首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of aging on 5-HT1A receptor binding in several forebrain areas associated with the basal forebrain cholinergic system was investigated in rats of 3-, 24- and 30-months-old by receptor autoradiography and biochemical binding assay using [3H]8-OH-DPAT as a ligand. Autoradiographic measurements demonstrated a marked region-specific decline of ligand binding in: (i) regions of the basal forebrain cholinergic cell groups, i.e. the medial septum, diagonal band nuclei and magnocellular nucleus basalis, (ii) the frontal and parietal neocortex and (iii) the dentate gyrus of the hippocampus. No change or only a slight decrease of the 5-HT1A receptor density was found in other areas investigated: the CA1 and CA3 sectors of hippocampus, the cingular and perirhinal cerebral cortex and the lateral septum. The autoradiographic findings were substantiated by the biochemical binding assay, which revealed a comparable loss of 5-HT1A receptor in the hippocampus and neocortex at the age of 30 months. The results clearly show that with increasing age the decrement of 5-HT1A receptor binding in the rat forebrain is remarkably region-selective and particularly affects the cholinergic cell groups that innervate cortex and hippocampus. This phenomenon appears to be especially significant in relation to the neuronal substrates underlying the age-related alterations of mood and cognition.  相似文献   

2.
The functional activity of serotonin 5-HT2A and 5-HT2C receptors and the expression of the genes encoding them were studied in Norway rats bred for 60 generations for the presence and absence of high levels of stress-evoked aggression to humans. There were no significant differences in the levels of 5-HT2A receptor mRNA in the midbrain, frontal cortex, and hippocampus and the extents of head twitching evoked by the 5-HT2A agonist DOI in rats with and without genetically determined high levels of aggression. Administration of the selective 5-HT2C agonist MK-212 weakened reflex startle in response to an acoustic signal (the acoustic startle response) in non-aggressive animals but had no significant effects on the response in aggressive animals. Increases in the level of 5-HT2C receptor mRNA were seen in the frontal cortex and hippocampus in non-aggressive rats as compared with aggressive animals. Increases in the expression of the 5-HT2C receptor gene and the functional state of 5-HT2C receptors were seen in the brains of non-aggressive rats, without any changes in the 5-HT2A receptor mRNA level or receptor sensitivity; this is evidence for the involvement of 5-HT2C receptors in the mechanisms inhibiting fear-evoked aggressive behavior.  相似文献   

3.
Changes in brain-derived neurotrophic factor (BDNF) expression have been implicated in the etiology of psychiatric disorders. To investigate pathological mechanisms elicited by perturbed BDNF signaling, we examined mutant mice with central depletion of BDNF (BDNF2L/2LCk-cre). A severe impairment specific for the serotonin 2A receptor (5-HT2AR) in prefrontal cortex was described previously in these mice. This is of much interest, as 5-HT2ARs have been linked to neuropsychiatric disorders and anxiety-related behavior. Here we further characterized the serotonin receptor alterations triggered by BDNF depletion. 5-HT2A ([3H]-MDL100907) and 5-HT1A ([3H]-WAY100635) receptor autoradiography revealed site-specific alterations in BDNF mutant mice. They exhibited lower 5-HT2A receptor binding in frontal cortex but increased binding in hippocampus. Additionally, 5-HT1A receptor binding was decreased in hippocampus of BDNF mutants, but unchanged in frontal cortex. Molecular analysis indicated corresponding changes in 5-HT2A and 5-HT1A mRNA expression but normal 5-HT2C content in these brain regions in BDNF2L/2LCk-cre mice. We investigated whether the reduction in frontal 5-HT2AR binding was reflected in reduced functional output in two 5-HT2A-receptor mediated behavioral tests, the head-twitch response (HTR) and the ear-scratch response (ESR). BDNF2L/2LCk-cre mutants treated with the 5-HT2A receptor agonist (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) showed a clearly diminished ESR but no differences in HTR compared to wildtypes. These findings illustrate the context-dependent effects of deficient BDNF signaling on the 5-HT receptor system and 5-HT2A-receptor functional output.  相似文献   

