首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Psychological factors are known to play an extremely important role in the maintenance and development of chronic pain conditions. However, it is unclear how such factors relate to the central neural processing of nociceptive transmission in healthy individuals. To investigate this issue, the activation of the brain was studied in 30 healthy volunteers responding to virtual pain stimuli by fMRI. In the first series of the study (non-preconditioned study), 15 participants were shown a digital video demonstrating an injection needle puncturing the right palm. In the second series of the study (pre-conditioned study), same-task paradigms were used for another 15 participants. Prior to the fMRI session, real needle punctuate stimuli were applied to the right palm of participants for pre-conditioning. fMRI analysis revealed that bilateral activations in anterior insula (BA45), parietal operculum (S2: BA40), premotor area, medial globus pallidus, inferior occipital gyrus (BA18), left temporal association cortex, right fusiform gyrus, right parietal association cortex and cerebellum occurred due to the task in the preconditioned group. On the other hand, right parietal operculum (S2: BA40), premotor area, parietal association cortex, left inferior frontal gyrus and bilateral temporal association cortex were activated in the non-preconditioned group. In addition, activation of anterior insula, inferior frontal gyrus, precentral gyrus and cerebellum significantly increased in the preconditioned group compared with the non-preconditioned group. These results suggest that the virtual needle puncture task caused memory retrieval of unpleasant experiences which is possibly related to empathy for pain, resulting in the activation of specific brain areas.  相似文献   

2.
Recent studies have shown that the human parietal and frontal cortices are involved in object image perception. We hypothesized that the parietal/frontal object areas play a role in differentiating the orientations (i.e., views) of an object. By using functional magnetic resonance imaging, we compared brain activations while human observers differentiated between two object images in depth-orientation (orientation task) and activations while they differentiated the images in object identity (identity task). The left intraparietal area, right angular gyrus, and right inferior frontal areas were activated more for the orientation task than for the identity task. The occipitotemporal object areas, however, were activated equally for the two tasks. No region showed greater activation for the identity task. These results suggested that the parietal/frontal object areas encode view-dependent visual features and underlie object orientation perception.  相似文献   

3.
4.
To explicate the neural correlates of sex differences in visuospatial and verbal fluency tasks, we examined behavioural performance and blood-oxygenation-level-dependent (BOLD) regional brain activity, using functional magnetic resonance imaging, during a three-dimensional (3D) mental rotation task and a compressed sequence overt verbal fluency task in a group of healthy men (n=9) and women (n=10; tested during the low-oestrogen phase of the menstrual cycle). Men outperformed women on the mental rotation task, and women outperformed men on the verbal fluency task. For the mental rotation task, men and women activated areas in the right superior parietal lobe and the bilateral middle occipital gyrus in association with the rotation condition. In addition, men activated the left middle temporal gyrus and the right angular gyrus. For verbal fluency, men activated areas in the bilateral superior frontal gyrus, right cingulate gyrus, left precentral gyrus, left medial frontal gyrus, left inferior frontal gyrus, thalamus, left parahippocampal gyrus and bilateral lingual gyrus, and women activated areas in the bilateral inferior frontal gyrus and left caudate. Despite observing task related activation in the hypothesised areas in men and women, no areas significantly differentiated the two sexes. Our results demonstrate comparable brain activation in men and women in association with mental rotation and verbal fluency function with differential performance, and provide support for sex differences in brain–behaviour relationships.  相似文献   

5.
To investigate the neural network involved in the control of mastication during changes in food hardness, we employed functional magnetic resonance imaging while 15 healthy subjects chewed gum whose hardness was changed by chewing. By comparing the areas activated when the hardness of the bolus varied widely with those seen when the hardness of the bolus had stabilized, we identified selective activations of the supplementary motor area, the dorsolateral prefrontal cortex, the superior temporal gyrus of the left hemisphere, and the premotor area and inferior parietal lobule of the right hemisphere. These findings indicate that these areas are probably related to processes linking sensory input and motor output involved in the change of hardness food during mastication.  相似文献   

