首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Telomerase inhibition and the future management of head-and-neck cancer   总被引:2,自引:0,他引:2  
Telomeres are tandem repeats of DNA associated with specific proteins. These structures cap eukaryotic chromosomes and maintain the integrity of the chromosome ends. In the germline, telomeres are maintained by the enzyme telomerase, but in normal somatic cells the enzyme's activity is low or undetectable. Human tumours, including squamous-cell carcinoma of the head and neck (SCCHN), need telomerase to maintain telomere function; inhibition of the enzyme can lead to apoptosis. Furthermore, because most tumour cells have very short telomeres, they are more likely to succumb to telomerase inhibition than normal cells. Telomerase is therefore a potential selective anticancer target. The telomere is also involved in the repair of DNA double strand breaks, and telomere dysfunction provokes radiosensitivity. In this review we consider whether manipulation of telomere function may selectively sensitise SCCHN to radiotherapy and discuss the possible pitfalls. We also assess how some conventional treatments may affect the subsequent use of telomerase inhibitors.  相似文献   

3.
4.
Zhang X  Chen Z  Chen Y  Tong T 《Oncogene》2003,22(16):2405-2416
Activated telomerase is frequently detected in cancer cells and is able to maintain and stabilize the integrity of telomeres; it also contributes to unlimited divisions in cancer cells. Recently, a new generation of selective anticancer strategies is under development targeting the blockage of telomerase activity either at the protein level or telomerase RNA. Here, we report suppression of the malignant phenotype by the expression of the full-length antisense human telomerase RNA (hTR) delivered by a novel hybrid vector recombining adenovirus and adeno-associated virus (vAd-AAV). The hybrid vector vAd-AAV retained the unique traits from two parental viruses, such as high efficiency of gene transfer in mammalian cells and the ability to integrate into the genomic DNA of host cells. The stable expression of antisense hTR in MCF-7 cells significantly suppressed telomerase activity and progressively shortened telomere length for 30 population doublings (PD30). Expression of antisense hTR leads to a telomere-based growth arrest and the induction of spontaneous apoptosis. Antisense hTR decreased soft agar colony formation and reduced the cell proliferation, leading to exit from the cell cycle at G1 at PD15. The expression of antisense hTR also sensitized MCF-7 cells to apoptosis induced by sodium butyrate or serum starvation. Our study demonstrates that delivering antisense hTR by the hybrid Ad/AAV vector is an effective antineoplastic gene therapeutic strategy, which significantly suppresses the malignant phenotype and enhances apoptosis of human breast cancer cells.  相似文献   

5.
6.
Telomerase is a promising target for human cancer gene therapy. Its inhibition allows telomere shortening to occur in cancer cells, which in turn is thought to trigger delayed senescence and/or apoptosis. We tested whether telomerase inhibition might have additional, immediate effects on tumor cell growth. Ovarian cancer cell lines with widely differing telomere lengths were efficiently transduced with an adenovirus expressing a ribozyme directed against the T motif of the catalytic subunit of human telomerase, hTERT. Three days after transduction, telomerase activity was significantly reduced and massive cell loss was induced in mass cultures from all four ovarian cancer cell lines tested, whereas transduction of telomerase-negative human fibroblasts did not attenuate their growth. The kinetics of induction of cell death in cancer cells was not significantly dependent on telomere length, and telomeres did not shorten measurably before the onset of apoptosis. The data suggest the existence of a "fast-track" mechanism by which diminution of telomerase can interfere with cancer cell growth and induce cell death, presumably by apoptosis. This phenomenon might be a consequence of the telomere capping function provided by telomerase in tumor cells. Uncapping of telomeres by ribozyme-mediated inhibition of telomerase bears therapeutic potential for ovarian cancer.  相似文献   

