首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The steady-state visual evoked potential (SSVEP), a neurophysiological marker of attentional resource allocation with its generators in early visual cortex, exhibits enhanced amplitude for emotional compared to neutral complex pictures. Emotional cue extraction for complex images is linked to the N1-EPN complex with a peak latency of ∼140–160 ms. We tested whether neural facilitation in early visual cortex with affective pictures requires emotional cue extraction of individual images, even when a stream of images of the same valence category is presented. Images were shown at either 6 Hz (167 ms, allowing for extraction) or 15 Hz (67 ms per image, causing disruption of processing by the following image). Results showed SSVEP amplitude enhancement for emotional compared to neutral images at a presentation rate of 6 Hz but no differences at 15 Hz. This was not due to featural differences between the two valence categories. Results strongly suggest that individual images need to be displayed for sufficient time allowing for emotional cue extraction to drive affective neural modulation in early visual cortex.  相似文献   

2.
In the visual cortex some neurons respond more strongly to short stimuli than to long ones. This is referred to as "end-stopping" and has been generally attributed to inhibition. The role of inhibition, however, has been difficult to demonstrate. Moreover, modeling has shown that end-stopping can be created solely from excitation. The roles of excitation and inhibition were investigated using intracellular recordings (Anderson et al., 2001, J. Neurosci. 21: 2104-2112). The results of that study were interpreted in favor of inhibition. The present report re-examines these results and finds that they may be in good, perhaps even better, agreement with an excitation model of end-stopping.  相似文献   

3.
4.
This study examined gender differences in DSM-IV personality disorders (PD) in outpatients. Structured diagnostic interviews were reliably administered to a consecutive series of 145 outpatients with a primary axis I diagnosis of binge eating disorder (BED). To further reduce variability due to heterogeneity of axis I, a subgroup of 75 patients with co-occurring major depressive disorder (MDD) was retested for gender differences. Overall, the proportion of males (34.4%) and females (27.4%) diagnosed with any PD did not significantly differ. Specific PD diagnoses were not differentially distributed by gender in the overall study group of patients with BED or in the subgroup of patients with BED and MDD, except for antisocial PD in males.  相似文献   

5.
Objective: While local bias in visual processing in children with autism spectrum disorders (ASD) has been reported to result in difficulties in recognizing faces and facially expressed emotions, but superior ability in disembedding figures, associations between these abilities within a group of children with and without ASD have not been explored. Methods: Possible associations in performance on the Visual Perception Skills Figure–Ground test, a face recognition test and an emotion recognition test were investigated within 25 8–12-years-old children with high-functioning autism/Asperger syndrome, and in comparison to 33 typically developing children. Results: Analyses indicated a weak positive correlation between accuracy in Figure–Ground recognition and emotion recognition. No other correlation estimates were significant. Conclusion: These findings challenge both the enhanced perceptual function hypothesis and the weak central coherence hypothesis, and accentuate the importance of further scrutinizing the existance and nature of local visual bias in ASD.  相似文献   

6.
A four-year longitudinal study explored the different contribution of low self-esteem, different types of stressors, conflict in close relationships and avoidant coping to the explanation of depressive symptomatology in adolescents. One hundred and ninety adolescents, 101 females and 89 males, participated in four annual assessments using diverse instruments. ANOVAs repeated measurements revealed a higher stress level, more conflicts with mothers and more avoidant coping in females as compared to males at the age of 14 years. Males showed fewer depressive symptoms and higher positive self-esteem at all times. Multiple regression analysis revealed that stress and avoidant coping in early and mid-adolescence explained a significant proportion of depressive symptoms among females in late adolescence. Among males, only the level of conflicts with friends in early adolescence contributed to their level of depressive outcome in late adolescence.  相似文献   

7.
8.
The integration of auditory and visual spatial information is an important prerequisite for accurate orientation in the environment. However, while visual spatial information is based on retinal coordinates, the auditory system receives information on sound location in relation to the head. Thus, any deviation of the eyes from a central position results in a divergence between the retinal visual and the head-centred auditory coordinates. It has been suggested that this divergence is compensated for by a neural coordinate transformation, using a signal of eye-in-head position. Using functional magnetic resonance imaging, we investigated which cortical areas of the human brain participate in such auditory-visual coordinate transformations. Sounds were produced with different interaural level differences, leading to left, right or central intracranial percepts, while subjects directed their gaze to visual targets presented to the left, to the right or straight ahead. When gaze was to the left or right, we found the primary visual cortex (V1/V2) activated in both hemispheres. The occipital activation did not occur with sound lateralization per se, but was found exclusively in combination with eccentric eye positions. This result suggests a relation of neural processing in the visual cortex and the transformation of auditory spatial coordinates responsible for maintaining the perceptual alignment of audition and vision with changes in gaze direction.  相似文献   