6.
Positron emission tomography imaging of cerebral blood flow was used to localize brain areas involved in the representation of hand grasping movements. Seven normal subjects were scanned under three conditions. In the first, they observed precision grasping of common objects performed by the examiner. In the second, they imagined themselves grasping the objects without actually moving the hand. These two tasks were compared with a control task of object viewing. Grasp observation activated the left rostral superior temporal sulcus, left inferior frontal cortex (area 45), left rostral inferior parietal cortex (area 40), the rostral part of left supplementary motor area (SMA-proper), and the right dorsal premotor cortex. Imagined grasping activated the left inferior frontal (area 44) and middle frontal cortex, left caudal inferior parietal cortex (area 40), a more extensive response in left rostral SMA-proper, and left dorsal premotor cortex. The two conditions activated different areas of the right posterior cerebellar cortex. We propose that the areas active during grasping observation may form a circuit for recognition of hand-object interactions, whereas the areas active during imagined grasping may be a putative human homologue of a circuit for hand grasping movements recently defined in nonhuman primates. The location of responses in SMA-proper confirms the rostrocaudal segregation of this area for imagined and real movement. A similar segregation is also present in the cerebellum, with imagined and observed grasping movements activating different parts of the posterior lobe and real movements activating the anterior lobe.  相似文献   

7.
This study aimed to investigate the hypothesis that a transient increase in oxygen level administered to subjects increases the BOLD effect in brain regions associated with verbal cognitive functioning and enhances performance accuracy. A verbal task was presented while brain images were scanned by a 3T fMRI system. The accuracy rate on the verbal task was enhanced during 30% oxygen administration compared to 21% oxygen administration. The neural activations were observed at the occipital, parietal, temporal and frontal lobes, during both 21% and 30% oxygen administration. Increased brain activations were observed in the right middle frontal gyrus, right inferior frontal gyrus, right superior frontal gyrus, cingulate gyrus, left middle temporal gyrus, and left fusiform gyrus with 30% oxygen administration. These results suggest that a higher concentration of breathed oxygen increases saturation of blood oxygen in the brain, and facilitates verbal cognitive performance.  相似文献   

8.
Sporting performance makes special demands on perceptual skills, but the neural mechanisms underlying such performance are little understood. We address this issue, making use of fMRI to identify the brain areas activated in viewing and responding to video sequences of tennis players, filmed from the opponent's perspective. In a block-design, fMRI study, 9 novice tennis players watched video clips of tennis play. The main stimulus conditions were (1) serve sequences, (2) non-serve behaviour (ball bouncing) and (3) static control sequences. A button response was required indicating the direction of serve (left or right for serve sequences, middle button for non-serve and static sequences). By comparing responses to the three stimulus conditions, it was possible to identify two groups of brain regions responsive to different components of the task. Areas MT/MST and STS in the posterior part of the temporal lobe responded either to serve and to non-serve stimuli, relative to static controls. Serve sequences produced additional regions of activation in the parietal lobe (bilateral IPL, right SPL) and in the right frontal cortex (IFGd, IFGv), and these areas were not activated by non-serve sequences. These regions of the parietal and frontal cortex have been implicated in a "mirror neuron" network in the human brain. It is concluded that the task of judgement of serve direction produces two different patterns of response: activations in the MT/MST and STS concerned with primarily with the analysis of motion and body actions, and activations in the parietal and frontal cortex associated specifically with the task of identification of direction of serve.  相似文献   

9.
Turner GR  Spreng RN 《Neurobiology of aging》2012,33(4):826.e1-826.13
Studies of neurocognitive aging report altered patterns of brain activity in older versus younger adults performing executive function tasks. We review the extant literature, using activation likelihood estimation meta-analytic methods, to compare age-related differences in the pattern of brain activity across studies examining 2 categories of tasks associated with executive control processing: working memory and inhibition. In a direct contrast of young and older adult activations, older adults engaged bilateral regions of dorsolateral prefrontal cortex as well as supplementary motor cortex and left inferior parietal lobule during working memory. In contrast, age-related changes during inhibitory control were observed in right inferior frontal gyrus and presupplementary motor area. Additionally, when we examined task-related differences within each age group we observed the predicted pattern of differentiated neural response in the younger subjects: lateral prefrontal cortex activity associated with working memory versus right anterior insula/frontal opercular activity associated with inhibition. This separation was largely maintained in older subjects. These data provide the first quantitative meta-analytic evidence that age-related patterns of functional brain change during executive functioning depend on the specific control process being challenged.  相似文献   