4.
Helm KA  Han JS  Gallagher M 《Neuroscience》2002,115(3):765-774
Principal neurons in the hippocampus and prefrontal cortex of the rat have been identified as targets for glucocorticoids involved in the hypothalamic-pituitary-adrenocortical stress response. Alterations in mRNA expression for glucocorticoid receptors in each of these regions have been shown to affect the negative feedback response to corticosterone following an acute stressor. Both decreases in forebrain glucocorticoid receptors and in the efficiency of adrenocortical feedback have been observed in normal aging, and have been selectively induced with experimental lesions or manipulations in neurotransmitter systems. The current study investigated the possibility that a loss of cholinergic support from cells in the basal forebrain, a hallmark of aging, contributes to the selective age-related loss of glucocorticoid receptor mRNA expression at cholinoceptive target sites that include the hippocampus and medial prefrontal cortex. Lesions of the basal forebrain cholinergic system in young adult rats were made by microinjections of the immunotoxin 192 IgG-saporin into the medial septum/vertical limb of the diagonal band and substantia innominata/nucleus basalis. Basal levels of circulating glucocorticoids were unaffected by the lesions. Analysis of both mineralocorticoid and glucocorticoid receptor mRNA expression revealed a significant decrease in glucocorticoid receptor mRNA in the hippocampus and medial prefrontal cortex, with spared expression at subcortical sites and no detectable change in mineralocorticoid receptor mRNA in any of the examined regions. Thus, rats with lesions of the basal forebrain cholinergic system recapitulate some of the detrimental effects of aging associated with glucocorticoid-mediated stress pathways in the brain.  相似文献   

5.
The cation-independent mannose 6-phosphate receptor (CI-MPR) is a single transmembrane domain glycoprotein that plays a major role in the trafficking of lysosomal enzymes from the trans-Golgi network to the endosomal-lysosomal (EL) system. Because dysfunction of EL system is associated with a variety of neurodegenerative disorders, it is possible that the CI-MPR may have a role in regulating neuronal viability after toxicity/injury. In the present study, we report that 192-IgG-saporin-induced loss of basal forebrain cholinergic neurons causes a transient up-regulation of CI-MPR protein levels in surviving neurons of the basal forebrain and frontal cortex but not in the brainstem region, which was relatively spared by the immunotoxin. This was accompanied by a parallel time-dependent increase in other EL markers, ie, cathepsin D, Rab5, and LAMP2 in the basal forebrain region, whereas in the frontal cortex the levels of cathepsin D, and to some extent Rab5, were increased. Given the critical role of the EL system in the clearance of abnormal proteins in response to changing conditions, it is likely that the observed increase in the CI-MPR and components of the EL system in surviving neurons after 192-IgG-saporin treatment represents an adaptive mechanism to restore the metabolic/structural abnormalities induced by the loss of cholin-ergic neurons.  相似文献   

6.
摘除松果体对大鼠学习记忆及基底前脑胆碱能系统的影响   总被引:3,自引:1,他引:3  
袁群芳  何宏文  田荣波 《解剖学研究》2003,25(1):30-32,T005
目的 探讨松果体功能减退对大鼠学习记忆及基底前脑胆碱能系统的影响。方法 选用 3月龄SD大鼠 2 4只 ,随机分为对照组、去松果体组和褪黑素 (MT)组。手术摘除松果体。饲养 1个月后用Morris水迷宫测试学习记忆功能 ,同时用组织化学和免疫组化方法测定海马、前额叶皮质AchE纤维和内侧隔核、斜角带核的ChAT神经元的数量。结果 与对照组比较 ,去松果体组逃避潜伏期明显增加 ,海马、前额叶皮质AchE纤维数量明显减少 ,但内侧隔核、斜角带核的ChAT神经元数量变化不明显。结论 大鼠去松果体可引起大鼠学习记忆能力减弱 ,这可能与基底前脑胆碱能神经元的功能下降有关  相似文献   

