首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Adeno-associated virus 2 (AAV) vectors are currently in use in Phase I/II clinical trials for gene therapy of cystic fibrosis and hemophilia B. Although 100% of murine hepatocytes can be targeted by AAV vectors, the transgene expression is limited to approximately 5% of hepatocytes. Since the viral genome is a single-stranded DNA, and single strands of both polarities are encapsidated with equal frequency, it has been suggested that failure to undergo DNA strand-annealing accounts for the lack of efficient transgene expression. We and others, on the other hand, have proposed that failure to undergo viral second-strand DNA synthesis attributes to the observed low efficiency of transgene expression. We have previously documented that a cellular protein, designated FKBP52, when present in phosphorylated forms, inhibits the viral second-strand DNA synthesis, and consequently, limits transgene expression in nonhepatic cells, whereas unphosphorylated forms of FKBP52 have no effect. To further evaluate whether phosphorylated FKBP52 is also involved in regulating AAV-mediated transgene expression in murine hepatocytes, we generated transgenic mice overexpressing the cellular T-cell protein tyrosine phosphatase (TC-PTP) protein, known to catalyze dephosphorylation of FKBP52, as well as mice deficient in FKBP52. We demonstrate here that dephosphorylation of FKBP52 in TC-PTP transgenic (TC-PTP-TG) mice, and removal of FKBP52 in FKBP52-knockout (FKBP52-KO) mice results in efficient transduction of murine hepatocytes following tail-vein injection of recombinant AAV vectors. We also document efficient viral second-strand DNA synthesis in hepatocytes from both TC-PTP-TG and FKBP52-KO mice. Thus, our data strongly support the contention that the viral second-strand DNA synthesis, rather than DNA strand-annealing, is the rate-limiting step in the efficient transduction of hepatocytes, which should have implications in the optimal use of recombinant AAV vectors in human gene therapy.  相似文献   

2.
Recombinant vectors based on adeno-associated virus type 2 (AAV) target the liver efficiently, but the transgene expression is limited to approximately 5% of hepatocytes. The lack of efficient transduction is due, in part, to the presence of a cellular protein, FKBP52, phosphorylated forms of which inhibit the viral second-strand DNA synthesis. We have documented that dephosphorylation of FKBP52 at tyrosine residues by the cellular T cell protein tyrosine phosphatase (TC-PTP) enhances AAV-mediated transduction in primary murine hematopoietic cells from TC-PTP-transgenic mice. We have also documented that AAV-mediated transduction is significantly enhanced in hepatocytes in TC-PTP-transgenic as well as in FKBP52-deficient mice because of efficient viral second-strand DNA synthesis. In this study, we evaluated whether co-infection of conventional single-stranded AAV vectors with self-complementary AAV-TC-PTP vectors leads to increased transduction efficiency of conventional AAV vectors in established human cell lines in vitro and in primary murine hepatocytes in vivo. We demonstrate here that scAAV-TC-PTP vectors serve as a helper virus in augmenting the transduction efficiency of conventional AAV vectors in vitro as well as in vivo which correlates directly with the extent of second-strand DNA synthesis of conventional single-stranded AAV vectors. Toxicological studies following tail-vein injections of scAAV-TC-PTP vectors in experimental mice show no evidence of any adverse effect in any of the organs in any of the mice for up to 13 weeks. Thus, this novel co-infection strategy should be useful in circumventing one of the major obstacles in the optimal use of recombinant AAV vectors in human gene therapy.  相似文献   

