首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 5-alkyl-2'-deoxyuridine 3',5'-cyclic monophosphates (5-R-cdUMP's, R = Et, i-Pr, n-Pr, n-Bu, n-Pent, n-Hex, n-Oct) was prepared and tested in culture systems as antitumor and antiviral agents in comparison to the 5-alkyl-2'-deoxyuridines (5-R-dUrd's) themselves. Only the 5-Et- and 5-n-Bu-cdUMP showed appreciable cytostatic activities against murine L1210 and human lymphoblast Raji cells (ID50 range: 28-82 micrograms/mL). 5-Et-dUrd itself was much more active (ID50 = 1.6 and 2.9 micrograms/mL). The 5-i-Pr-, and 5-n-Bu-dUrd's were inactive, but activity increased again for groups with chain lengths of five carbons or greater. 5-Et-cdUMP and 5-Et-dUrd had greatly reduced activities against deoxythymidine kinase deficient (TK-) L1210 and Raji cells. 5-Et-cdUMP evidently is not an efficient prodrug source of the corresponding 5'-monophosphate where the TK- cells are concerned. Of the 5-R-cdUMP's, 5-Et-cdUMP displayed reasonably good antiviral potency against herpes simplex types 1 and 2 (MIC50, mostly 7-70 micrograms/mL) and vaccinia virus (MIC, 70 micrograms/mL). The activity was nonetheless 10- to 100-fold less than that for 5-Et-dUrd. The other 5-R-dUrd's generally showed decreasing antiviral activity with increasing 5-R chain length. Methyl and/or benzyl neutral triesters of certain 5-R-cdUMP's were inactive as antivirals and largely inactive against tumor cells in culture. In contrast to the 5'-monophosphates, the 5-R-cdUMP's failed to inhibit thymidylate synthetase from L1210 cells.  相似文献   

2.
A series of 5-alkylcytidines and their 5'-monophosphates and cyclic 3',5'-monophosphates have been synthesized and evaluated for antiviral and antitumor activity. The 5-alkyl cyclic nucleotides were not cytostatic (ID50 greater than 200 micrograms/mL) against leukemia L1210 cells and a deoxycytidine kinase-deficient subline thereof. Certain of the corresponding nucleosides and their 5'-monophosphates did show activity within the range of 35-162 micrograms/mL, as did the unsubstituted cytidine cyclic 3',5'-monophosphate. No antiviral activity was found for any of the compounds at 400 micrograms/mL. A drug design rationale for utilization of 5-alkylcytidines based on their potential conversion to biologically active 5-alkyl-2'-deoxyuridines is not supported by these experimental findings.  相似文献   

3.
A series of potential prodrug 5-halouridine 3',5'-cyclic monophosphates (5-X-cUMPs, X = F, Cl, Br, I, 1-4) has been prepared and tested for antitumor activity against murine leukemia L1210/0 and human lymphoblast Raji/0 cells and their deoxythymidine kinase deficient (TK-) counterparts, as well as for antiviral activity in primary rabbit kidney cells infected with herpes simplex virus type 1 or 2, vaccinia virus, or vesicular stomatitis virus. The 5-halopyrimidine bases, nucleosides (5-X-U), and 5'-monophosphates (5-X-UMP) were tested for comparison. 5-F-cUMP (1) showed reasonably potent inhibition of tumor cell proliferation (ID50 = 0.33-1.6 micrograms/mL), while the remaining diesters displayed ID50's ranging from 210 to greater than 1000 micrograms/mL. 5-F-cUMP was 70- to 300-fold less active than 5-F-dU in the same systems. With TK- L1210 cells, 5-F-cUMP was as potent as with the normal (L1210/0) line but was about fourfold less active with TK- Raji cells compared to Raji/0 cells. The 5-X-cUMPs showed little potency as antivirals. A single-crystal X-ray analysis of the ammonium salt of 5-I-cUMP confirmed its structure and showed the conformation of the phosphate ring to be the expected chair. The ribose pucker is near 3(4)T, and the torsion angle about the beta-glycosidic N(1)-C(1') bond is in the syn range (-84.8 degrees).  相似文献   