7.
The effects of hypothyroidism on 5-HT1A and 5-HT2A receptors and the serotonin transporter protein were studied in thyroidectomized male Wistar rats in two experimental groups: 1) animals kept on an iodine-free diet (hypothyroid rats) and 2) animals kept on thyroxine (15 g/kg) for 21 days (giving normal thyroid hormone levels, euthyroid animals). Sham-operated rats served as controls. Binding of [3H]8-OH-DPAT with 5-HT1A receptors and [3H]citalopram with the transporter protein in the hippocampus and midbrain showed no changes in hypothyroid rats as compared with controls. Conversely, there were significant decreases in [3H]ketanserin binding to 5-HT2A receptors in the frontal cortex in hypothyroid rats as compared with controls; this decrease was reversed by thyroxine treatment. Thus, losses of cortical 5-HT2A receptors appears to be the main consequence of hypothyroidism at the level of the serotonin system of the brain.  相似文献   

8.
The pathogenesis of hepatic encephalopathy is unknown, but metabolic perturbations, including hyperammonaemia and increased brain turnover of serotonin (5-HT), have been identified. Possible alterations of 5-HT receptors in the brain have been rudimentarily studied. We therefore investigated the 5-HT1 A, 5-HT1 B and 5-HT2 A receptor density in 18–22 different regions in the brain of portacaval shunted rats by means of radioligand binding with autoradiographical evaluation. The results revealed a decreased 5-HT1 A receptor binding in seven serotonergic projection areas of the brain, and an increase in the nucleus accumbens, hypothalamus and subiculum. No changes in the raphe nuclei were observed. An increased 5-HT1 B receptor binding was seen in five brain regions: basal ganglia, olfactorial regions, hippocampus, mid brain and thalamus. However, decreased binding was seen in three regions of cortical areas and hippocampus. The 5-HT2 A receptor binding site density was essentially unaltered. These findings suggest that perturbations in the central serotonergic neurotransmission may play a functional role in chronic hepatic encephalopathy.  相似文献   

9.
10.
Experiments were performed on Norwegian rats selected over more than 59 generations for high and low levels of high-affective defensive aggressivity and on highly aggressive (offensive) Tg8 mice with irreversible monoamine oxidase A knockout. There were significant differences in the functional state and expression of 5-HT1A receptors between highly aggressive and non-aggressive animals. Functional activity assessed in terms of hypothermia evoked by a 5-HT1A agonist was significantly greater in non-aggressive rats and mice than in aggressive animals. The high level of functional activity in non-aggressive rats coincided with a greater level of expression of 5-HT1A receptors in the midbrain. The level of 5-HT1A receptor mRNA in aggressive mice was unchanged in the midbrain and hypothalamus and was increased in the frontal cortex and amygdaloid complex. These results led to the conclusion that 5-HT1A receptors play a significant role in the mechanisms of genetic predisposition to aggressive behavior. __________ Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 56, No. 4, pp. 537–542, July–August, 2006.  相似文献   

