7 and 21 days of age, fibroblasts (fibroblast-specific protein (FSP)-1), myofibroblasts (alpha-smooth muscle actin (SMA)), and macrophages (F4/80) were identified by immunohistochemical staining. Apoptotic cells were detected by terminal deoxy transferase uridine triphosphate nick end-labeling technique and interstitial collagen by Masson trichrome or picrosirius red stain. Compared to sham-operated or contralateral kidneys, obstructed kidneys showed increases in all parameters by 7 days, with further increases by 21 days. After 21 days UUO, there was an increase in tubular and interstitial apoptosis in OPN -/- mice as compared to +/+ animals (P<0.05). However, FSP-1- and alpha-SMA-positive cells and collagen in the obstructed kidney were decreased in OPN -/- compared to +/+ mice (P<0.05), whereas the interstitial macrophage population did not differ between groups. We conclude that OPN plays a significant role in the recruitment and activation of interstitial fibroblasts to myofibroblasts in the progression of interstitial fibrosis in the developing hydronephrotic kidney. However, OPN also suppresses apoptosis. Future approaches to limit the progression of obstructive nephropathy in the developing kidney will require targeting of specific renal compartments.  相似文献   

8.
Objective To investigate the influence of earlier renal fibrosis on ischemia and reperfusion induced acute kidney injury. Methods Male C57BL/6 mice at eight to twelve weeks old age were divided into 4 groups randomly: (1)Sham (n=3); (2)Unilateral ureter obstruction (UUO, n=6): UUO for 3 days (UUO3d, n=3) and UUO for 5 days (UUO5d, n=3);(3)Ischemia and reperfusion (IR, n=7): bilateral kidney ischemia for 40 minutes followed by 24 hours of reperfusion; (4)UUO for 3 days plus IR (UUO3d+IR, n=6): bilateral kidney ischemia after UUO 2 days for 40 minutes followed by 24 hours of reperfusion, and the real time for UUO was 3 days. Pathologic analysis for acute or chronic injury was performed on paraffin embedded kidney sections with hematoxylin and eosin (HE) or Masson staining. Apoptosis was detected by immunohistochemistry(IHC) and Western blotting with anti-caspase-3 antibody, and proliferation was observed by IHC with anti-ki67 antibody. Results On kidney sections with HE or Masson staining, it showed that the chronic kidney lesions and fibrosis got more severe as time of UUO prolonged from 3 days to 5 days; the area of matrix deposition increased in UUO5d and UUO3d mice significantly compared to Sham mice (P<0.05) and was smaller in UUO3d mice compared with UUO5d mice obviously (P<0.05). Acute kidney injury could be observed in UUO3d+IR mice, such as massive inflammatory cells infiltration, tubules dilation, brush border disappearance, tubular epithelial cells vacuolar degeneration, necrosis, casting formation, coexisting with chronic lesions: thinner cortex, broadened interstitial space, and increased blue stained matrix. Acute kidney injury score in UUO3d+IR mice was higher than that in IR mice significantly (P<0.05), and serum creatinine level increased significantly in UUO3d+IR mice compared to Sham mice (P<0.05). Caspase-3 expression increased and ki67 positive tubular cells decreased in UUO3d+IR mice than those in IR mice obviously (P<0.05). Conclusion Earlier renal fibrosis aggravates acute kidney injury induced by ischemia reperfusion in mice through increasing apoptosis and decreasing proliferation of tubular epithelial cells.  相似文献   