4.
A series of new 5-(1-hydroxy-2-haloethyl)-2'-deoxyuridines (3, 6, 8) were synthesized in 60-70% yields by addition of HOX (X = Br, Cl, I) to the vinyl substituent of the respective 5-vinyl-2'-deoxyuridines (2, 5, 7). Treatment of 3a,b with methanolic sulfuric acid afforded the corresponding 5-(1-methoxy-2-haloethyl)-2'-(deoxyuridines (4a,b). The 5-(1-hydroxy-2-chloroethyl) (3b), 5-(1-methoxy-2-bromoethyl) (4a), 5-(1-hydroxy-2-bromo-2-(ethoxycarbonyl)ethyl) (6a), and 5-(1-hydroxy-2-iodo-2-(ethoxycarbonyl)ethyl) (6b) derivatives exhibited in vitro antiviral activity (ID50 = 0.1-1 microgram/mL range) against herpes simplex virus type 1 (HSV-1). 5-(1-Hydroxy-2-bromo-2-(ethoxycarbonyl)-ethyl)-2'-deoxyuridine (6a) was the most active cytotoxic agent in the in vitro L1210 screen exhibiting an ED50 of 11 micrograms/mL relative to melphalan (ED50 = 0.15 micrograms/mL).  相似文献   

5.
5-Fluorouracil, 5-fluorouridine (FUrd), 5-fluoro-2'-deoxyuridine (FdUrd), 5-fluorocytidine (FCyd), 5-fluoro-2'-deoxycytidine (FdCyd), 5-trifluoro-2'-deoxythymidine (F3dThd), and the 5'-monophosphates and 3',5'-cyclic monophosphates thereof were found to inhibit thymidine kinase-deficient (TK-) mutant strains of herpes simplex virus (HSV) at a much lower concentration than the wild-type (TK+) HSV strains. Other 5-substituted 2'-deoxyuridines that have previously been recognized as potent thymidylate synthase inhibitors behaved in a similar fashion. The activity of FdUrd, FdCyd, F3dThd, and their 3',5'-cyclic monophosphates against TK-HSV was readily reversed by 2'-deoxythymidine (dThd) but not by 2'-deoxyuridine (dUrd). These compounds also inhibited the incorporation of [6-3H]dUrd into DNA at a concentration which was up to 5 orders of magnitude lower than the concentration at which the incorporation of [methyl-3H] dThd was inhibited. Thus, while not being a target for the well established anti-HSV compounds in TK+HSV-infected cells, thymidylate synthase appears to be an important target in TK-HSV-infected cells. In addition to dTMP synthase, TK-HSV-infected cells appear to reveal other therapeutically exploitable targets such as OMP decarboxylase (towards pyrazofurin), CTP synthase (towards carbodine and its cyclopentenyl analogue), dihydrofolate reductase (towards methotrexate), and S-adenosylhomocysteine hydrolase (towards neplanocins).  相似文献   

6.
Enantiomerically pure (+)- and (-)-carbocyclic thymidine, (-)-carbocyclic 3'-epi-thymidine, (+)-carbocyclic 3'-deoxy-3'-azidothymidine, (+)-carbocyclic 2,3'-O-anhydrothymidine, (+)-carbocyclic 3'-O,6'-methylenethymidine, and (+)-(6'S)-carbocyclic 6'-methylthymidine were synthesized in a stereospecific manner from common chiral pools of (+)-(1R,5S)- and (-)-(1S,5R)-2-oxabicyclo[3.3.0]oct-6-en-3-one and evaluated for antiviral activity. (+)-Carbathymidine and, to a lesser extent, (+)-carbocyclic 2'-deoxyadenosine proved to be effective against HSV-1 [minimum inhibitory concentration (MIC): 0.2 and 2 micrograms/mL, respectively] and HSV-2 (MIC: 2 and 20 micrograms/mL, respectively), but virtually inactive against TK- HSV-1 (MIC: 40 and 100 micrograms/mL, respectively). (+)-Carbathymidine was also active against vaccinia virus (2 micrograms/mL). None of the compounds had a specific effect on the replication of HIV or other RNA viruses.  相似文献   