3.
Zhao W  Wu J  Zhong L  Srivastava A 《Gene therapy》2007,14(6):545-550
We have documented that a cellular chaperone protein, FKBP52, when phosphorylated at tyrosine and/or serine/threonine (Ser/Thr) residues, interacts with the D-sequence in the inverted terminal repeats of the adeno-associated virus 2 (AAV) genome, inhibits the viral second-strand DNA synthesis, and leads to inefficient transgene expression from recombinant AAV vectors in certain cell types. We have also demonstrated that FKBP52 is dephosphorylated at tyrosine residues by T-cell protein tyrosine phosphatase (TC-PTP), and that deliberate overexpression of TC-PTP leads to more efficient viral second-strand DNA synthesis, and increased transgene expression. However, the identity of the putative Ser/Thr protein phosphatase that dephosphorylates FKBP52 at Ser/Thr residues has remained elusive. Using known inhibitors of Ser/Thr phosphatases, we have now identified protein phosphatase 5 (PP5) to be a candidate enzyme. Deliberate overexpression of PP5 in 293 cells, which does not influence cellular growth, leads to approximately 5-fold increase in the transduction efficiency of conventional single-stranded AAV vectors, but no significant enhancement in the transduction efficiency of self-complementary AAV vectors, suggesting that PP5 plays a role in AAV second-strand DNA synthesis. Electrophoretic mobility-shift assays show that in cells overexpressing PP5, the extent of the complex formation between FKBP52 and the AAV D-sequence is significantly reduced. These studies suggest that PP5-mediated dephosphorylation of FKBP52 at Ser/Thr residues augments viral second-strand DNA synthesis and enhances AAV transduction efficiency, which has implications in the optimal use of these vectors in human gene therapy.  相似文献   

4.
We have recently shown that co-administration of conventional single-stranded adeno-associated virus 2 (ssAAV2) vectors with self-complementary (sc) AAV2-protein phosphatase 5 (PP5) vectors leads to a significant increase in the transduction efficiency of ssAAV2 vectors in human cells in vitro as well as in murine hepatocytes in vivo. In the present study, this strategy has been further optimized by generating a mixed population of ssAAV2-EGFP and scAAV2-PP5 vectors at a 10:1 ratio to achieve enhanced green fluorescent protein (EGFP) transgene expression at approximately 5- to 10-fold higher efficiency, both in vitro and in vivo. This simple coproduction method should be adaptable to any ssAAV serotype vector containing transgene cassettes that are too large to be encapsidated in scAAV vectors.  相似文献   

5.
Although conventional recombinant single-stranded adeno-associated virus serotype 2 (ssAAV2) vectors have been shown to efficiently transduce numerous cells and tissues such as brain and muscle, their ability to transduce primary hematopoietic stem cells (HSCs) has been reported to be controversial. We have previously documented that among the ssAAV serotype 1 through 5 vectors, ssAAV1 vectors are more efficient in transducing primary murine HSCs, but that viral second-strand DNA synthesis continues to be a rate-limiting step. In the present studies, we evaluated the transduction efficiency of several novel serotype vectors (AAV1, AAV7, AAV8, and AAV10) and documented efficient transduction of HSCs in a murine serial bone marrow transplantation model. Self-complementary AAV (scAAV) vectors were found to be more efficient than ssAAV vectors, and the use of hematopoietic cell-specific enhancers/promoters, such as the human beta-globin gene DNase I-hypersensitive site 2 enhancer and promoter (HS2-betap) from the beta-globin locus control region (LCR), and the human parvovirus B19 promoter at map unit 6 (B19p6), allowed sustained transgene expression in an erythroid lineage-restricted manner in both primary and secondary transplant recipient mice. The proviral AAV genomes were stably integrated into progenitor cell chromosomal DNA, and did not lead to any overt hematological abnormalities in mice. These studies demonstrate the feasibility of the use of novel scAAV vectors for achieving high-efficiency transduction of HSCs as well as erythroid lineage-restricted expression of a therapeutic gene for the potential gene therapy of beta-thalassemia and sickle cell disease.  相似文献   