11.
Endocannabinoid signaling, mediated by presynaptic CB1 cannabinoid receptors on neurons, is fundamental for the maintenance of synaptic plasticity by modulating neurotransmitter release from axon terminals. In the rodent basal forebrain, CB1 cannabinoid receptor-like immunoreactivity is only harbored by a subpopulation of cholinergic projection neurons. However, endocannabinoid control of cholinergic output from the substantia innominata, coincident target innervation of cholinergic and CB1 cannabinoid receptor-containing afferents, and cholinergic regulation of endocannabinoid synthesis in the hippocampus suggest a significant cholinergic-endocannabinergic interplay. Given the functional importance of the cholinergic modulation of endocannabinoid signaling, here we studied CB1 cannabinoid receptor distribution in cholinergic basal forebrain territories and their cortical projection areas in a prosimian primate, the gray mouse lemur. Perisomatic CB1 cannabinoid receptor immunoreactivity was unequivocally present in non-cholinergic neurons of the olfactory tubercule, and in cholecystokinin-containing interneurons in layers 2/3 of the neocortex. Significantly, CB1 cannabinoid receptor-like immunoreactivity was localized to cholinergic perikarya in the magnocellular basal nucleus. However, cortical cholinergic terminals lacked detectable CB1 cannabinoid receptor levels. A dichotomy of CB1 cannabinoid receptor distribution in frontal (suprasylvian) and parietotemporal (subsylvian) cortices was apparent. In the frontal cortex, CB1 cannabinoid receptor-containing axons concentrated in layers 2/3 and layer 6, while layer 4 and layer 5 were essentially devoid of CB1 cannabinoid receptor immunoreactivity. In contrast, CB1 cannabinoid receptors decorated axons in all layers of the parietotemporal cortex with peak densities in layer 2 and layer 4. In the hippocampus, CB1 cannabinoid receptor-containing terminals concentrated around pyramidal cell somata and proximal dendrites in the CA1-CA3 areas, and granule cell dendrites in the molecular layer of the dentate gyrus. CB1 cannabinoid receptors frequently localized to inhibitory GABAergic terminals while leaving glutamatergic boutons unlabeled. Aging did not affect either the density or layer-specific distribution of CB1 cannabinoid receptor-immunoreactive processes. We concluded that organizing principles of CB1 cannabinoid receptor-containing neurons and their terminal fields within the basal forebrain are evolutionarily conserved between rodents and prosimian primates. In contrast, the areal expansion and cytoarchitectonic differentiation of neocortical subfields in primates is associated with differential cortical patterning of CB1 cannabinoid receptor-containing subcortical and intracortical afferents.  相似文献   

12.
The magnocellular basal forebrain (MNBF) provides extensive cholinergic innervation to frontoparietal cortex. In the rat, the MNBF is homologous to the human nucleus basalis of Meynert, a structure implicated in the cholinergic hypothesis of cognitive impairment in Alzheimer's disease (AD). Kainic acid (KA) was used to make lesions in the MNBF of rats which were compared with unoperated controls, sham-operated controls, and control rats injected with KA in the cortical area directly above the MNBF. The MNBF lesions depleted choline acetyltransferase in cortex but not in striatum or hippocampus. Cortical dopamine levels were unchanged; serotonin levels were unchanged in hippocampus and parietal cortex but decreased in frontal cortex. The metabolite levels of these neurotransmitters were unchanged in all brain regions examined. Compared with controls, rats with MNBF lesions were impaired in 24-hr retention, but not acquisition, of a passive avoidance task with escapable footshock. There were no differences between groups in mean number of daily avoidances on a bar-press active avoidance task, although the data suggested a slower rate of learning in MNBF rats. In a serial spatial discrimination reversal test with a snout-poke response, the MNBF rats performed significantly worse than controls, although all groups learned the task. This rodent model is useful for studying the role of the cholinergic system in memory and possibly for developing treatment strategies to alleviate the cognitive dysfunction of AD.  相似文献   

13.
Unilateral or bilateral electrolytic lesions of the nucleus basalis magnocellularis (NBM) increased NADPH-diaphorase in the fronto-parietal cortex and in the CA1-CA3 fields of the hippocampus. NBM is the cholinergic basal forebrain nucleus supplying the fronto-parietal cortex but not the hippocampus. This increase was more remarkable at 4 weeks than at 2 weeks after lesioning. Monolateral or bilateral lesioning of the NBM increased to a similar extent NADPH-diaphorase. The number of neurons expressing NADPH-diaphorase was not statistically different between sham-operated and NBM-lesioned rats. These results indicate that similarly as reported in experimental damage of several brain areas, lesions of the NBM induce NADPH-diaphorase. The induction of this marker for nitric oxide synthase occurs both in the target of projections arising from the NBM such as the frontal cortex and in an area not directly supplied by NBM such as the hippocampus. Lesion-induced NADPH-diaphorase increase may contribute to neurodegenerative changes caused by damage of the NBM area.  相似文献   

14.

Purpose

Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer''s disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer''s disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits.

Materials and Methods

We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by 18F-2-fluoro-2-deoxyglucose positron emission tomography.

Results

During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex.