7.
Syntheses of 5-(2-haloethyl)-2'-deoxyuridines, 5-(3-chloropropyl)-2'-deoxyuridines, and 5-(2-chloroethyl)-2'-deoxycytidine are described. The antiviral activities of these compounds were determined in cell culture against herpes simplex virus types 1 and 2. All compounds were shown to possess significant and selective antiviral activity. The most potent derivative, 5-(2-chloroethyl)-2'-deoxyuridine (CEDU), inhibited HSV-1 at concentrations below 0.1 microgram/mL. It exerted measurable inhibitory effects on cell proliferation only at concentrations higher than 100 micrograms/mL. In vivo CEDU reduced the mortality rate of HSV-1-infected mice at concentrations lower than 5 mg/kg per day when given intraperitoneally and orally. Thus, it proved to be more effective in this in vivo model than the reference compounds (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) and 9-[(2-hydroxyethoxy)methyl]guanine (ACV).  相似文献   

8.
Syntheses of (E)-5-(3,3,3-trifluoro-1-propenyl)-2'-deoxyuridine (TFPe-dUrd) (1), 5-(3,3,3-trifluoro-1-propyl)-2'-deoxyuridine (11), 5-(3,3,3-trifluoro-1-methoxy-1-propyl)-2'-deoxyuridine (8), and 5-(3,3,3-trifluoro-1-hydroxy-1-propyl)-2'-deoxyuridine (10) from 5-chloromercuri-2'-deoxyuridine are described. The antiviral activity of TFPe-dUrd was determined in cell culture against herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), and vaccinia virus and compared concurrently with 5-(1-propenyl)-2'-deoxyuridine, 5-(2-bromovinyl)-2'-deoxyuridine, 5-iodo-2'-deoxyuridine, and 5-(trifluoromethyl)-2'-deoxyuridine. TFPe-dUrd demonstrated a potent and unusually selective activity against HSV-1, with a 2-log reduction in virus yield at 0.03 micrograms/mL (0.09 microM); L-1210 cell growth was inhibited by 50% only at 290 micrograms/mL. Isopycnic centrifugation of 32P-labeled DNA indicated that if 0.5 or 2 microM TFPe-dUrd was present for 0-6 h postinfection, viral DNA synthesis was reduced by ca. 50 and 85%, respectively; concomitantly, a new DNA band appeared at lower density than normal cellular or viral DNA.  相似文献   

9.
A series of 1-beta-ribofuranosyl-5-halocytosine cyclic 3',5'-monophosphates (1-4) has been prepared. Direct halogenation of cytidine 3',5'-monophosphate (cCMP) yielded the Cl, Br, and I compounds while 5-F-cCMP (1) was obtained on cyclization of the 5'-monophosphate. On in vitro testing of 1-4 against L1210 and P388 leukemias, only 1 showed significant low-level activity (ID50 = 3.1 X 10(-4) mmol/L). Derivatives 2-4 were inactive at 10(-1) mmol/L and also proved to have low viral ratings against a series of RNA and DNA virus strains in vitro. By contrast the 5-F-cCMP showed moderate activity against VV, HSV-1, and HSV-2 strains (VR = 0.6-0.9). Both 5-fluorocytidine and 5-fluorocytidine 5'-monophosphate had marked antiviral activity (VR = 1.0-2.1) with the above viruses as well as with parainfluenza virus type 3. The nucleoside and nucleotide also were more active than 5-F-cCMP against L1210 and P388 cells. However, comparison of the cytotoxicities and antiviral ED50 values of 5-F-cCMP, 5-fluorocytidine 5'-monophosphate, and 5-fluorocytidine suggests a potential therapeutic advantage for 5-F-cCMP. Possible rationales for these activities are discussed in terms of 5-F-cCMP and the corresponding 5'-monophosphate as potential prodrugs and as sources, following enzymatic deamination, of cytotoxic 5-fluorouridine or its 5'-monophosphate.  相似文献   