6.
Conflicting data exist on hematopoietic cell transduction by AAV serotype 2 (AAV2) vectors, and additional AAV serotype vectors have not been evaluated for their efficacy in hematopoietic stem/progenitor cell transduction. We evaluated the efficacy of conventional, single-stranded AAV serotype vectors 1 through 5 in primitive murine hematopoietic stem/progenitor cells in vitro as well as in vivo. In progenitor cell assays using Sca1+ c-kit+ Lin- hematopoietic cells, 9% of the colonies in cultures infected with AAV1 expressed the transgene. Coinfection of AAV1 with self-complementary AAV vectors carrying the gene for T cell protein tyrosine phosphatase (scAAV-TC-PTP) increased the transduction efficiency to 24%, indicating that viral secondstrand DNA synthesis is a rate-limiting step. This was further corroborated by the use of scAAV vectors, which bypass this requirement. In bone marrow transplantation studies involving lethally irradiated syngeneic mice, Sca1+ c-kit+ Lin- cells coinfected with AAV1 +/- scAAV-TC-PTP vectors led to transgene expression in 2 and 7.5% of peripheral blood (PB) cells, respectively, 6 months posttransplantation. In secondary transplantation experiments, 7% of PB cells and 3% of bone marrow (BM) cells expressed the transgene 6 months posttransplantation. Approximately 21% of BM-derived colonies harbored the proviral DNA sequences in integrated forms. These results document that AAV1 is thus far the most efficient vector in transducing primitive murine hematopoietic stem/progenitor cells. Further studies involving scAAV genomes and hematopoietic cell-specific promoters should further augment the transduction efficiency of AAV1 vectors, which should have implications in the optimal use of these vectors in hematopoietic stem cell gene therapy.  相似文献   

7.
Elimination of specific surface-exposed single tyrosine (Y) residues substantially improves hepatic gene transfer with adeno-associated virus type 2 (AAV2) vectors. Here, combinations of mutations in the seven potentially relevant Y residues were evaluated for further augmentation of transduction efficiency. These mutant capsids packaged viral genomes to similar titers and retained infectivity. A triple-mutant (Y444+500+730F) vector consistently had the highest level of in vivo gene transfer to murine hepatocytes, approximately threefold more efficient than the best single-mutants, and ~30–80-fold higher compared with the wild-type (WT) AAV2 capsids. Improvement of gene transfer was similar for both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors, indicating that these effects are independent of viral second-strand DNA synthesis. Furthermore, Y730F and triple-mutant vectors provided a long-term therapeutic and tolerogenic expression of human factor IX (hF.IX) in hemophilia B (HB) mice after administration of a vector dose that only results in subtherapeutic and transient expression with WT AAV2 encapsidated vectors. In summary, introduction of multiple tyrosine-mutations into the AAV2 capsid results in vectors that yield at least 30-fold improvement of transgene expression, thereby lowering the required therapeutic dose and potentially vector-related immunogenicity. Such vectors should be attractive for treatment of hemophilia and other genetic diseases.  相似文献   

8.
We previously reported that among single-stranded adeno-associated virus (ssAAV) vectors, serotypes 1 through 5, ssAAV1 is the most efficient in transducing murine hematopoietic stem cells (HSCs), but viral second-strand DNA synthesis remains a rate-limiting step. Subsequently, using double-stranded, self-complementary AAV (scAAV) vectors, serotypes 7 through 10, we observed that scAAV7 vectors also transduce murine HSCs efficiently. In the present study, we used scAAV1 and scAAV7 shuttle vectors to transduce HSCs in a murine bone marrow serial transplant model in vivo, which allowed examination of the AAV proviral integration pattern in the mouse genome, as well as recovery and nucleotide sequence analyses of AAV-HSC DNA junction fragments. The proviral genomes were stably integrated, and integration sites were localized to different mouse chromosomes. None of the integration sites was found to be in a transcribed gene, or near a cellular oncogene. None of the animals, monitored for up to 1 year, exhibited pathological abnormalities. Thus, AAV proviral integration-induced risk of oncogenesis was not found in our study, which provides functional confirmation of stable transduction of self-renewing multipotential HSCs by scAAV vectors as well as promise for the use of these vectors in the potential treatment of disorders of the hematopoietic system.  相似文献   