7.
Zhang B  Qian D  Ma HH  Jin R  Yang PX  Cai MY  Liu YH  Liao YJ  Deng HX  Mai SJ  Zhang H  Zeng YX  Lin MC  Kung HF  Xie D  Huang JJ 《Oncogene》2012,31(1):1-12
Telomere maintenance is essential for cancer growth. Induction of telomere dysfunction, for example, by inhibition of telomeric proteins or telomerase, has been shown to strongly enhance cancer cells' sensitivity to chemotherapies. However, it is not clear whether modulations of telomere maintenance constitute cancer cellular responses to chemotherapies. Furthermore, the manner in which anti-cancer drugs affect telomere function remains unknown. In this study, we show that anthracyclines, a class of anti-cancer drugs widely used in clinical cancer treatments, have an active role in triggering telomere dysfunction specifically in telomerase-positive cancer cells. Anthracyclines interrupt telomere maintenance by telomerase through the downregulation of PinX1, a protein factor responsible for targeting telomerase onto telomeres, thereby inhibiting telomerase association with telomeres. We further demonstrate that anthracyclines downregulate PinX1 by inducing this protein degradation through the ubiquitin-proteasome-dependent pathway. Our data not only reveal a novel action for anthracyclines as telomerase functional inhibitors but also provide a clue for the development of novel anti-cancer drugs based on telomerase/telomere targeting, which is actively investigated by many current studies.  相似文献   

8.
Chan SW  Blackburn EH 《Oncogene》2002,21(4):553-563
  相似文献   

9.
Replicative senescence is a natural barrier to cellular proliferation that is triggered by telomere erosion and dysfunction. Here, we demonstrate that ATM activation and H2AX-gamma nuclear focus formation are sensitive markers of telomere dysfunction in primary human fibroblasts. Whereas the activated form of ATM and H2AX-gamma foci were rarely observed in early-passage cells, they were readily detected in late-passage cells. The ectopic expression of telomerase in late-passage cells abrogated ATM activation and H2AX-gamma focus formation, suggesting that these stress responses were the consequence of telomere dysfunction. ATM activation was induced in quiescent fibroblasts by inhibition of TRF2 binding to telomeres, indicating that telomere uncapping is sufficient to initiate the telomere signaling response; breakage of chromosomes with telomeric associations is not required for this activation. Although ATM activation and H2AX-gamma foci were readily observed in late-passage cells, they disappeared once cells became fully senescent, indicating that constitutive signaling from dysfunctional telomeres is not required for the maintenance of senescence.  相似文献   

10.
陈颖 《中国肿瘤临床》2010,37(13):777-780
由TRF 1、TRF 2、RAP1、TIN2、TPP 1 和POT 1 蛋白组成的shelterin 端粒蛋白网络参与维持端粒的正常功能。其中Tan?kyrase 可核糖基化TRF 1,使其与端粒解离,并导致端粒酶与端粒的结合,从而维持端粒长度的相对恒定。多数肿瘤细胞中端粒酶活性升高,因而端粒酶抑制剂可特异诱导端粒的缩短而抑制肿瘤细胞生长。但端粒缩短是一渐进过程,在端粒酶活性受到抑制直至缩短的端粒丧失其染色体末端保护功能时会有一段时间间隔。因此,端粒的缩短也会降低端粒酶抑制剂的药效。Tankyrase与端粒酶活性升高呈正相关,因而Tankyrase抑制剂可诱导端粒的缩短,进而诱导肿瘤细胞凋亡。在少数以ALT 机制维持端粒长度相对恒定的肿瘤细胞中,Tankyrase抑制剂则通过抑制细胞的有丝分裂诱导肿瘤细胞的生长阻滞。此外,Tankyrase抑制剂增强Wnt信号途径中轴蛋白的表达水平,诱导β- 连环蛋白的降解,从而抑制肿瘤细胞增殖。由于Tankyrase抑制剂可通过多种途径拮抗肿瘤细胞的生长,因而其表现出光谱的抗肿瘤活性。本文就Tankyrase在肿瘤治疗中的研究进展作一综述。   相似文献   

11.
Londono-Vallejo JA 《癌症》2008,27(7):775-783
端粒在基因组稳定、细胞核结构以及减数分裂中染色体配对中发挥关键作用.细胞每分裂一次,端粒会缩短,缩短的端粒可能再延长或不延长,这取决于细胞内是否存在一种专用酶-端粒酶.由于人体的多数体细胞并不表达端粒酶,因此发育和衰老过程中端粒必然缩短.在生理条件下,端粒缩短与延长的细胞增殖相矛盾,因此端粒长度决定了细胞的增殖潜能,并作为细胞无限生长的预防机制.相反,在细胞增殖检查点受破坏的细胞巾,缩短的端粒n『导致染色体融合并启动断裂-融合-桥周期,这极大地促发了基因组不稳定.在体外研究中,转化细胞中由于端粒严重缩短造成的基因组高度不稳定,在这种细胞种蓄积了有害的遗传改变,从而导致细胞最终死亡(危象).同时,随机的遗传或拟遗传学改变可使细胞获得端粒维持机制(以及其它肿瘤表型),从而成为永生细胞.在体内研究中,尽管在早期肿瘤细胞中发现端粒缩短和其它形式的端粒功能障碍可能使基因组不稳定,但端粒功能障碍对于人类肿瘤表型的直接作用有待进一步研究.  相似文献   