10.
The following 5-substituted 2,4-dimethoxypyrimidines were synthesized: 5-(2,2,2-trichloro-1-hydroxyethyl), 5-(2,2,2-trichloro-1-fluoroethyl),5-(2,2-dichloro-1-fluorovinyl) (5), and 5-(perfluoropropen-1-yl) (a mixture of E and Z isomers, 6 and 7). Demethylation of 5 gave 5-(2,2-dichloro-1-fluorovinyl)uracil, and demethylation of the mixture of 6 and 7 gave some pure (E)-5-(perfluoropropen-1-yl)uracil. Compound 5 was converted into its 2'-deoxyribonucleoside (12) and its alpha-anomer by standard procedures. 2'-Deoxy-3,5-dilithio-3',5'-O-bis(trimethylsilyl)uridine was reacted with the appropriate fluoroalkene to give the following 5-substituted 2'-deoxyuridines in low yield (6-24%): 5-(2-chloro-1,2-difluorovinyl) (a mixture of E and Z isomers, 15 and 16, which were separated on a small scale), 5-(perfluoropropen-1-yl), 5-(perfluorocyclohexen-1-yl), and 5-(perfluorocyclopenten-1-yl). In these reactions, 2'-deoxy-5-(trimethylsilyl)uridine and 2'-deoxyuridine were also formed. The 5-substituted 2'-deoxyuridines were tested for activity against herpes simplex virus type 1. Compound 12 and the mixture of 15 and 16 had an ID50 of 20-26 micrograms/mL in Vero cells. The activity of the mixture resided in one isomer, which by analogY with the corresponding (Z)- and (E)-5-(2-bromovinyl)-2'-deoxyuridines was concluded to be the Z isomer (16).  相似文献   

11.
A new class of 5-(1-cyanamido-2-haloethyl)-2'-deoxyuridines (4-6) and arabinouridines (7, 8) were synthesized by the regiospecific addition of halogenocyanamides (X-NHCN) to the 5-vinyl substituent of the respective 5-vinyl-2'-deoxyuridine (2) and 2'-arabinouridine (3). Reaction of 2 with sodium azide, ceric ammonium nitrate, and acetonitrile-methanol or water afforded the 5-(1-hydroxy-2-azidoethyl)-(10) and 5-(1-methoxy-2-azidoethyl)-2'-deoxyuridines (11). In vitro antiviral activities against HSV-1-TK(+) (KOS and E-377), HSV-1-TK(-), HSV-2, VZV, HCMV, and DHBV were determined. Of the newly synthesized compounds, 5-(1-cyanamido-2-iodoethyl)-2'-deoxyuridine (6) exhibited the most potent anti-HSV-1 activity, which was equipotent to acyclovir and superior to 5-ethyl-2'-deoxyuridine (EDU). In addition, it was significantly inhibitory for thymidine kinase deficient strain of HSV-1 (EC(50) = 2.3-15.3 microM). The 5-(1-cyanamido-2-haloethyl)-2'-deoxyuridines (4-6) all were approximately equipotent against HSV-2 and were approximately 1.5- and 15-fold less inhibitory for HSV-2 than EDU and acyclovir, respectively. Compounds 4-6 were all inactive against HCMV but exhibited appreciable antiviral activity against VZV. Their anti-VZV activity was similar or higher to that of EDU and approximately 5-12-fold lower than that of acyclovir. The 5-(1-cyanamido-2-haloethyl)-(7,8) analogues of arabinouridine were moderately inhibitory for VZV and HSV-1 (strain KOS), whereas compounds 10 and 11 were inactive against herpes viruses. Compounds 5 and 6 also demonstrated modest anti-hepatitis B virus activity against DHBV (EC(50) = 19.9-23.6 microM). Interestingly, the related 5-(1-azido-2-bromoethyl)-2'-deoxyuridine (1n) analogue proved to be markedly inhibitory to DHBV replication (EC(50) = 2.6-6.6 microM). All compounds investigated exhibited low host cell toxicity to several stationary and proliferating host cell lines as well as mitogen-stimulated proliferating human T lymphocytes.  相似文献   