Conclusion

Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.  相似文献   

15.
Among serotonin (5-HT) receptors, the 5-HT3 receptor is the only ligand-gated ion-channel. Little is known about the interaction between the 5-HT3 receptor and other 5-HT receptors and influence of 5-HT3 chronic activation on other 5-HT receptors and the expression of key genes of 5-HT system. Chronic activation of 5-HT3 receptor with intracerebroventricularly administrated selective agonist 1-(3-chlorophenyl)biguanide hydrochloride (m-CPBG) (14 days, 40 nmol, i.c.v.) produced significant desensitization of 5-HT3 and 5-HT1A receptors. The hypothermic responses produced by acute administration of selective agonist of 5-HT3 receptor (m-CPBG, 40 nmol, i.c.v.) or selective agonist of 5-HT1A receptor (8-hydroxy-2-(di-n-propylamino)tetralin) (8-OH-DPAT, 1 mg/kg, i.p.) was significantly lower in m-CPBG treated mice compared with the mice of control groups. Chronic m-CPBG administration failed to induce any significant change in the 5-HT2A receptor functional activity and in the expression of the gene encoding 5-HT2A receptor. Chronic activation of 5-HT3 receptor produced no considerable effect on the expression on 5-HT3, 5-HT1A, and 5-HT transporter (5-HTT) and tryptophan hydroxylase-2 (TPH-2) genes – the key genes of brain 5-HT system, in the midbrain, frontal cortex and hippocampus. In conclusion, chronic activation of ionotropic 5-HT3 receptor produced significant desensitization of 5-HT3 and postsynaptic 5-HT1A receptors but caused no considerable changes in the expression of key genes of the brain 5-HT system.  相似文献   

16.
目的建立大鼠阿尔茨海默病(Alzheimer′sdisease,AD)动物模型,并观察其学习记忆能力及基底前脑胆碱能神经元改变。方法采用SD大鼠侧脑室注射192-IgG-saporin(2.5μg/5μl),21d后行Y迷宫检测,28d后处死大鼠,免疫组化观察基底前脑神经生长因子受体(NGFR)阳性神经元细胞数的变化。结果Y迷宫检测显示模型组大鼠的学习次数、记忆能力(107.38±9.34、3.75±0.71)较正常组明显下降(P<0.01)。免疫组化显示模型组损伤侧在内侧隔核(MS)和斜角带垂直支(VDB)的NGFR阳性神经元细胞数(7.50±1.77、15.00±2.27)与正常组对应侧比较分别减少81.96%和84.23%(P<0.01),MS和VDB的NGFR阳性神经元面积和周长降低(P<0.05),灰度值升高(P<0.05)。结论免疫毒素192-IgG-saporin侧脑室注射可以模拟AD行为学改变和部分病理学特征。  相似文献   

17.
Estrogen is thought to enhance cognitive functions by modulating the production of acetylcholine in basal forebrain neurons; a system that projects to the cerebral cortex and hippocampus and plays a central role in learning and memory. To elucidate the mechanism of estrogen action in the cholinergic system, we utilized a combined in vivo autoradiography/immunocytochemistry technique to evaluate the distribution of estrogen binding sites in cholinergic neurons of the rat basal forebrain. The results of these studies revealed that a portion of the cholinergic neurons in the medial septum (41%), vertical (32%) and horizontal (29%) limbs of the diagonal band and in the substantia innominata/nucleus basalis (4%) contained estrogen receptors. Through the use of a double-label in situ hybridization/immunocytochemistry technique we have shown that estrogen receptor-alpha is the predominant estrogen receptor in the cholinergic neurons, with only a few cells containing estrogen receptor-beta.The results of these studies provide evidence that biologically active estrogen receptors are present in the basal forebrain cholinergic neurons of the adult rat brain, with estrogen receptor-alpha being the predominant receptor subtype. The demonstration that cholinergic neurons contain estrogen receptors is consistent with the possibility that estrogen directly modulates the activity of cholinergic neurons in rats and may provide insight as to how estrogen improves cognitive functions in women.  相似文献   