9.
To date adeno-associated viral (AAV) vectors are the only gene therapy vectors that have been shown to efficiently transduce photoreceptor cells and have thus become the most commonly used vector for ocular transduction. Various AAV serotypes have been evaluated in the eye, the first of which was AAV2, which is able to transduce photoreceptors, retinal pigment epithelium (RPE) and retinal ganglion cells. AAV serotypes 1 and 4, as well as AAV2 pseudotyped with these capsids, only transduce the RPE. AAV serotype 5 and AAV2/5 transduce the photoreceptors as well as RPE, but not retinal ganglion cells. Here, we assessed the capacity of the novel serotype AAV2/8 to transduce various ocular tissues of the adult murine retina by administering AAV2/8 green fluorescent protein intravitreally, subretinally and intracamerally. We also determined the kinetics and efficiency of self-complementary AAV (scAAV) vectors of serotypes 2/2, 2/5 and 2/8 and compared them with single-stranded AAV (ssAAV). We found that ssAAV2/8 transduces photoreceptors and RPE more efficiently than ssAAV2/2 and ssAAV2/5, and that scAAV2/8 had faster onset and higher transgene expression than ssAAV2/8. This improved transduction efficiency might facilitate the development of improved gene therapy protocols for inherited retinal degenerations, particularly those caused by defects in photoreceptor-specific genes.  相似文献   

10.
Adeno-associated virus (AAV) liver-directed gene therapy seems a feasible treatment for Crigler-Najjar syndrome type I, an inherited liver disorder characterized by severe unconjugated hyperbilirubinemia. Transient immunosuppression coupled with vector administration seems needed to overcome host immune responses that prevent long-term expression in patients. The immunosuppressive mycophenolate mofetil (MMF), which inhibits de novo synthesis of purines, is a promising candidate. To investigate the potential use of MMF in patients with Crigler-Najjar syndrome, we studied its effect on single-stranded AAV (ssAAV)-mediated correction of hyperbilirubinemia in the relevant preclinical model, the Gunn rat. Although MMF was well tolerated and effective it also impaired the efficacy of ssAAV. Subsequent in vitro studies showed that this effect is not specific for UGT1A deficiency. In fact, clinical relevant concentrations of mycophenolic acid (MPA), the active compound of MMF, also impair the transduction of HEK-293T cells by ssAAV. Because this effect was reversed by guanosine addition, it seems that intracellular levels of this nucleotide become limited, suggesting that MPA impairs second-strand DNA synthesis. This is corroborated by observations that MPA did not impair transduction of 293T cells by a self-complementary AAV (scAAV) vector and that MMF did not reduce the scAAV efficacy in the Gunn rat. In conclusion, MMF impairs ssAAV-mediated liver-directed gene therapy, which is relevant for the use of this immunosuppressive agent with single-stranded vectors. Furthermore, because this effect is due to impaired second-strand synthesis, the use of MMF with scAAV seems warranted.  相似文献   

11.
Therapeutic levels of expression of the beta-globin gene have been difficult to achieve with conventional retroviral vectors without the inclusion of DNase I-hypersensitive site (HS2, HS3, and HS4) enhancer elements. We generated recombinant adeno-associated viral (AAV) vectors carrying an antisickling human beta-globin gene under the control of either the beta-globin gene promoter/enhancer or the erythroid cell-specific human parvovirus B19 promoter at map unit 6 (B19p6) without any enhancer, and tested their efficacy in a human erythroid cell line (K-562) and in primary murine hematopoietic progenitor cells (c-kit(+)lin()). We report here that (1) self-complementary AAV serotype 2 (scAAV2)-beta-globin vectors containing only the HS2 enhancer are more efficient than single-stranded AAV (ssAAV2)-beta-globin vectors containing the HS2+HS3+HS4 enhancers; (2) scAAV2-beta-globin vectors recombine with scAAV2-HS2+HS3+HS4 vectors after dual-vector transduction, leading to transgene expression; (3) scAAV2-beta-globin as well as scAAV1-beta-globin vectors containing the B19p6 promoter without the HS2 enhancer element are more efficient than their counterparts containing the HS2 enhancer/beta-globin promoter; and (4) scAAV2-B19p6-beta-globin vectors in K-562 cells, and scAAV1-B19p6-beta-globin vectors in murine c-kit(+)lin() cells, yield efficient expression of the beta-globin protein. Thus, the combined use of scAAV vectors and the parvovirus B19 promoter may lead to expression of therapeutic levels the beta-globin gene in human erythroid cells, which has implications in the use of these vectors in gene therapy of beta-thalassemia and sickle cell disease.  相似文献   