9.
10.
BACKGROUND: Unilateral ureteral obstruction (UUO) is characterized by progressive renal atrophy, renal interstitial fibrosis, an increase in renal transforming growth factor-beta (TGF-beta), and renal tubular apoptosis. The present study was undertaken to determine the effect of a monoclonal antibody to TGF-beta (1D11) in UUO. METHODS: Mechanical stretch was applied to tubular epithelial cells (NRK-52E) by a computer-assisted system. Three doses of 1D11 (either 0.5, 2, or 4 mg/rat) were administered to rats one day prior to UUO and every two days thereafter, and kidneys were harvested at day 13. Fibrosis was assessed by measuring tissue hydroxyproline and mRNA for collagen and fibronectin. Apoptosis was assessed with the terminal deoxy transferase uridine triphosphate nick end-labeling assay. TGF-beta levels were determined by bioassay. Western blot and immunostaining were used to identify proliferating cell nuclear antigen (PCNA), p53, bcl-2, and inducible nitric oxide synthase (iNOS). RESULTS: Stretch significantly induced apoptosis in NRK-52E cells, which was accompanied by an increased release of TGF-beta; 1D11 (10 microg/mL) totally inhibited stretch-induced apoptosis. Control obstructed kidney contained 20-fold higher TGF-beta as compared with its unobstructed kidney; 1D11 neutralized tissue TGF-beta of the obstructed kidney. Control obstructed kidney exhibited significantly more fibrosis and tubular apoptosis than its unobstructed counterpart, which was blunted by 1D11. In contrast, 1D11 significantly increased tubular proliferation. p53 immunostaining was localized to renal tubular nuclei of control obstructed kidney and was diminished by 1D11. In contrast, bcl-2 was up-regulated in the 1D11-treated obstructed kidney. Total NOS activity and iNOS activity of the obstructed kidney were increased by 1D11 treatment. CONCLUSION: The present study strongly suggests that an antibody to TGF-beta is a promising agent to prevent renal tubular fibrosis and apoptosis in UUO.  相似文献   

11.
BACKGROUND: To elucidate the sequence of renal responses leading to nephron loss in obstructive nephropathy, we examined the evolution of segmental nephron cellular changes consequent to chronic unilateral ureteral obstruction (UUO) in the neonatal mouse. METHODS: Neonatal mice were subjected to UUO or sham-operation, and kidneys were harvested 5, 12 or 19 days after surgery. Proximal tubules (PT), distal tubules (DT) and collecting ducts (CD) were identified with lectins. Histomorphometric quantitation was made for cellular necrosis, apoptosis, proliferation, tubular dilatation, tubular basement membrane (TBM) thickening, interstitial collagen, and glomerular maturation. The distribution of hypoxic tissue was determined using pimonidazole as a marker. Additional studies were performed by mechanically stretching monolayer cultures of mouse proximal tubular and collecting duct cells, and measuring apoptosis. RESULTS: Neonatal UUO induced an arrest of glomerular maturation throughout the period of study. Chronic UUO induced hypoxia, tubular necrosis, proliferation, and TBM thickening in the PT, but stimulated apoptosis in the DT and CD. Tubular dilation in the obstructed kidney was most severe in CD and least severe in PT. Tubular cell apoptosis closely paralleled tubular dilation (P < 0.05), and fibrosis surrounding individual tubules also correlated with tubular dilation (P < 0.001). Mechanical stretching of cultured mouse tubular cells induced apoptosis directly proportional to the magnitude of axial strain: apoptosis was consistently greater in CD than in PT cells (P < 0.05). CONCLUSIONS: Following UUO, the co-localization of hypoxia with cellular proliferation, necrosis, and TBM thickening of the PT is consistent with ischemic injury resulting from vasoconstriction. In contrast, a selective dilation of the distal portion of the nephron (DT and CD), which results from the greater tubular compliance there, leads to stretch-induced epithelial cell apoptosis, along with a progressive peritubular fibrosis. Nephron loss in the obstructed developing kidney likely results from complex, segment-specific cellular responses.  相似文献   

12.
BACKGROUND: Transforming growth factor-beta (TGF-beta) has been implicated in the development of renal fibrosis induced by unilateral ureteral obstruction (UUO). However, there is little information on signaling pathways mediating TGF-beta activity involved in molecular and cellular events leading to renal fibrosis induced by UUO. In this study, we sought to determine whether Smad3, a major signaling component of TGF-beta, mediated renal fibrosis induced by UUO. METHODS: Renal fibrosis, inflammation, and apoptosis induced by UUO were macroscopically and histologically compared between wild-type mice and Smad3 null mice. RESULTS: Gross appearance of the kidney after UUO showed relatively intact kidney in Smad3 null mice [Smad3(-/-) mice] when compared with that of wild-type mice [Smad3(+/+) mice]. Renal interstitial fibrosis based on the interstitial area stained with Aniline-blue or Sirius red solution was significantly attenuated in the obstructed kidney of Smad3(-/-) mice when compared with that of Smad3(+/+) mice. Deposition of type I and type III collagens were also significantly reduced in the obstructed kidney of Smad3(-/-) mice. In addition, the numbers of myofibroblasts, macrophages, and CD4/CD8 T cells infiltrated into the kidney after UUO were significantly attenuated in the obstructed kidney of Smad3(-/-) mice when compared with that of Smad3(+/+) mice. Furthermore, terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) staining after UUO showed significantly reduced number of tubular apoptotic cells in the obstructed kidney of Smad3(-/-) mice when compared with that of Smad3(+/+) mice. Endogenous Smad pathway was activated in the obstructed kidney after UUO in wild-type mice as judged by the increase of phosphorylated Smad2 or phosphorylated Smad2/3-positive cells in renal interstitial area. CONCLUSION: Smad3 deficiency attenuated renal fibrosis, inflammation, and apoptosis after UUO, suggesting that Smad3 was a key molecule mediating TGF-beta activity leading to real fibrosis after UUO.  相似文献   