9.
Cognitive deficits in schizophrenia, especially those related to prefrontal cortex (PFC) functions, influence functional outcome. There is evidence for sex differences in cognition in schizophrenia, but the results in the literature are still controversial.ObjectiveThis study evaluated different modalities of working memory (WM) and executive control (EC), functions that are both associated with the PFC, between sexes in schizophrenic patients and controls.MethodsWe used a battery of neuropsychological tests for assessing auditory, spatial, and visual-matching WM and used a dual task for assessing EC. The study included 50 inpatients (25 female) partially remitted and taking atypical neuroleptics, as well as 40 controls (20 female) matched for age and education.ResultsSignificant sex differences were found in the dual task; female patients detected fewer correct trials than male patients and controls did. Moreover, female patients performed significantly worse in the single visual subtest of the dual task. For the controls, no sex differences were found. Males showed higher positive symptoms than females, but no other differences in psychopathology, disease characteristics, or extrapyramidal symptoms were found between sexes.ConclusionThe present study shows an absence of sex differences in WM in healthy subjects and in patients with schizophrenia. However, in the dual task and in the single visual subtest, female patients performed worse than males. This finding suggests that in contrast to males, nonacute female inpatients show an underlying attentional deficit that may contribute to impairment in higher-order functions such as EC.  相似文献   

10.
A comparative analysis of the area of the cortex that is adjacent to the primary visual area (V1), indicates that the lateral extrastriate cortex of primitive mammals was likely to contain only a single visuotopically organized field, the second visual area (V2). Few, if any, other visual areas existed. The opposing hypothesis, that primitive mammals had a 'string' of small visual areas in the cortex lateral to V1 (as in some rodents), is not supported by studies of the organization of extrastriate cortex in other mammals, nor by the variability in this organization among extant rodents. A critical re-analysis of published evidence on the presence of multiple areas adjacent to V1 in some rodents has led to alternative interpretations of the organization of the areas in these regions.  相似文献   

11.
The reduced neural response in certain brain regions when a task‐relevant stimulus is repeated (“repetition suppression”, RS) is often attributed to facilitation of the cognitive processes performed in those regions. Repetition of visual objects is associated with RS in the ventral and lateral occipital/temporal regions, and is typically attributed to facilitation of visual processes, ranging from the extraction of shape to the perceptual identification of objects. In two fMRI experiments using a semantic classification task, we found RS in a left lateral occipital/inferior temporal region to a picture of an object when the name of that object had previously been presented in a separate session. In other words, we found RS despite negligible visual similarity between the initial and repeated occurrences of an object identity. There was no evidence that this RS was driven by the learning of task‐specific responses to an object identity (“S‐R learning”). We consider several explanations of this occipitotemporal RS, such as phonological retrieval, semantic retrieval, and visual imagery. Although no explanation if fully satisfactory, it is proposed that such effects most plausibly relate to the extraction of task‐relevant information relating to object size, either through the extraction of sensory‐specific semantic information or through visual imagery processes. Our findings serve to emphasize the potential complexity of processing within traditionally visual regions, at least as measured by fMRI. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
It is important to understand whether functional maps of primary visual cortex (V1) are organized differently at the representation of different eccentricities. By using optical imaging of intrinsic signals, we compared the maps of orientation and spatial frequency (SF) preference between central (0-3 degrees ) and paracentral (4-8 degrees ) V1 in the prosimian bush baby (Otolemur garnetti). No differences related to eccentricity were found for orientation selectivity or magnitude between central and paracentral V1. We found, however, that cardinal orientations were overrepresented in central but not in paracentral V1 and that isoorientation domain size tended to be smaller in the central representation. We demonstrated that spatial frequency was represented continuously across V1, and that the map of SF preference exhibited eccentricity-dependent variations, with more territory devoted to higher SFs in central than in paracentral V1. Although there were no spatial relationships between orientation domains and cytochrome oxidase (CO) blobs or interblobs, CO blobs tended to prefer lower SFs than interblobs. Taken together with previous research, our data indicate that functional domains in V1 show eccentricity-related differences in organization and also support the idea that different maps (with or without specific geometrical relationships) are organized for adequate coverage of each feature in visual space.  相似文献   

13.
This longitudinal study examined 75 young adolescents to explore whether self-competence predicts the emergence of gender differences in depression and anxiety. During both 6th and 7th grade, boys reported significantly higher levels of self-competence than did girls. In addition, boys were significantly less depressed and anxious than girls in 7th grade, but not in 6th grade. Finally, when the variance contributed by self-competence was accounted for, the relationship between gender and trait anxiety weakened and the relationship between gender and depression became non-significant. These results support the hypothesis that self-competence is partially responsible for the emergence of gender differences in depression and anxiety during early adolescence.  相似文献   