12.
Wang Z  Ma HI  Li J  Sun L  Zhang J  Xiao X 《Gene therapy》2003,10(26):2105-2111
Adeno-associated virus (AAV) is a promising gene vector based on a single-stranded (ss) DNA virus. Its transgene expression requires the conversion of ssDNA to double-stranded (ds) genome, a slow process responsible for the delayed transduction and occasional inefficiency. By mutating the inverted terminal repeat, we have made novel AAV vectors that predominantly package the self-complementary dsDNA genome. The dsAAV consistently demonstrated superior and accelerated transduction in vitro and in vivo. Dramatic increases in transgene expression were observed in most of the cell lines examined, including B16 melanoma and 3LL lung cancer that are difficult to be transduced by the conventional ssAAV vectors. Similar increases were also observed in vivo in a variety of tissues including muscle and liver. The dsAAV transduced a vast majority of the hepatocytes for more than 6 months, while the ssAAV transduced only a small fraction. In addition to circumventing the requirement for DNA synthesis, the dsAAV exhibited higher in vivo DNA stability and more effective circularization than the ssAAV, suggesting potential molecular mechanisms for the faster, stronger and prolonged transgene expression.  相似文献   

13.
Self-complementary adeno-associated viral (scAAV) vectors bypass the requirement for viral second-strand DNA synthesis, but the packaging capacity of these vectors ( approximately 2.4 kb) is significantly smaller than that of conventional AAV vectors ( approximately 4.8 kb). We constructed human recombinant green fluorescent protein (hrGFP) expression cassettes ranging from 2.3 to 4.1 kb. Each vector was biologically active, but the transduction efficiency of vectors containing <3.3-kb genomes was significantly higher than those containing 3.5-kb genomes or larger. However, scAAV vectors containing up to approximately 3.3-kb genomes also contained single-stranded genomes, and 3.5-kb and larger genomes were packaged only as single-stranded DNA. These data suggest that the maximum packaging capacity of scAAV vectors is approximately 3.3 kb. The production of single-stranded genomes was not due to repair of the terminal resolution site (trs) in the inverted terminal repeats in the AAV genome, but rather was partly due to the use of AAV helper plasmid, known to lead to higher levels of expression of Rep proteins. The use of a helper plasmid known to lead to reduced levels of Rep proteins led to the generation of scAAV vectors that contained approximately 90% of the viral genomes in double-stranded forms. These studies demonstrate the feasibility of achieving encapsidation of larger genomes into scAAV vectors than was suggested originally, but underscore the need to exercise caution in using the appropriate helper plasmid to generate scAAV stocks capable of high-efficiency transduction that are relatively free of single-stranded DNA-containing vectors.  相似文献   

14.
The thymus is the primary site of T-cell development and plays a key role in the induction of self-tolerance. We previously showed that the intrathymic (IT) injection of a transgene-expressing lentiviral vector (LV) in mice can result in the correction of a T cell–specific genetic defect. Nevertheless, the efficiency of thymocyte transduction did not exceed 0.1–0.3% and we were unable to detect any thymus transduction in macaques. As such, we initiated studies to assess the capacity of recombinant adeno-associated virus (rAAV) vectors to transduce murine and primate thymic cells. In vivo administration of AAV serotype 2–derived single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors pseudotyped with capsid proteins of serotypes 1, 2, 4, 5, and 8 demonstrated that murine thymus transduction was significantly enhanced by scAAV2/8. Transgene expression was detected in 5% of thymocytes and, notably, transduced cells represented 1% of peripheral T lymphocytes. Moreover, IT administration of scAAV2/8 particles in macaques, by endoscopic-mediated guidance, resulted in significant gene transfer. Thus, in healthy animals, where thymic gene transfer does not provide a selective advantage, scAAV2/8 is a unique tool promoting the in situ transduction of thymocytes with the subsequent export of gene-modified lymphocytes to the periphery.  相似文献   