13.
目的 探讨mTOR信号通路在肾间质成纤维细胞增生活化过程中的调控作用,并研究其抑制剂在抗肾纤维化治疗中的可行性.方法 用8周龄雌性C57BL/6小鼠构建单侧输尿管结扎(UUO)肾间质纤维化动物模型(n=30),按数字随机法分为雷帕霉素组(n=15)及UUO组(n=15).雷帕霉素组术前1d开始腹腔注射雷帕霉素(2 mg·kg-1·d-1)至实验结束;UUO组注射生理盐水.分别于术后1、3、7、14 d处死小鼠(n=3),留肾组织进行相关检测.同时,体外实验评估雷帕霉素对TGF-β诱导鼠成纤维细胞株(NIH3T3细胞)活化的干预作用.结果 UUO小鼠肾组织中活化的肌成纤维细胞[α肌动蛋白(α-SMA)阳性]高表达mTOR通路下游效应因子pS6K.雷帕霉素显著抑制pS6K表达及肾间质中肌成纤维细胞的活化,改善肾小管间质损伤及纤维化程度.实时荧光定量PCR结果提示雷帕霉素组小鼠肾皮质组织中成纤维细胞特异蛋白1 (FSP1)、转化生长因子β(TGF-β)、结缔组织因子(CTGF)及Ⅳ型胶原蛋白基因α1 (Col 4A1)的mRNA水平显著下降.体外实验结果示TGF-β诱导小鼠成纤维细胞株( NIH3T3)的mTOR通路显著活化,并大量合成α-SMA.雷帕霉素能够明显抑制mTOR通路活性,降低细胞的纤维化活性.结论 肾间质纤维化过程中成纤维细胞内的mTOR信号通路高度活化.抑制mTOR通路能够显著降低成纤维细胞的活性,改善肾间质纤维化程度.  相似文献   

14.
The transforming growth factor-beta (TGF-beta) plays a central role in the progression of renal fibrosis. TGF-beta transduces its signal through the activin receptor-like kinase (ALK)5. IN-1130, a novel small molecule ALK5 inhibitor, inhibited the purified kinase domain of ALK5-mediated Smad3 phosphorylation with an IC(50) value of 5.3 nM. IN-1130 proved to be highly selective in a panel of 27 serine/threonine and tyrosine kinases including p38alpha mitogen-activated protein kinase. We evaluated the efficacy of IN-1130 to block renal fibrogenesis induced by unilateral ureteral obstruction (UUO) in rats. Either vehicle (saline) or IN-1130 (10 and 20 mg/kg/day) was intraperitoneally administered to UUO rats for 7 and 14 days. Phosphorylated Smad2 (pSmad2) and markers of fibrosis were analyzed in kidney tissues. In UUO control kidneys, interstitial fibrosis including tubular atrophy, loss and dilation, inflammatory cell infiltration, and fibroblast cell proliferation was prominent. These morphological changes were notably reduced by IN-1130 treatment. IN-1130 decreased levels of TGF-beta1 messenger RNA (mRNA), type I collagen mRNA, and pSmad2, compared to UUO control rats. As determined by measuring the hydroxyproline content, total kidney collagen amount was increased in UUO control kidneys, but significantly reduced by IN-1130 treatment, which was comparable to results of histochemical staining for collagen. IN-1130 also suppressed the expression of alpha-smooth muscle actin (alpha-SMA) and fibronectin in UUO kidneys. Our results show that IN-1130 suppressed the fibrogenic process of UUO, further underscoring the potential clinical benefits of IN-1130 in the treatment of renal fibrosis.  相似文献   