10.
Many neuropsychological studies have shown that the Digit Symbol Test (DST) of the Wechsler Adult Intelligence Scale (WAIS) is useful for screening for dysfunctions of the brain. However, it remains unclear which brain areas are actually involved in the performance of DST and what brain functions are used for executing this test. In this study, we examined the cortical areas related to cognitive aspects of DST using functional magnetic resonance imaging (fMRI) and determined executive brain functions involved in this test on the basis of fMRI results. Eleven healthy young adults (mean = 21.6 years) performed a modified DST (mDST) task and its control task, which required a simple graphomotor response during fMRI data acquisition. The direct comparison of brain activations between the mDST task and the control task revealed greater activations in a fronto-parietal cortical network, including the bilateral inferior frontal sulci, left middle frontal gyrus (close to the frontal eye field) and left posterior parietal cortex. These activations are interpreted as reflecting the visual search process and/or the updating process of working memory during the mDST task execution. Furthermore, we found a positive correlation between the number of correct responses and activations in the bilateral inferior frontal regions, suggesting that these prefrontal areas have a crucial role in the performance of DST in a healthy young adult population.  相似文献   

11.
This experiment was designed to investigate the neural network engaged by the perception of human movements using positron emission tomography. Perception of meaningful and of meaningless hand actions without any purpose was contrasted with the perception of the same kind of stimuli with the goal to imitate them later. A condition that consisted of the perception of stationary hands served as a baseline level. Perception of meaningful actions and meaningless actions without any aim was associated with activation of a common set of cortical regions. In both hemispheres, the occipito-temporal junction (Ba 37/19) and the superior occipital gyrus (Ba 19) were involved. In the left hemisphere, the middle temporal gyrus (Ba 21) and the inferior parietal lobe (Ba 40) were found to be activated. These regions are interpreted as related to the analysis of hand movements. The precentral gyrus, within the area of hand representation (Ba 4), was activated in the left hemisphere. In addition to this common network, meaningful and meaningless movements engaged specific networks, respectively: meaningful actions were associated with activations mainly located in the left hemisphere in the inferior frontal gyrus (Ba 44/45) and the fusiform gyrus (Ba 38/20), whereas meaningless actions involved the dorsal pathway (inferior parietal lobe, Ba 40 and superior parietal lobule, Ba 7) bilaterally and the right cerebellum. In contrast, meaningful and meaningless actions shared almost the same network when the aim of the perception was to im itate. Activations were located in the right cerebellum and bilaterally in the dorsal pathway reaching the prem otor cortex. Additional bilateral activations were located in the SMA and in the orbitofrontal cortex during observation of meaningful actions.  相似文献   

12.
This experiment was designed to investigate the neural network engaged by the perception of human movements using positron emission tomography. Perception of meaningful and of meaningless hand actions without any purpose was contrasted with the perception of the same kind of stimuli with the goal to imitate them later. A condition that consisted of the perception of stationary hands served as a baseline level. Perception of meaningful actions and meaningless actions without any aim was associated with activation of a common set of cortical regions. In both hemispheres, the occipito-temporal junction (Ba 37/19) and the superior occipital gyrus (Ba 19) were involved. In the left hemisphere, the middle temporal gyrus (Ba 21) and the inferior parietal lobe (Ba 40) were found to be activated. These regions are interpreted as related to the analysis of hand movements. The precentral gyrus, within the area of hand representation (Ba 4), was activated in the left hemisphere. In addition to this common network, meaningful and meaningless movements engaged specific networks, respectively: meaningful actions were associated with activations mainly located in the left hemisphere in the inferior frontal gyrus (Ba 44/45) and the fusiform gyrus (Ba 38/20), whereas meaningless actions involved the dorsal pathway (inferior parietal lobe, Ba 40 and superior parietal lobule, Ba 7) bilaterally and the right cerebellum. In contrast, meaningful and meaningless actions shared almost the same network when the aim of the perception was to im itate. Activations were located in the right cerebellum and bilaterally in the dorsal pathway reaching the prem otor cortex. Additional bilateral activations were located in the SMA and in the orbitofrontal cortex during observation of meaningful actions.  相似文献   