12.
Tankyrase 1 as a target for telomere-directed molecular cancer therapeutics   总被引:5,自引:0,他引:5  
Telomere elongation by telomerase is repressed in cis by the telomeric protein TRF1. Tankyrase 1 poly(ADP-ribosyl)ates TRF1 and releases it from telomeres, allowing access of telomerase to telomeres. Here we demonstrate that tankyrase 1 inhibition in human cancer cells enhances telomere shortening by a telomerase inhibitor and hastens cell death. Conversely, either tankyrase 1 upregulation or telomere shortening, each of which decreased TRF1 loading on a chromosome end, attenuated the impact of telomerase inhibition. These results are consistent with the idea that telomeres having fewer TRF1s increase the efficiency of their elongation by telomerase. This study implies that both enzyme activity and accessibility to telomeres can be targets for telomerase inhibition.  相似文献   

13.
Alternative lengthening of telomeres in mammalian cells   总被引:45,自引:0,他引:45  
Some immortalized mammalian cell lines and tumors maintain or increase the overall length of their telomeres in the absence of telomerase activity by one or more mechanisms referred to as alternative lengthening of telomeres (ALT). Characteristics of human ALT cells include great heterogeneity of telomere size (ranging from undetectable to abnormally long) within individual cells, and ALT-associated PML bodies (APBs) that contain extrachromosomal telomeric DNA, telomere-specific binding proteins, and proteins involved in DNA recombination and replication. Activation of ALT during immortalization involves recessive mutations in genes that are as yet unidentified. Repressors of ALT activity are present in normal cells and some telomerase-positive cells. Telomere length dynamics in ALT cells suggest a recombinational mechanism. Inter-telomeric copying occurs, consistent with a mechanism in which single-stranded DNA at one telomere terminus invades another telomere and uses it as a copy template resulting in net increase in telomeric sequence. It is possible that t-loops, linear and/or circular extrachromosomal telomeric DNA, and the proteins found in APBs, may be involved in the mechanism. ALT and telomerase activity can co-exist within cultured cells, and within tumors. The existence of ALT adds some complexity to proposed uses of telomere-related parameters in cancer diagnosis and prognosis, and poses challenges for the design of anticancer therapeutics designed to inhibit telomere maintenance.  相似文献   

14.
Telomerase is a ribonucleoprotein that maintains the ends of chromosomes (telomeres). In normal cells lacking telomerase activity, telomeres shorten with each cell division because of the inability to completely synthesize the lagging strand. Critically shortened telomeres elicit DNA damage responses and limit cellular division and lifespan, providing an important tumor suppressor function. Most human cancer cells express telomerase which contributes significantly to the tumor phenotype. In human breast cancer, telomerase expression is predictive of clinical outcomes such as lymph node metastasis and survival. In mouse models of mammary cancer, telomerase expression is also upregulated. Telomerase overexpression resulted in spontaneous mammary tumor development in aged female mice. Increased mammary cancer also was observed when telomerase deficient mice were crossed with p53 null mutant animals. However, the effects of telomerase and telomere length on oncogene driven mammary cancer have not been completely characterized. To address these issues we characterized neu proto‐oncogene driven mammary tumor formation in G1 Terc?/? (telomerase deficient with long telomeres), G3 Terc?/? (telomerase deficient with short telomeres), and Terc+/+ mice. Telomerase deficiency reduced the number of mammary tumors and increased tumor latency regardless of telomere length. Decreased tumor formation correlated with increased apoptosis in Terc deficient tumors. Short telomeres dramatically increased lung metastasis which correlated with increased genomic instability, and specific alterations in DNA copy number and gene expression. We concluded that short telomeres promote metastasis in the absence of telomerase activity in neu oncogene driven mammary tumors. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
Many ways to telomere dysfunction: in vivo studies using mouse models   总被引:11,自引:0,他引:11  
Goytisolo FA  Blasco MA 《Oncogene》2002,21(4):584-591
The existence of a capping structure at the extremities of chromosomes was first deduced in the 1930s by Herman Müller (Müller, 1938), who showed that X-irradiation of Drosophila rarely resulted in terminal deletions or inversions of chromosomes, suggesting that chromosome ends have protective structures that distinguish them from broken chromosomes, which he named telomeres. In this review, we will focus on mammalian telomeres and, in particular, on the analysis of different mouse models for proteins that are important for telomere function, such as telomerase and various telomere-binding proteins. These murine models are helping us to understand the consequences of telomere dysfunction for cancer, aging and DNA repair, as well as, the molecular mechanisms by which telomeres exert their protective function.  相似文献   