12.
The following 5-(2-substituted vinyl)-6-aza-2'-deoxyuridines were synthesized: (E)-5-(2-bromovinyl) (2) (6-aza-BVDU), 5-(2-bromo-2-fluorovinyl) (a mixture of E and Z isomers) (3), (E)-5-(2-chlorovinyl) (4), (E)-5-[2-(methylthio)vinyl] (5), 5-(2,2-dibromovinyl) (6), and 5-(3-furyl) (7). The synthesis of 2-6 utilized Wittig-type reactions on 5-formyl-1-(2'-deoxy-3', 5'-di-O-p-toluoyl-beta-D-erythro-pentofuranosyl)-6-azauracil (16). 6-Aza-BVDU (and its alpha-anomer) was also synthesized from (E)-5-(2-bromovinyl)-6-azauracil (12) by using standard deoxyribosidation methodology. Compound 7 was prepared from 5-(3-furyl)-6-azauracil (33) via a ribosidation/deoxygenation sequence. An attempt to prepare the corresponding 5-(2,2-difluorovinyl) analogue afforded instead a mixture of the 5-[(2,2-difluoro-2-methoxy)ethyl] and 5-(2,2,2-trifluoroethyl) derivatives 29 and 30. Compounds 2-7, 29, and 30 were tested for in vitro activity against herpes simplex virus types 1 and 2 (HSV-1, HSV-2). 6-Aza-BVDU (2) exhibited ID50s of 8 micrograms/mL vs. HSV-1 and 190 micrograms/mL vs. HSV-2. BVDU (1) had ID50s of 0.015 and 1.6 micrograms/mL against HSV-1 and HSV-2, respectively. Compound 4 showed a similar profile of activity, but the other analogues were either weakly active or inactive.  相似文献   

13.
The preparations and antiviral activities of a series (4-17) of potential prodrug forms of the antivirals 2',3'-didehydro-2',3'-dideoxyadenosine (D4A) and 2',3'-didehydro-2',3'-dideoxycytosine (D4C) are reported. The 5'-phenyl- and 5'-methylphosphonates (4, 6, 8, and 10) and their phosphonothionate congeners (5, 7, 9, and 11), with the exception of 10, were inactive in vitro against HIV-1 and HIV-2. However, the 5'-phenyl, 5'-methyl, and 5'-(3'-thymidyl) phosphate diesters (12-17) demonstrated inhibition of the cytopathic effect of HIV-1 and HIV-2 (EC50 approximately 1-60 microM) and cytotoxicities (CC50 approximately 35-200 microM) at concentration levels comparable to those of their parent compounds, D4A and D4C. This strongly suggests that the diesters are hydrolyzed to the nucleosides D4A and D4C and/or their 5'-monophosphates. The facile hydrolysis of 12 and 13 to these products was demonstrated in a medium containing 10% fetal calf serum. The molecules can serve as ready prodrug sources of the free nucleosides and their 5'-monophosphates. Evidently, the phosphonates and phosphonothionates are not similarly cleaved, nor are they phosphorylated to form antivirally active or cytotoxic products. The importance of intracellular formation of these products in the activation of 12-17 is less clear. Potential prodrugs 4-17 are all stable in aqueous solution for hours with the exception of 14. Conjugates 4-17 showed no activity against a series of DNA and RNA viruses.  相似文献   

14.
The 5-[1-hydroxy-2-chloro-2-(ethoxycarbonyl)ethyl]-2'-deoxyuridine (7) and 5-[1-hydroxy-2-bromo-2-(ethoxycarbonyl)ethyl]-2'- fluoro-2'-deoxyuridine/uridine nucleosides (8, 9) were synthesized by the regiospecific addition of HOX (X = Br or Cl) to the vinyl substituent of the respective (E)-5-[2-(ethoxycarbonyl)-vinyl]-2'-deoxyuridines (6a-b) and uridine (6c). A related reaction of (E)-5-(2-carboxyvinyl)-2'-deoxyuridines (10a-b) and uridine (10c) with iodine and potassium iodate afforded the 5-(1-hydroxy-2-iodo-2-carboxyethyl) derivatives (11-13). 5-(1-Hydroxy-2-iodoethyl)-arabinouridine (18) was obtained by the reaction of (17) with iodine in the presence of the oxidizing agent iodic acid. Treatment of (18) with methanolic sulfuric acid afforded 5-(1-methoxy-2-iodoethyl)-arabinouridine (19) in 65% yield. Of the newly synthesized compounds, 7, 11 and 12 showed activity in vitro against HSV-1. The most active compound (12, ID50 = 0.1 microgram/ml) was 10 times less active than acyclovir (ID50 = 0.01 microgram/ml) against HSV-1. Compounds 7 and 11 were cytotoxic to L1210 cells in culture, exhibiting an ED50 of 7.2 and 4.7 micrograms/ml respectively, relative to melphalan (ED50 = 0.15 microgram/ml), but were inactive against the KB cell line.  相似文献   