13.
Regional cerebral blood flow (rCBF) PET scans were used to study the physiological bases of lipreading, a natural skill of extracting language from mouth movements, which contributes to speech perception in everyday life. Viewing connected mouth movements that could not be lexically identified and that evoke perception of isolated speech sounds (nonlexical lipreading) was associated with bilateral activation of the auditory association cortex around Wernicke's area, of left dorsal premotor cortex, and left opercular-premotor division of the left inferior frontal gyrus (Broca's area). The supplementary motor area was active as well. These areas have all been implicated in phonological processing, speech and mouth motor planning, and execution. In addition, nonlexical lipreading also differentially activated visual motion areas. Lexical access through lipreading was associated with a similar pattern of activation and with additional foci in ventral- and dorsolateral prefrontal cortex bilaterally and in left inferior parietal cortex. Linear regression analysis of cerebral blood flow and proficiency for lexical lipreading further clarified the role of these areas in gaining access to language through lipreading. The results suggest cortical activation circuits for lipreading from action representations that may differentiate lexical access from nonlexical processes.  相似文献   

14.
Thiel CM  Fink GR 《Neuroscience》2008,152(2):381-390
The cholinergic agonist nicotine facilitates detection of invalidly cued trials in location-cueing paradigms and reduces the associated neural activity in human inferior parietal cortex. By using functional magnetic resonance imaging we test the hypothesis that the nicotinic modulation of attentional reorienting may result from reduced use of top-down information derived from prior cues. In a within subjects design non-smoking volunteers were given either placebo or nicotine (Nicorette 2 mg gum) prior to performing a cued target discrimination task. Attention was either validly (80%) or invalidly (20%) cued to the right or left visual hemifield. The difference in reaction times to invalidly and validly cued targets is termed the 'validity effect' and indicates the costs for attentional reorienting. Nicotine reduced the validity effect and reorienting-related neural activity in right inferior parietal cortex. Further regions consistently modulated in their activity by nicotine were the right middle temporal gyrus, left middle frontal gyrus, left parahippocampal gyrus and right cerebellum. The effects of nicotine upon top-down modulation were investigated by comparing occipital activity when attending to the right vs. left visual hemifield under placebo and nicotine. If nicotine reduced the use of top-down information attentional modulation in occipital cortex should be smaller under nicotine as compared with placebo. Even though an attention-related modulation of neural activity was observed in the fusiform and middle occipital gyrus we found no evidence for differences in attentional modulation under placebo and nicotine. Our data support a role of nicotinic cholinergic receptors in facilitating several subcomponents of attentional reorienting via modulation of right inferior parietal, temporal and frontal brain activity. In contrast, the findings in the occipital cortex do not support the hypothesis that the effects of nicotine on attentional reorienting are due to reduced reliance on top-down information derived from prior cues.  相似文献   