18.
The studies reported here addressed the effects of chronic administration of thyroxine (2 mg/liter for 60 days) on catalepsy and the functional activity and expression of the 5-HT1A and 5-HT2A receptor genes in the brains of adult male mice of the cataleptic ASC strain and the catalepsy-resistant AKR strain. Thyroxine induced cataleptics in AKR mice but had anticataleptic activity in ASC animals. Chronic thyroxine administration increased the functional activity and expression of 5-HT2A receptors in the frontal cortex in AKR mice but not in ASC mice. In ASC mice, the hormone significantly weakened the hypothermic effect of the 5-HT1A receptor agonist 8-OH-DPAT, though it did not alter the expression of these receptors. These results suggest that 5-HT2A receptors are involved in the cataleptogenic while 5-HT1A receptors are involved in the anticataleptic effects of the hormone in mice.  相似文献   

19.
 Changes in brain electrical activity in response to cholinergic agonists, antagonists, or excitotoxic lesions of the basal forebrain may not be reflective entirely of changes in cholinergic tone, in so far as these interventions also involve noncholinergic neurons. We examined electrocortical activity in rats following bilateral intracerebroventricular administration of 192 IgG-saporin (1.8 μg/ventricle), a selective cholinergic immunotoxin directed to the low-affinity nerve growth factor receptor p75. The immunotoxin resulted in extensive loss of choline acetyl transferase (ChAT) activity in neocortex (80%–84%) and hippocampus (93%), with relative sparing of entorhinal-piriform cortex (42%) and amygdala (28%). Electrocortical activity demonstrated modest increases in 1- to 4-Hz power, decreases in 20- to 44-Hz power, and decreases in 4- to 8-Hz intra- and interhemispheric coherence. Rhythmic slow activity (RSA) occurred robustly in toxin-treated animals during voluntary movement and in response to physostigmine, with no significant differences seen in power and peak frequency in comparison with controls. Physostigmine significantly increased intrahemispheric coherence in lesioned and intact animals, with minor increases seen in interhemispheric coherence. Our study suggests that: (1) electrocortical changes in response to selective cholinergic deafferentation are more modest than those previously reported following excitotoxic lesions; (2) changes in cholinergic tone affect primarily brain electrical transmission within, in contrast to between hemispheres; and (3) a substantial cholinergic reserve remains following administration of 192 IgG-saporin, despite dramatic losses of ChAT in cortex and hippocampus. Persistence of a cholinergically modulated RSA suggests that such activity may be mediated through cholinergic neurons which, because they lack the p75 receptor, remain unaffected by the immunotoxin. Received: 22 June 1998 / Accepted: 29 November 1998  相似文献   

20.
A recent [18F]MPPF-positron emission tomography study has highlighted an overexpression of 5-HT1A receptors in the hippocampus of patients with mild cognitive impairment compared to a decrease in those with Alzheimer's disease (AD) [Truchot, L., Costes, S.N., Zimmer, L., Laurent, B., Le Bars, D., Thomas-Antérion, C., Croisile, B., Mercier, B., Hermier, M., Vighetto, A., Krolak-Salmon, P., 2007. Up-regulation of hippocampal serotonin metabolism in mild cognitive impairment. Neurology 69 (10), 1012-1017]. We used in vivo and in vitro neuroimaging to evaluate the longitudinal effects of injecting amyloid-β (Aβ) peptides (1-40) into the dorsal hippocampus of rats. In vivo microPET imaging showed no significant change in [18F]MPPF binding in the dorsal hippocampus over time, perhaps due to spatial resolution. However, in vitro autoradiography with [18F]MPPF (which is antagonist) displayed a transient increase in 5-HT1A receptor density 7 days after Aβ injection, whereas [18F]F15599 (a radiolabelled 5-HT1A agonist) binding was unchanged suggesting that the overexpressed 5-HT1A receptors were in a non-functional state. Complementary histology revealed a loss of glutamatergic neurons and an intense astroglial reaction at the injection site. Although a neurogenesis process cannot be excluded, we propose that Aβ injection leads to a transient astroglial overexpression of 5-HT1A receptors in compensation for the local neuronal loss. Exploration of the functional consequences of these serotoninergic modifications during the neurodegenerative process may have an impact on therapeutics targeting 5-HT1A receptors in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号