15.
The synthesis of 5-heteroaryl-substituted 2'-deoxyuridines is described. The heteroaromatics were obtained from three different 5-substituted 2'-deoxyuridines. Cycloaddition reaction of nitrile oxides on the 5-ethynyl derivative 1 gave the isoxazoles 4a-e. The thiazole derivatives 14a-c were obtained from the 5-thiocarboxamide 11, while 5-pyrrol-1-yl-2'-deoxyuridine (17) could be synthesized directly from 5-amino-2'-deoxyuridine. The compounds were evaluated for antiviral activity. Selective activity against herpes simplex virus type 1 (HSV-1) and varicella zoster virus (VZV) was noted for 5-(3-bromoisoxazol-5-yl)-2'-deoxyuridine (4c). The compound was inactive against herpes simplex virus type 2, cytomegalovirus, and thymidine kinase (TK)-deficient mutants of HSV-1 and VZV, which indicates that, most likely, its antiviral activity depends on phosphorylation by the virus-specified TK.  相似文献   

16.
The synthesis of 5-(2-fluoroethyl)-2'-deoxyuridine (FEDU, 4b), its 2'-fluoro analogue 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-(2-fluoroethyl)-1H,3H- pyrimidine-2,4-dione (FEFAU, 4k), and the 2'-fluoro analogue of the potent antiherpes virus compound 5-(2-chloroethyl)-2'-deoxyuridine (CEDU), 5-(2-chloroethyl)-1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-1H,3H-pyr imidine - 2,4-dione (CEFAU, 4i), is described. The antiviral activities of these compounds were determined in cell culture against herpes simplex virus (HSV) types 1 and 2 and varicella zoster virus (VZV). All compounds were shown to possess significant and selective antiviral activity. FEDU proved less potent than CEDU against VZV replication; however, it was more active against HSV-2. CEFAU showed marked activity against HSV-1, HSV-2, and VZV. The compound containing fluorine at both positions, FEFAU, exhibited the strongest antiviral potency against HSV-1, HSV-2, and VZV. It inhibited HSV-1 at a concentration of 0.03-0.2 microgram/mL, HSV-2 at 0.1-0.3 microgram/mL, and VZV at 0.03 microgram/mL. Neither FEDU nor CEFAU or FEFAU exerted a significant inhibitory effect on cell proliferation at a concentration of 100 micrograms/mL. Thus, the cytotoxicity of these compounds is as low as that of CEDU and compares favorably to that of previously described 2'-fluoroarabinosyl nucleoside analogues.  相似文献   

17.
Treatment of the 6-N-cyclopropyl-2',3'-di-O-isopropylideneadenosine 5'-aldehyde with sulfone-stabilized phosphonate or fluorophosphonate reagents followed by stannyldesulfonylations and subsequent iodo- or protiodestannylation gave 6-N-cyclopropyl-5'-deoxy-5'-(iodomethylene)adenosine 8b or its 5'-fluoromethylene analogue 11. Treatment of the 5'-aldehyde with hydroxylamine or dibromomethylene- or cyanomethylene-stabilized Wittig reagents and deprotections gave the oxime 4b, 5'-cyanomethylene 5b, and 5'-dibromomethylene 13b analogues. Dehydrobromination of 13b gave acetylenic compound 14b. From the tested 6-N-cyclopropyladenosine analogues modified at the 5' carbon, the 5'-iodomethylene 8b had the most potent activity against Trypanosoma brucei in vitro with an IC50 of 12 microg/mL. The IC50 value was 19 microg/mL for both the 5'-fluoromethylene 11 and the 5'-cyanomethylene 5b compounds. The (E)-5'-deoxy-5'-(iodomethylene)adenosine 2a, a known inhibitor of AdoHcy hydrolase not modified with a cyclopropyl ring at 6-amino group, also inhibited T. brucei with an IC50 of 9 microg/mL. In contrast to some other adenosine analogues modified at C5', the 6-N-cyclopropyladenosine analogues described here do not exhibit an inhibitory effect on AdoHcy hydrolase and displayed only marginal antiviral activity.  相似文献   