15.
目的 探讨成人大脑正常衰老过程中大脑皮质体积、厚度及表面积改变的区域性差异及侧化差异MRI的表现。方法 采用前瞻性研究。2017年9月—2018年1月山东省立医院影像科及寿光市人民医院CT磁共振室招募18~85岁右利手汉族健康成年志愿者109人,其中男性56人、女性53人,年龄(53.13±15.61)岁,均行3.0 T MRI颅脑扫描原始数据。使用FreeSurfer脑成像软件分析,获取左右大脑半球、各脑叶的感兴趣区脑皮质的体积、厚度及表面积的具体数值并进行标准化处理,分析其与年龄的相关关系,以及大脑皮质老化的区域性差异及侧化差异。结果 线性回归分析显示,大脑皮质体积、厚度及表面积随年龄增长而下降(P<0.01),表现出与年龄相关的皮质体积减少较多的区域为海马旁回、额下回岛盖部、额中回、额下回三角部、舌回、颞中回(最大为-0.653%/岁,P<0.01),皮质厚度减少较多的区域主要在颞上回、后扣带回、额中回、外眶额回、顶下缘角回、颞极、海马旁回(最大-0.009 mm/岁,P<0.01),皮质表面积减少较多的区域主要是在海马旁回、舌回、颞下回、额中回、额下回岛盖部(最大-0.402%/岁,P< 0.01)。大脑左右半球皮质体积年龄效应不对称的区域为额上回、额下回岛盖部及三角部、中眶额回、额极、顶下缘角回、缘上回、梭状回、颞极、海马旁回、前扣带回、内嗅皮层(P<0.05),皮质厚度年龄效应不对称的区域为额上回、额下回岛盖部、中眶额回、楔叶、颞下回、颞极、前扣带回、后扣带回(P<0.05),皮质表面积年龄效应不对称的区域为额上回、额中回、额下回岛盖部及三角部、中眶额回、额极、顶下缘角回、缘上回、梭状回、颞极、海马旁回、前扣带回、后扣带回、内嗅皮层(P<0.05)。结论 在人脑的正常老化过程中,大脑皮质体积、厚度及表面积与年龄呈现线性负相关性改变,不同脑区皮质与年龄呈不同程度的线性负相关关系,部分脑回皮质的年龄效应存在侧化差异,皮质体积、厚度、表面积三个形态学指标是相互关联的。  相似文献   

16.
Musicians show enhanced auditory processing compared to nonmusicians. However, the neural basis underlying the effects of musical training on rapid plasticity in auditory processing has not been systematically studied. Here, the rapid (one session) learning-related plastic changes in event-related potential (ERP) responses for pitch and duration deviants between passive blocks were compared between musicians and nonmusicians. Passive blocks were interleaved with an active discrimination task. In addition to musicians having faster and stronger overall source activation for deviating sounds, source analysis revealed rapid plastic changes in the left and right temporal and left frontal sources that were present only in musicians. Source activation decreased in these areas even without focused attention. Furthermore, deviant-related ERP responses above the parietal areas decreased after the active task in both musicians and nonmusicians. Taken together, the results indicate enhanced rapid plasticity in sound change discrimination and perceptual learning in musicians when compared with nonmusicians.  相似文献   

17.
We used functional magnetic resonance imaging to differentiate cerebral areas involved in two different dimensions of haptic shape perception: encoding and matching. For this purpose, healthy right-handed subjects were asked to compare pairs of complex 2D geometrical tactile shapes presented in a sequential two-alternative forced-choice task. Shape encoding involved a large sensorimotor network including the primary (SI) and secondary (SII) somatosensory cortex, the anterior part of the intraparietal sulcus (IPA) and of the supramarginal gyrus (SMG), regions previously associated with somatosensory shape perception. Activations were also observed in posterior parietal regions (aSPL), motor and premotor regions (primary motor cortex (MI), ventral premotor cortex, dorsal premotor cortex, supplementary motor area), as well as prefrontal areas (aPFC, VLPFC), parietal-occipital cortex (POC) and cerebellum. We propose that this distributed network reflects construction and maintenance of sensorimotor traces of exploration hand movements during complex shape encoding, and subsequent transformation of these traces into a more abstract shape representation using kinesthetic imagery. Moreover, haptic shape encoding was found to activate the left lateral occipital complex (LOC), thus corroborating the implication of this extrastriate visual area in multisensory shape representation, besides its contribution to visual imagery. Furthermore, left hemisphere predominance was shown during encoding, whereas right hemisphere predominance was associated with the matching process. Activations of SI, MI, PMd and aSPL, which were predominant in the left hemisphere during the encoding, were shifted to the right hemisphere during the matching. In addition, new activations emerged (right dorsolateral pre-frontal cortex, bilateral inferior parietal lobe, right SII) suggesting their specific involvement during 2D geometrical shape matching.  相似文献   