15.
Adeno-associated virus (AAV) vectors package single-stranded genomes and require host-cell synthesis of the complementary strand for transduction. However, when the genome is half wild-type size, AAV can package either two copies, or dimeric inverted repeat DNA molecules. Dimeric, or self-complementary molecules (scAAV) should spontaneously reanneal, alleviating the requirement for host-cell DNA synthesis. We generated and characterized scAAV vectors in order to bypass the rate-limiting step of second-strand synthesis. In vitro, scAAV vectors were five- to 140-fold more efficient transducing agents than conventional rAAV, with a 5.9:1 particle to transducing unit ratio. This efficiency is neither greatly increased by co-infection with Ad, nor inhibited by hydroxyurea, demonstrating that transduction is independent of DNA synthesis. In vivo, scAAV expressing erythropoietin resulted in rapid and higher levels of hematocrit than a conventional single-stranded vector. These novel scAAV vectors represent a biochemical intermediate in rAAV transduction and should provide new insights into the biology of vector transduction.  相似文献   

16.
Recombinant cross-packaging of adeno-associated virus (AAV) genome of one serotype into other AAV serotypes has the potential to optimize tissue-specific gene transduction and expression in the heart. To evaluate the role of AAV1 to 5 virion shells on AAV2 transgene transduction, we constructed hybrid vectors in which each serotype capsid coding domain was cloned into a common vector backbone containing AAV2 replication genes. Constructs were tested for expression in: (1) adult murine heart in vivo using direct injection of virus, (2) neonatal and adult murine ventricular cardiomyocytes in vitro, and (3) adult human ventricular cardiomyocytes in vitro, using green fluorescent protein (GFP) as the measurable transgene. Serotype 1 virus demonstrated the highest transduction efficiency in adult murine cardiomyocytes both in vitro and in vivo, while serotype 2 virus had the greater transduction efficiency in neonatal cardiomyocytes in vitro. Prolonged in vivo myocardial GFP expression was observed for up to 12 months using serotype 1 and 2 vectors only. In human cardiomyocytes, serotype 1 vector was superior in transduction efficiency, followed by types 2, 5, 4, and 3. These data establish a hierarchy for efficient serotype-specific vector transduction in myocardial tissue. AAV1 serotype packaging results in more efficient transduction of genes in the murine and human adult heart, compared to other AAV serotypes. Our results suggest that adult human cardiac gene therapy may be enhanced by the use of serotype 1-specific AAV vectors.  相似文献   

17.
In liver cirrhosis, abnormal liver architecture impairs efficient transduction of hepatocytes with large viral vectors such as adenoviruses. Here we evaluated the ability of adeno-associated virus (AAV) vectors, small viral vectors, to transduce normal and cirrhotic rat livers. Using AAV serotype-1 (AAV1) encoding luciferase (AAV1Luc) we analyzed luciferase expression with a CCD camera. AAV1Luc was injected through the hepatic artery (intra-arterial (IA)), the portal vein (intra-portal (IP)), directly into the liver (intra-hepatic (IH)) or infused into the biliary tree (intra-biliar). We found that AAV1Luc allows long-term and constant luciferase expression in rat livers. Interestingly, IP administration leads to higher expression levels in healthy than in cirrhotic livers, whereas the opposite occurs when using IA injection. IH administration leads to similar transgene expression in cirrhotic and healthy rats, whereas intra-biliar infusion is the least effective route. After 70% partial hepatectomy, luciferase expression decreased in the regenerating liver, suggesting lack of efficient integration of AAV1 DNA into the host genome. AAV1Luc transduced mainly the liver but also the testes and spleen. Within the liver, transgene expression was found mainly in hepatocytes. Using a liver-specific promoter, transgene expression was detected in hepatocytes but not in other organs. Our results indicate that AAVs are convenient vectors for the treatment of liver cirrhosis.  相似文献   