15.
This is an editorial review of investigations into the correlation of structure and function of the kidney in various inflammatory and noninflammatory glomerular diseases and in focal and diffuse interstitial nephritis. In detail these investigations produced the following results: (1) The excretory function of the glomeruli for substances usually eliminated with the urine is, in the case of inflammatory and noninflammatory glomerular diseases, detrimentally affected by tubulointerstitial changes, i.e. by processes accompanied by interstitial fibrosis and tubular atrophy. Likewise primary interstitial renal diseases when accompanied by interstitial fibrosis and tubular atrophy may lead to reduction in GFR. (2) Inflammatory and noninflammatory glomerular diseases, even when very severe, are not accompanied by a measurable reduction in GFR when the renal cortex interstitium shows no changes and the tubules exhibit no pathological findings. (3) The concentration ability of the kidney, too, depends primarily on tubulointerstitial changes and not primarily on a reduction of the glomerular filtration surface area. As interstitial fibrosis and tubular atrophy increase, the maximum concentration ability of the kidney decreases, even when the glomerular structure is preserved. (4) The decrease in GFR in the case of processes in the renal cortex accompanied by severe interstitial fibrosis is the result of the reduction of the number and of the area of the postglomerular vessels, i.e. the result of an impeded outflow from the glomeruli and of a concomitant slower circulation through the glomeruli. (5) In the case of inflammatory and noninflammatory glomerular and extraglomerular renal diseases accompanied by slight interstitial fibrosis and tubular atrophy, the GFR is detrimentally affected via a hormonally controlled self-regulating mechanism (Thurau-mechanism) in the form as modified by Baumbach and Skott and Leyssac. The glomerular function thereby adapts to an insufficient tubular function, without there necessarily being any structural changes in the glomeruli.  相似文献   

16.
Renal progenitor tubular cells (label-retaining cells [LRC]) were recently identified in normal kidneys by in vivo bromodeoxyuridine (BrdU) labeling. This study was conducted to examine the behavior of LRC in renal fibrosis. BrdU was injected intraperitoneally into normal rats daily for 7 d. After a 2-wk chase period, unilateral ureteral obstruction (UUO) was induced in these rats. In normal and contralateral kidneys, LRC were observed scattering among tubular epithelial cells. After UUO, the number of the LRC significantly increased, and most of them were positive for proliferating cell nuclear antigen (PCNA). In contrast, PCNA+ cells lacking BrdU label were rarely observed. It is interesting that LRC were detected not only in tubules but also in the interstitium after UUO. Laminin staining showed that a number of the LRC were adjacent to the destroyed tubular basement membrane. Some tubules, including LRC, lost the expression of E-cadherin after UUO. A large number of cell populations expressed vimentin, heat shock protein 47, or alpha-smooth muscle actin in the UUO kidneys, and each population contained LRC. None of the LRC was positive for these fibroblastic markers in contralateral kidneys. When renal tubules from BrdU-treated rats were cultured in the gel, some cells protruded from the periphery of the tubules and migrated into the gel. Most of these cells were BrdU+. Neither the total content of BrdU in the kidneys nor the number of LRC in bone marrow significantly changed after UUO. Collectively, these results suggest that LRC is a cell population that proliferates, migrates, and transdifferentiates into fibroblast-like cells during renal fibrosis.  相似文献   

17.
Mizoribine has been shown to possess an immunosuppressive action that inhibits the proliferation of lymphocytes selectively by interfering with inosine monophosphate dehydrogenase. Recent studies have demonstrated that mizoribine improves renal tubulointerstitial fibrosis in the rat model of unilateral ureteral obstruction (UUO) by inhibiting the infiltration of macrophages. We, therefore, examined the dose dependency of the suppressive effect of mizoribine on the infiltration of interstitial macrophages and T lymphocytes and the interstitial volume in UUO-treated kidneys. Furthermore, we investigated the expression of osteopontin (OPN), known to be a chemoattractant protein for macrophages, in the renal cortex. In rats with UUO, the interstitial volume was markedly expanded, and macrophage and T lymphocyte infiltration in the interstitium and the expression of OPN in the cortical tubules were greatly increased. Treatment with mizoribine ameliorated the increase in interstitial volume induced by UUO. Interstitial infiltration of macrophages and T lymphocytes was dose dependently suppressed by mizoribine, and the decreased macrophage infiltration was correlated with inhibition of tubular OPN expression. These results suggest that mizoribine has a beneficial effect on several steps contributing to the progression of tubulointerstitial fibrosis caused by obstruction of the ureter.  相似文献   