18.
目的 采用功能磁共振成像(fMRI)技术对正常中老年人进行研究,检测与词语联想功能相关脑区的激活特点.方法 采用GE 1.5 T磁共振扫描仪对23例(男12例,女11例)正常中老年人行组块设计的词语联想任务fMRI研究.采用SPM 2软件进行数据处理和统计分析,通过组分析获得平均脑激活图,观察脑激活区的部位和激活强度.结果 12例符合入组条件,激活脑区为运动前区(PMC)、双侧额下回后部(Broca区及Broca镜像区)、双侧辅助运动区(SMA)、左侧顶后皮层、双侧岛叶、双侧扣带回前部、双侧基底节、左侧丘脑以及右侧小脑半球.全脑以左侧PMC激活强度最大.激活强度左侧大于右侧的脑区为额下回后部、背侧PMC及SMA;右侧大于左侧的脑区为腹侧PMC、岛叶、扣带回前部、基底节.结论 中老年人参与运动性语言表达的脑区,由包括Broca区在内的多个脑区组成复杂的神经网络,且相关脑区存在偏侧化现象,以左侧大脑半球和右侧小脑半球激活为主.  相似文献   

19.
Recent studies have shown that impairment in executive function (EF) is common in patients with amnestic mild cognitive impairment (aMCI). However, the neuroanatomic basis of executive impairment in patients with aMCI remains unclear. In this study, multiple regression voxel-based morphometry analyses were used to examine the relationship between regional gray matter volumes and EF performance in 50 patients with aMCI and 48 healthy age-matched controls. The core EF components (response inhibition, working memory and task switching, based on the EF model of Miyake et al) were accessed with computerized tasks. Atrophic brain areas related to decreases in the three EF components in patients with aMCI were located in the frontal and temporal cortices. Within the frontal cortex, the brain region related to response inhibition was identified in the right inferior frontal gyrus. Brain regions related to working memory were located in the left anterior cingulate gyrus, left premotor cortex, and right inferior frontal gyrus, and brain regions related to task shifting were distributed in the bilateral frontal cortex. Atrophy in the right inferior frontal gyrus was most closely associated with a decrease in all three EF components in patients with aMCI. Our data, from the perspective of brain morphology, contribute to a better understanding of the role of these brain areas in the neural network of EF.  相似文献   

20.
Using functional MRI we examined the task-dependency of brain activation patterns evoked by vibrotactile stimulation. For this purpose, we measured activations after identical stimulation of the fingers of the right hand in three different task conditions: passive attention, localization of the vibrations, and discrimination of temporal noise within the vibrations. Further, we investigated whether, regardless of task demands, the characteristics of the vibrations – periodic versus noisy – had an effect on brain topography. Vibrotactile processing was associated with activation in a variety of cortical areas including contralateral primary somatosensory cortex (SI), bilateral posterior parietal cortex, parietal operculum (second somatosensory cortex, SII), insula, and superior temporal gyrus, as well as ipsilateral middle temporal gyrus, precentral, and middle frontal gyrus. However, identical stimuli evoked different brain activity patterns in different task conditions: significantly stronger activity in the hand representation of SI was found for stimulus localization than for noise detection. In contrast, significantly higher activation for noise detection than for finger localization was found in the thalamus. Activation tended to be lower for noisy stimuli in both hemispheres. Significant stimulus-related differences, however, could be found only in the contralateral postcentral and parietal cortex, particularly during noise discrimination. In summary, in response to vibrotactile stimulation, the level of activation in processing circuits ranging across thalamus and many cortical regions is dictated by the perceptual operation carried out on the vibration. We speculate that different nodes in the network carry signals that can be optimally decoded for either spatial or temporal information and that the degree of activation reflects those nodes’ relative contributions to the decoding process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号