14.
Our aim in this study was to compare panic-related catastrophic appraisals between women and men with panic disorder with agoraphobia (PDA). One hundred two outpatients with PDA (75 women and 27 men) participated. Two instruments for the assessment of catastrophic appraisals, Agoraphobic Cognitions Questionnaire and Panic Appraisal Inventory, were administered before and after cognitive-behavioral therapy (CBT) that also included pharmacotherapy in three-fourths of the patients. Female and male patients did not differ significantly in terms of their tendency to anticipate catastrophic consequences of panic, before or after CBT-based treatment. For both females and males, the tendency to make catastrophic appraisals decreased significantly with treatment. We conclude that among patients with PDA there are no gender differences in catastrophic appraisals of panic sensations and symptoms. The apparently higher risk of panic recurrence in women does not seem to be related to their panic-related catastrophic appraisals. These findings also support a notion that there is no gender difference in response to CBT-based treatment of PDA.  相似文献   

15.
The visual front-end of reading is most often associated with orthographic processing. The left ventral occipito-temporal cortex seems to be preferentially tuned for letter string and word processing. In contrast, little is known of the mechanisms responsible for pre-orthographic processing: the processing of character strings regardless of character type. While the superior parietal lobule has been shown to be involved in multiple letter processing, further data is necessary to extend these results to non-letter characters. The purpose of this study is to identify the neural correlates of pre-orthographic character string processing independently of character type. Fourteen skilled adult readers carried out multiple and single element visual categorization tasks with alphanumeric (AN) and non-alphanumeric (nAN) characters under fMRI. The role of parietal cortex in multiple element processing was further probed with a priori defined anatomical regions of interest (ROIs). Participants activated posterior parietal cortex more strongly for multiple than single element processing. ROI analyses showed that bilateral SPL/BA7 was more strongly activated for multiple than single element processing, regardless of character type. In contrast, no multiple element specific activity was found in inferior parietal lobules. These results suggests that parietal mechanisms are involved in pre-orthographic character string processing. We argue that in general, attentional mechanisms are involved in visual word recognition, as an early step of word visual analysis.  相似文献   

16.
Adaptation is a prominent feature of biological neuronal systems. A common interpretation of adaptation in terms of function is that it provides flexibility for a neuronal system to perform well under varying external conditions, for example by adjusting the input/output relation of a sensory system with reference to the ensemble of stimuli the organism currently perceives. This interpretation, however, only applies if the time-scale of adaptation is slower than the time-scale at which the environment changes. Experimentally it is observed, however, that adaptation can be very rapid. Spike-frequency adaptation of cortical neurons, for example, occurs on a time-scale of approximately 100 ms. Here we show that those rapid adaptation processes can also be understood within the framework of information theory. We start with the hypothesis that neuronal codes are designed to optimize the information a neuronal representation conveys about an input stimulus for any increasing time window beginning with stimulus onset, and we show that this implies a rapid adaptation of the neuronal code on the time-scale of stimulus presentation. Adaptation, however, does not occur because the state of the environment changes. Rather it is a reaction to changes of the organisms own internal state, e.g. the level of noise in the neuronal representation. We apply this approach to a model of an orientation hypercolumn in the primary visual cortex, and predict that inter-columnar interactions should adapt on the time-scale of a typical fixation period ( approximately 300 ms).  相似文献   

17.
Idiopathic cervical dystonia (CD) is a focal dystonia characterized by an abnormal tilted or twisted head position. This abnormal head position could lead to a distorted perception of the visual vertical and spatial orientation. The aim of this cross-sectional study was to investigate whether the perception of the visual vertical is impaired in patients with CD. The subjective visual vertical test (SVV) was measured in 24 patients with CD and 30 controls. The SVV test is conducted in a completely darkened room. A laser bar is projected on an opposing white wall, which is deviated from the earth’s gravitational vertical. Participants were seated with their head unrestrained and were instructed to position this bar vertically. The deviations in degrees (°) are corrected for the side of laterocollis in order to measure the E-effect. We found that patients were able to position the laser bar as equally close to the earth’s gravitational vertical as controls (+ 0.67° SD ± 2.12 vs + 0.29° SD ± 1.08, p = 0.43). No E-effect was measured. Notwithstanding the abnormal position of the head, the perception of the visual vertical in patients with idiopathic CD is intact, possibly because of central neural compensatory mechanisms.  相似文献   