18.
Studies have demonstrated that packaging of recombinant adeno-associated virus 2 (rAAV) as self-complementary duplex strand (sc) results in early transgene expression, possibly eliminating rate-limiting second-strand synthesis. In the present study, we evaluated the molecular organization, stability of the sc AAV genome, and transgene expression in the quadriceps muscle of C57BL/6J mice in vivo as compared with single-stranded (ss) AAV. Studies were carried out with rAAV encoding green fluorescent protein (GFP) or human carcinoembryonic antigen (CEA) either as single-stranded or self-complementary duplex strand structures, encapsidated in AAV-2 capsids. Mice were injected with 10(11) particles of the respective viruses and the vector-injected muscles were harvested 1 week, 2 weeks, 3 weeks, or 2 months later. Tissues were processed for total DNA isolation for the analyses of vector genomic configuration and copy number, and for immunostaining of transgene expression. ELISA was done on serum samples to quantitate CEA-specific humoral immune response as a correlate of transgene expression. Results of Southern blot and PCR analyses indicated more disintegration of the monomeric ss AAV DNA in vivo compared with linear sc AAV DNA. The results also indicated efficient conversion of the self-complementary duplex-stranded vector genome to dimer during early time points. As expected, transgene expression was detected at early time points with self-complementary duplex-stranded vector and persisted stably. However, the advantage of higher transgene expression from sc AAV was balanced over time by the single-stranded vector. These data demonstrate that sc AAV provides better stability for transgene structure during the initial stages of transduction and may have better utility in AAV gene therapy in situations, which mandate early transgene expression.  相似文献   

19.
Adeno-associated viral (AAV) vectors hold great potential for liver-directed gene therapy. Stable and high levels of transgene expression have been achieved in many murine models. Systemic delivery of AAV vectors in nonhuman primates (NHPs) that are natural hosts of AAVs appear to be challenging due to the high prevalence of pre-existing neutralizing antibodies (NAbs). This study evaluates the performance of AAV8, hu.37, and rh.8 vectors expressing green fluorescent protein (GFP) from a liver-specific promoter in rhesus macaques. Two of the animals that received AAV8 showed transduction of 24 and 40% of hepatocytes 7 days after systemic vector delivery. Importantly, expression was detected in several animals after 35 days despite the elevation of liver enzymes and development of transgene-specific T cells in liver. Pre-existing low levels of NAbs profoundly impacted the outcome of gene transfer and redirected vector DNA to spleen. We developed a sensitive in vivo passive transfer assay to detect low levels of NAbs to these novel AAV serotypes. Other strategies need to be developed to reduce immune response to the transgene in order to maintain long-term gene expression.  相似文献   

20.
An important limitation of recombinant adeno-associated virus (rAAV) vector efficiency is the requirement of hostcell-mediated synthesis of double-stranded DNA from the single-stranded genome. We have bypassed this step in a specialized self-complementary rAAV (scAAV) vector, by utilizing the tendency of AAV to package DNA dimers when the replicating genome is half the length of the wild type (wt). To produce these vectors efficiently, we have deleted the terminal resolution site (trs) from one rAAV TR, preventing the initiation of replication at the mutated end. These constructs generate single-stranded, inverted repeat genomes, with a wt TR at each end, and a mutated TR in the middle. After uncoating, the viral DNA folds through intramolecular base pairing within the mutant TR, which then proceeds through the genome to form a double-stranded molecule. We have used the scAAV to investigate barriers to rAAV transduction in the mouse liver, muscle and brain. In each tissue, scAAV was characterized by faster onset of gene expression and higher transduction efficiency. This study confirms earlier predictions that complementary-strand DNA synthesis is the primary barrier to rAAV-2 transduction. The scAAV is unaffected by this barrier, and provides an extremely efficient vector for gene transfer into many types of cells in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号