18.
A series of 3'-deoxy-3'-fluoro- and 2'-azido-2',3'-dideoxy-3'-fluoro-D-ribofuranosides of natural heterocyclic bases have been synthesized with the use of universal carbohydrate precursors, viz., 1-O-acetyl-2,5-di-O-benzoyl-3-deoxy-3-fluoro-D-ribofuranose and methyl 2-azido-5-O-benzoyl-2,3-dideoxy-3-fluoro-beta-D-ribofuranoside, respectively. The cytostatic and antiviral activity of the compounds was evaluated against a variety of tumor cell lines and DNA/RNA viruses, respectively. As the most active compound, from both a cytostatic and antiviral activity viewpoint, emerged 3'-deoxy-3'-fluoroadenosine. It inhibited the proliferation of some tumor cell lines (i.e. murine leukemia L1210 and human T-lymphocyte MT-4) at a concentration of 0.2-2 micrograms/mL, and proved inhibitory to the replication of positive-stranded RNA viruses (i.e. polio, Coxsackie, Sindbis, Semliki forest), double-stranded RNA viruses (i.e. reo), and some DNA viruses (i.e. vaccinia) at a concentration of 1-4 micrograms/mL, which is well below the cytotoxicity threshold (40 micrograms/mL).  相似文献   

19.
Optically pure acyclic nucleoside analogues with a 3(S),5-dihydroxypentyl or 4(R)-methoxy-3(S),5-dihydroxypentyl side chain were synthesized starting from 2-deoxy-D-ribose. The acyclic nucleosides were obtained by alkylation of the bases with the mesylates 16 and 17. Of these series of novel nucleoside analogues only 9-[3(S),5-dihydroxypent-1-yl]guanine (6d) showed marked antiviral activity. It inhibited the cytopathogenicity of herpes simplex virus type 1 (HSV-1) at a concentration of 0.4-0.6 microgram/mL, which thus points to a greater antiviral activity than recently reported for the mixture of the R and S enantiomers (12.5 micrograms/mL). In contrast with 6d, its 4(R)-methoxy derivative 7d did not show antiviral activity, which implies that the 4'-methoxy group is unable to mimic the 1',4'-oxygen bridge of the normal furanose ring.  相似文献   

20.
A group of 3'-O-nitro-2'-deoxyuridines, 3'-O-nitro-2'-deoxycytidines, and 5'-O-nitro-2'-deoxyuridines possessing a variety of substituents (H, Me, F, I) at the C-5 position were synthesized for evaluation as anticancer/antiviral agents that have the ability to concomitantly release cytotoxic nitric oxide (*NO). Although these compounds generally released a greater percent of *NO than the reference drug isosorbide dinitrate upon incubation in the presence of l-cysteine, or serum, their cytotoxicity (CC(50) = 10(-3) to 10(-6) M range) was comparable to 5-iodo-2'-deoxyuridine, but weaker than 5-fluoro-2'-deoxyuridine, against a variety of cancer cell lines. No differences in cytotoxicity against nontransfected (KBALB, 143B), and the corresponding transfected (KBALB-STK, 143B-LTK) cancer cell lines possessing the herpes simplex virus type 1 (HSV-1) thymidine kinase gene (TK(+)) were observed, indicating that expression of the viral TK enzyme did not provide a gene therapeutic effect. These nitrate esters were inactive antiviral agents except for 5-iodo-3'-O-nitro-2'-deoxyuridine that showed modest activity against HSV-1, HSV-2, and vaccinia virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号