18.
Introduction: Obstruction of the urinary tract has marked effects on renal blood flow, glomerular filtration rate (GFR), and tubular function. Moreover, ureteral obstruction results in an injury response that can progress to irreversible renal fibrosis and tubular atrophy by apoptosis. Methods: We examined the effect of a calcium channel blocker (verapamil) on renal functions and the abundance of apoptotic (p53, Fas, proliferating cell nuclear antigen [PCNA]) markers 1 week after Unilateral Ureteral Obstruction (UUO). Results: Immunohistochemistry studies revealed that UUO was markedly associated with up-regulation in the expression of p53 (1550 ± 82 vs 100 ± 23%), Fas (657 ± 48 vs 100 ± 31%), and proliferating cell nuclear antigen (945 ± 70 vs 100 ± 17% of sham levels). Administration of verapamil normalized the up-regulation of apoptotic markers p53 (724 ± 116 vs 1550 ± 82%); Fas (162 ± 38 vs 657 ± 48%) and PCNA (353 ± 54 vs 945 ± 70%). Furthermore, tubular diameter, as an important marker for detecting tubular atrophy was significantly decreased compared to those in UUO rabbits. The percent area of interstitial fibrosis in UUO kidneys was significantly greater than that in Verapamil-treated kidneys. Importantly, Verapamil reduced the development of interstitial fibrosis in UUO rabbits. We measured the GFR and renal blood flow in UUO. Short-term Verapamil challenge partially prevented the decrease in GFR (non-treated UUO: 62 ± 14; Verapamil + UUO: 119 ± 7; Sham: 127 ± 23 μL·min−1·kg body wt−1, P < 0.05) and renal blood flow (non-treated UUO: 1.1 ± 0.4; Verapamil + UUO: 5.0 ± 0.2; sham: 6.3 ± 0.2 mL·min−1·kg body wt−1, P < 0.05). Conclusion: Verapamil significantly prevents impairment in renal function and also prevents the up-regulation of p53, Fas, and PCNA during UUO, demonstrating a marked renoprotective effect of Verapamil treatment in conditions with urinary tract obstruction.  相似文献   

19.
20.
BACKGROUND: Progression of renal injury after relief of unilateral ureteral obstruction (UUO) has been demonstrated. Nitric oxide (NO) may be an effective intervention due to its vasodilatory, antifibrotic, and anti-apoptotic effects. Herein, we used dietary L-arginine (ARG) supplementation in a UUO relief model. METHODS: This study comprised group 1, control (no treatment). All other rats were subject to 3-day UUO, which was then relieved, and the rats maintained for 7 additional days. Group 2, no additional treatment; group 3, L-ARG; group 4, L-NAME, NO synthase inhibitor; group 5, ARG and L-NAME. Urinary NO(2/3) was quantified. GFR and ERPF were measured at day 10. Interstitial fibrosis and fibroblast expression, macrophage infiltration, tubular apoptosis, and proliferation, NOS expression, and the levels of tissue TGF-beta were evaluated. RESULTS: Urinary NO(2/3) was significantly increased by ARG treatment and decreased by L-NAME. GFR and ERPF measured 7 days following relief were not significantly different in the previously obstructed kidneys (POK) of groups 2 and 3. L-NAME significantly reduced GFR and ERPF in the POK. ARG significantly reduced apoptosis, macrophage infiltration, and fibroblast expression in the POK. L-NAME exacerbated the effects on apoptosis and fibroblasts. Fibrosis was minimal in groups 1 through 3, but was significantly increased by L-NAME. ARG did not affect renal NOS expression and tissue TGF-beta1 levels. CONCLUSION: Dietary ARG supplementation during UUO relief did not improve ERPF or GFR. However, renal damage, including fibrosis, apoptosis, and macrophage infiltration was significantly improved by ARG treatment. This suggests that increasing NO availability could be beneficial in the setting of UUO relief.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号