16.
S Sasgary  M Wieser  C Cerni 《Onkologie》2001,24(1):22-26
More than 80% of human malignancies express telomerase activity, while normal somatic tissues in general lack it. During each normal cell division, there is a constant loss of DNA sequences at chromosomal ends, which is due to the 'end-replication problem' of conventional DNA polymerase. Critical shortening of telomeres induces cell cycle arrest and eventually cell death. Telomerase, a ribonucleoprotein complex with a RNA (TR) and a catalytic subunit (TERT) as core components, is able to add reitineratedly telomeric repeat sequences to the very ends of chromosomes. It was suggested that activation of telomerase in tumor cells has a major impact on their continuous growth. Indeed, transfection of TERT constructs into various normal human cell types led to telomere elongation or stabilization and, most importantly, cellular immortalization. Conversely, inhibition of telomerase in tumor cell lines induced growth arrest, at least in first experimental settings. Such initial success implies that drug-mediated abrogation of telomerase action might be an ideal adjuvant treatment for cancer patients. There are, however, legitimate concerns about the generalization of such an approach.  相似文献   

17.
PURPOSE: The aims of this study were to investigate telomere function in normal and Barrett's esophageal adenocarcinoma (BEAC) cells purified by laser capture microdissection and to evaluate the effect of telomerase inhibition in cancer cells in vitro and in vivo. EXPERIMENTAL DESIGN: Epithelial cells were purified from surgically resected esophagi. Telomerase activity was measured by modified telomeric repeat amplification protocol and telomere length was determined by real-time PCR assay. To evaluate the effect of telomerase inhibition, adenocarcinoma cell lines were continuously treated with a specific telomerase inhibitor (GRN163L) and live cell number was determined weekly. Apoptosis was evaluated by Annexin labeling and senescence by beta-galactosidase staining. For in vivo studies, severe combined immunodeficient mice were s.c. inoculated with adenocarcinoma cells and following appearance of palpable tumors, injected i.p. with saline or GRN163L. RESULTS: Telomerase activity was significantly elevated whereas telomeres were shorter in BEAC cells relative to normal esophageal epithelial cells. The treatment of adenocarcinoma cells with telomerase inhibitor, GRN163L, led to loss of telomerase activity, reduction in telomere length, and growth arrest through induction of both the senescence and apoptosis. GRN163L-induced cell death could also be expedited by addition of the chemotherapeutic agents doxorubicin and ritonavir. Finally, the treatment with GRN163L led to a significant reduction in tumor volume in a subcutaneous tumor model. CONCLUSIONS: We show that telomerase activity is significantly elevated whereas telomeres are shorter in BEAC and suppression of telomerase inhibits proliferation of adenocarcinoma cells both in vitro and in vivo.  相似文献   

18.
19.
20.
Loss of telomeric repeats during cell proliferation could play a role in senescence. It has been generally assumed that activation of telomerase prevents further telomere shortening and is essential for cell immortalization. In this study, we performed a detailed cytogenetic and molecular characterization of four SV40 transformed human fibroblastic cell lines by regularly monitoring the size distribution of terminal restriction fragments, telomerase activity and the associated chromosomal instability throughout immortalization. The mean TRF lengths progressively decreased in pre-crisis cells during the lifespan of the cultures. At crisis, telomeres reached a critical size, different among the cell lines, contributing to the peak of dicentric chromosomes, which resulted mostly from telomeric associations. We observed a direct correlation between short telomere length at crisis and chromosomal instability. In two immortal cell lines, although telomerase was detected, mean telomere length still continued to decrease whereas the number of dicentric chromosomes associated was stabilized. Thus telomerase could protect specifically telomeres which have reached a critical size against end-to-end dicentrics, while long telomeres continue to decrease, although at a slower rate as before crisis. This suggests a balance between elongation by telomerase and telomere shortening, towards a stabilized 'optimal' length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号