18.
Humans can identify individual faces under different viewpoints, even after a single encounter. We determined brain regions responsible for processing face identity across view changes after variable delays with several intervening stimuli, using event-related functional magnetic resonance imaging during a long-term repetition priming paradigm. Unfamiliar faces were presented sequentially either in a frontal or three-quarter view. Each face identity was repeated once after an unpredictable lag, with either the same or another viewpoint. Behavioral data showed significant priming in response time, irrespective of view changes. Brain imaging results revealed a reduced response in the lateral occipital and fusiform cortex with face repetition. Bilateral face-selective fusiform areas showed view-sensitive repetition effects, generalizing only from three-quarter to front-views. More medial regions in the left (but not in the right) fusiform showed repetition effects across all types of viewpoint changes. These results reveal that distinct regions within the fusiform cortex hold view-sensitive or view-invariant traces of novel faces, and that face identity is represented in a view-sensitive manner in the functionally defined face-selective areas of both hemispheres. In addition, our finding of a better generalization after exposure to a 3/4-view than to a front-view demonstrates for the first time a neural substrate in the fusiform cortex for the common recognition advantage of three-quarter faces. This pattern provides new insights into the nature of face representation in the human visual system.  相似文献   

19.
Emotional stimuli have been shown to preferentially engage initial attention but their sustained effects on neural processing remain largely unknown. The present study evaluated whether emotional faces engage sustained neural processing by examining the attenuation of neural repetition suppression to repeated emotional faces. Repetition suppression of neural function refers to the general reduction of neural activity when processing a repeated stimulus. Preferential processing of emotional face stimuli, however, should elicit sustained neural processing such that repetition suppression to repeated emotional faces is attenuated relative to faces with no emotional content. We measured the reduction of functional magnetic resonance imaging signals associated with immediate repetition of neutral, angry and happy faces. Whereas neutral faces elicited the greatest suppression in ventral visual cortex, followed by angry faces, repetition suppression was the most attenuated for happy faces. Indeed, happy faces showed almost no repetition suppression in part of the right-inferior occipital and fusiform gyri, which play an important role in face-identity processing. Our findings suggest that happy faces are associated with sustained visual encoding of face identity and thereby assist in the formation of more elaborate representations of the faces, congruent with findings in the behavioral literature.  相似文献   

20.
BACKGROUND: Several studies have demonstrated that visual evoked potentials can be influenced by sport events. To the best of our knowledge, there are no specific parameters for the most appropriate stimulation for evaluating the functional state of athletes. OBJECTIVE: To investigate the best stimulation in visual evoked potential to apply to functional evaluation of athletes. DESIGN, TIME AND SETTING: Ninety-five, healthy students from the Shandong Normal University took part in an observational, contrast study. PARTICIPANTS: All active participants were male. Sixty-five students majored in physical education, and had participated in exercise for the duration of (4.26 ± 3.08) years. An additional 30 students majored in other subjects. METHODS: The neural electricity tester, NDI-200, was adapted to examine and record visual evoked potential with varying probes using bipolar electrodes attached to the head of all the participants in a dark room. The visual evoked potential values were analyzed transversally. A chessboard pattern reversal method was applied with the following parameters: 2 Hz stimulation frequency, brightness of 90 cdp, 80% contrast, 1–100 Hz bandpass filters, and 10 μV sensitivity; 100 responses were averaged. MAIN OUTCOME MEASURES: latency, peak latencies, and inter-peak latencies were measured in N75, P100, N145 with varying probe stimulations. RESULTS: (1) Comparisons between the little check, middle check, and big check stimulation, demonstrated that the common tendencies in visual evoked potential indexes of the two groups of N75 latency were successively shorter and N145 were longer. P100-N145 peak latency was decreased and each inter-peak latency was longer. (2) Changes of N75, P100, and N145 with different check stimulations in the physical education student group: after compared with the middle check stimulation, N75 latency was significantly longer (P < 0.01), and N75-P100 inter-peak latency (P < 0.05) and N75-N145 inter-peak latency were both shorter (P < 0.05). N75-P100 inter-peak latency was shorter (P < 0.01) in the little check stimulation. When compared with the big check stimulation, N75 latency was significantly longer (P < 0.01) and N145 was shorter (P < 0.01). Compared with the big check stimulation, N145 latency was significantly shorter (P < 0.05). (3) Changes of N75, P100, and N145 with different check stimulations in the normal students: when compared with the big check stimulation, N75 latency was significantly longer (P < 0.05) and N145 latency was shorter (P < 0.05). Each inter-peak latency was shorter (P < 0.05) in the little check stimulation. When comparing the middle check stimulation, N75-N145 inter-peak latency was shorter (P < 0.05). CONCLUSION: Large visual evoked potential differences were observed between students majoring in physical education and other subjects when medium probe stimulation was applied. These results suggest that the use of medium probe stimulation (25 mm×25 mm) should be adopted when evaluating the functional state of athletes. Key Words: visual evoked potential; functional evaluation; probe stimulation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号